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ABSTRACT. Profiles from a series of balloon bome ozonesonde ascents are used to chart the
development of the Antarctic depletion over Maitri in the austral spring of 1992. The vertical structure
of the ozone layer is discussed, including the presence of stratification, which occurs at all stages
of development. The main feature of 1992 ozonesonde flights is depletion of 97% in the months of
September and October between 15-23 km, which is unique.
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1. Introduction

The stratosphere is the atmospheric region extending
from just above the tropopause, to an altitude of about
50 km. The tropopause varies from a value of about
10 km over high latitudes to about 17 km over the
equator. Within this region the air temperature generally
increases with altitude rising from —-50°C or lower at
the tropopause to greater than -20°C at 50 km. The
relative warmth of the stratosphere results from the
absorption of solar ultraviolet radiation by ozone, which
has its highest mixing ratio in the stratosphere. This
heating by solar absorption is balanced by cooling
through emission of thermal infrared radiation, primarily
from the 15 um band of CO,. After the autumnal
equinox, the polar regions fall into darkness and the
solar ultraviolet ceases. Emission of thermal radiation
quickly cools the polar stratosphere to temperatures

much lower than those of the mid-latitude stratos-
phere. A latitudinal pressure gradient then develops
between the pole and mid-latitudes, which combined
with earth’s rotation, produces a circumpolar belt of
westerly winds referred to as the polar night jet or
polar vortex. This isolates the south polar region from
the surrounding atmosphere and prevents ozonerich air
from the middle latitudes from penetrating the Antarctic
stratosphere.
2. Chemistry in the polar vortex

Under normal winter conditions in the lower
stratosphere, the temperature within the polar vortex
falls low enough so that clouds of nitric acid tryhydrate’
and ice can form despite the dryness of the stratosphere
(2 10 4 ppm mixing ratio of water). These clouds are
referred to, generally, as polar stratospheric clouds
(PSC’s). Pure ice clouds near —-88°C at 50 hPa pressure
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Fig. 1. Profile of partial pressure of ozone (nb)
over Maitri

(roughly 20 km), an extreme temperature that is rarely
maintained for long periods except in the Antarctic
winter stratosphere. The clouds of nitric acid trihydrate
form at temperature roughly 10°C warmer and thus,
probably, account for most of the PSC’s. The PSC’s
are now recognized as the key ingredient in the spring
time destruction of ozone and the formation of the
ozone hole. They are the sites for a group of
heterogeneous reactions that perturb the normal gas
phase chemistry in the polar region. The most important
heterogeneous reaction is that which converts the
relatively unreactive chlorine species, chlorine nitrate
and hydrochloric acid (the dominant chlorine reservoirs),
to molecular chlorine and nitric acid,

CIONO, + HCl —%> HNO, + Cl, (1)

where M is a third body molecule or particle. The
molecular Chlorine is photolyzed in the spring
sunlight, the atomic chlorine quickly reacts with
ozone to form the chlorine monoxide radical (ClO).
Substantial catalytic ozone destructions at rates of
0.5 to 1% per day begins with the formation of
the dimer (ClO) and the reaction of ClO with
bromine monoxide (BrO) (Anderson et al. 1989).
Widespread ozone destruction during the Antarctic
spring requires cold stratospheric temperature (below
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Fig. 2. Locator map of Antarctic stations

-78°C) for a sufficiently long time supporting the
formation of polar stratospheric clouds. The main
role of PSC’s being denitrification of air in the
polar vortex through heterogeneous chemistry. To
prevent the conversion of CIO back to unreactive
chlorine nitrate through the reaction of ClO with
NO,, active nitrogen compounds must be suppressed.
The formation of PSC’s sequesters HNOj in trihydrate
particles after the heterogeneous reaction by conden-
sation and also denitrifies the vortex air. The observed
ozone destruction in both hemispheres is, therefore,
contingent on the stratosphere remaining denitrified
during the period of ozone loss, and this means that
mid-latitude air containing reactive nitrogen comp-
ounds cannot be mixed into the polar vortex. The
dynamical characteristics of the polar vortex provide
this chemical isolation and the ozone hole develops
poleward of the latitude of strongest westerly winds.

In order to study the temporal development of
the Antarctic spring ozone depletion, a programme
of ozonesonde flights was undertaken at Maitri (70°S,
1200 E; Fig. 2) in 1992 using the Indian
electrochemical ozonesonde (Sreedharan 1968). More
than 50 ascents were taken during the period January-
December, of which twenty were in the crucial
months” of August, September and October. The
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Fig. 4. Partial pressure of ozone (nb) and

magnitude of the phenomenon is made clear in Fig.
1. The profile of 24 August can be regarded as

showing the stratosphere in its normal winter state,
with a maximum ozone partial pressure of about

120 nbar at 65 hPa level. By contrast, the lower
stratosphere, on 30 September, has lost nearly all

the ozone at that level, and is severely depleted
throughout a vertical range of many kilometers. From
30 September to 11 October, the depletion is rather
more severe than that observed on 13 October 1987
at Halley Bay by Gardiner (1988).

3. Results and discussion

The Ozone and temperature profiles on 24 August,
30 September, 11 October and 29 November during
1992 are presented in Figs 1 & 3. The following
features of the ozone depletion in spring and subsequent
revival of the ozone concentration in summer are seen

temperature (°C) profile over Syowa
clearly in the profiles :

(a) The ozone depletion in spring takes place mainly
between 150 and 20 hPa (approximately 14-25
km).

(b) The maximum difference, in ozone concentration
between September to December is of the order
of 150 nb, and occurs at about 23 km,

(c) Bulk of ozone depletion in September and
October takes place between 12 and 23 km.
Fig. 1 shows 97% depletion at this height for
1992. The ozone concentration shows an increase
at all levels above 16 km from the last weck
of November.

(d) The lowest temperature of above -80°C is
observed in spring in the middle of "Ozone
hole" at 16 km and during summer the same
level warms upto —65°C.
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Of all the destruction mechanisms suggested, the
most important appears to be the one involving CIO.
According to Molina et al. (1987), destruction
mechanisms involving ClIO can explain about half of
the observed ozone destruction, if the abundance of
ClO is of the order of 0.5-1 ppbv. Solomon et al.
(1986) have reported ClO mixing ratios in the region
around 20 km in the Antarctic spring to be close to
1 ppbv. Thus it appears that the ozone depletion
observed in the lower stratosphere over Antarctica can
only be partly accounted for by the destruction
mechanisms involving ClO alone.

The role played by polar stratospheric clouds
(PSC’s) in the spring time ozone depletion has been
highlighted by various workers (McElory er al. 1986
and McCormick et al. 1986). The PSC’s are widely
believed to be formed by condensation of nitric
acid/water at extremely cold temperatures in the winter
polar vortex. In the ozone soundings of 30 September
and 11 October 1992, the lowest temperature reached
was about —80°C at 16 km as against -45°C at 16 km
on 29 October 1992. These lower temperatures prolong
the presence of polar stratospheric clouds (PSC’s), in
particular nitric acid trihydrate (NAT), dominant
component of PSC’s. This tends to enhance the
production and lifetime of reactive chlorine and ozone
depletion at the upper boundary of the ozone hole,
because chlorine in this region was not totally activated
in years with normal temperature. This may be the
reason that in 1992 the ozone hole become the deepest.
Same has also been observed at Syowa (Fig. 4). Cold
sulphate aerosol from Mt. Pinatubo, present at altitude
between 10 and 16 km, probably, contributed to the
low ozone through heterogeneous conversion of chlorine

species.

The part played by atmospheric dynamics in the
formation of ozone hole has also to be looked into.
It is clear that the strong circumpolar vortex during
winter will prevent the poleward transport of ozone

from lower latitudes. The only way atmospheric
dynamics could play a part in the observed stratospheric
depletion of ozone is by the upwelling of ozone
depleted tropospheric air into the lower stratosphere.
On the contrary, available evidence suggests only weak
but persistent downward motion in the lower stratos-
phere in September and October.

4. Conclusion

Ozone depletion over Maitri, Antarctica, during the
spring of 1992 has been studied by balloon ozonesonde
ascents. The major part of the depletion is centered
around 16 km. The ozone hole extends for 12-23 km
and the ozone partial pressure within the hole drops
to as low as 1.2 nb. ClO radicals account for nearly
half of the depletion of ozone.
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