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ABSTRACT. Serious gaps in knowledge about ocean spray at wind speeds over 28 m/s remain
difficult to fill by observation or experiment; yet refined study of the thermodynamics of Tropical
Cyclones (including typhoons and hurricanes) requires assessment of the hypothesis that ‘spray cooling’
al extreme wind speeds may act to reduce (i) the initial temperature of saturated air rising in the
eyewall and so also (ii) the input of mechanical energy into the airflow as a whole. Such progressive
reductions at higher speeds could, for example, make any possible influence of future global warming
on Tropical Cyclone intensification largely self-limiting. In order to help in extrapolation of knowledge
on ocean spray 1o extreme wind speeds, a probabilistic analysis is introduced which allows for the
effects of gusis, gravity and evaporation on droplet distributions yet in other respects is as simple
as possible. Preliminary indications from this simplified analysis appear to confim the potential
importance of spray cooling.

Key words — Boundary layer, Droplets, Evaporation, Global warming, Gusts, Probabilistic model,
Spray, Spray cooling, Tropical cyclones, White caps.

1. Introduction saturation during its long cyclonically spiralling path
over the aceun. Provided that the ambient atmosphere

Input of mechanical encrgy inlo tropical cyclone has its temperature drop with height significantly steeper
airflows takes place especially in the cyewall, by the than that of rising saturated air (i.e. ‘lapse rate cxceeds
action of buoyancy forces on air that has reached the moist-air adiabatic’), then such air finds isell

(489)




490 MAUSAM, 48, 4 (October 1997)

everywhere warmer than its surroundings and its further
ascent is powered by buoyancy forces.

On the pther hand, because vapour pressure increases
sharply with temperature, this input of mechanical
energy (essential, of course, to balance turbulent
dissipation in the atmospheric boundary layer) is itsell
a steeply increasing function of the temperature T, at

which saturated air begins its rise in the eyewall. It
is this functional dependence that suggests both
(i) why it is only over tropical oceans that tropical
cyclones form, and also (ii) why, on the other hand,
‘spray cooling’ (a tendency for effects of ocean spray,
as winds become more intense, to reduce T more and

more below the sea surface temperature) may set a
limit on any increase in tropical cyclone intensities
with ocean temperature (Lighthill 1997).

At high wind speeds there is, indeed, between
ocean and atmosphere, a thick layer of ‘a third fluid’:
ocean spray, consisting of a relatively tall cloud of
droplets. Many of the smaller ones (with radii not
more than about 20 um) appear when air bubbles burst
at the sea surface. A greater mass of droplets, however,
is formed (Andreas er al. 1995) either as ‘splash’ om
from, or as ‘spume’ ejected from, whitecaps (in the
form of droplets with radii ranging from 20 pm to
much larger values). A recent survey (Fairall er al.
1994) estimated that, at a wind speed of 40 m/s (the
spced at which the fraction of surface covered by
whitecaps is expected to reach unity), spray droplets
have attained a volume concentration of about 107,
corresponding to a mass concentration of aboul_lO'z,
and yet that vapour transfer from droplets to wind
exceeds by an order of magnitude any direct transfer
of vapour from the ocean surface.

The well organised project HEXOS (Humidity
Exchange over the Sea) made (Smith e al. 1996)
admirably systematic vapour- transfer and heat-transfer
measurements - especially at Meetpost Noordwijk - in
a wide range of North Sea weather conditions up 1o
a maximum wind speed of 18 m/s. By contrast, Russian
research ships have made measurements at wind speeds
up to 28 m/s in the general vicinity of Pacific Ocean
typhoons. These Russian measurements (Pudov 1993),
while supporting HEXOS data in finding little effect
of spray in winds up to 18 m/s, recorded a rather
large increase of spray mass as wind speeds rose to
28 m/s, alongside an increasing level of ‘spray cooling’

depressing wind temperatures below sea surface
temperatures (Fairall e al. 1994).

On the other hand, the extreme wind speeds found
in tropical cyclones line in the range 50 to 60 m/s.
For proper discussion of tropical cyclone thermo-
dynamics and related topics, therefore, it may be
necessary to attempt an assessment of ocean spray and
its effects (including possible ‘spray cooling’) at such
wind speeds around twice those for which any
measurements have yet been made. It is principally
with the aim of facilitating such an extrapolation that
a simplified model of the fluid dynamics of pcean
spray is introduced in this paper. At the same time,
to counter possible charges that the significance of
spray is being exaggerated, relatively ‘cautious’ choices
of simplifying assumptions are made (that is, those
which may tend - if anything - to underestimate heights
of spray clouds).

2. A simplified spray model

The three physical elfects that compete to influence
the vertical distribution of those spray droplets which
are emitted from the ocean surface are () gusts, (i)
gravity and (iif) evaporation. For the present limited
aim of extrapolation to wind speeds around twice those
for which spray mecasurements have been made, a
radically simplified spray model may suffice provided
that all three of these key effects are taken into account.
Such a model is here outlined in section 2, and then
elaborated in more detail in sect.ons 3, 4 and 5 with
allowance made respectively for effect (i) alone, for
effects ({) and (i) together, and finally for the
simultancous action of all three effects.

In gusts, it is above all the vertical component, w,
of air velocity whose statistical properties influence
(alongwith the effects of gravity and evaporation) how
emitted droplets become vertically distributed. To a
crude approximation, we may think of a parcel of air
being subject to a random succession of gusts creating
different vertical movements (up or down), while a
droplet within the parcel falls relatively to it at roughly
its terminal velocity; and, also, while that terminal
velocity is gradually retarded as the droplet radius
becomes diminished by evaporation. This crude picture
underlies the simplified spray model that is introduced
below.

Of course Taylor (1921), in his celebrated paper
‘Diffusion by continuous movements’, rightly empha-
sized how diffusion in a continuous, albeit turbulent,
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Fig. 1. Solid line: typical variation of C(z, T) with 1. Broken line (discontinuous): simplifying

approximation

fluid flow differs essentially from diffusion associated
with those random movements of molecules which
undergo discontinuities wherever two molecules collide.
For mathematically describing the effects of
continuously varying random movements of a fluid
particle, Taylor introduced correlation functions of the
type which nowadays are generally called ‘Lagrangian’
(to distinguish them from the Eulerian correlation
functions which later came to be used still miore
widely); more recently, attention was drawn by Hunt
(1985) to the persistent value of using such functions
in diffusion studies.

In an atmospheric boundary layer with statistical
properties which are horizontally homogeneous, the
appropriate Lagrangian correlation function for
characterizing random vertical displacements of a
particle (small parcel) of air may be written

Clze,n=HOWE+D)

1
(wO1*) a

Here, w(r) represents the particles vertical component
of velocity at a certain time ¢ when it is at height z,
while w(r+ 1) represents, for any 1>0, the vertical
component of velocity for the same particle at a later
time ¢+ T (when in general it is at a different height);
angle brackets signify an average over all such particles.

The definition Eqn. (1) makes C— 1 as 1— 0,
while the random nature of turbulence ensures that C
is effecsively zero whenever 1 is large. Furthermore
the integral

2

T(2) = I: Cla.7) dt

which has the dimensions of time, is often called
the Lagrangian correlation time. Essentially (see Fig.
1), it is a measure of that time-difference within
which values of C remain significant; to a crude
approximation, the correlation C (z, 1) is substantial
when T<T and yet relatively insignificant when
1>T. Thus T is a sort of ‘time of flight' for the
coherent vertical displacement of a small parcel of
air, after which the immediately succeeding vertical
displacement can almost be considered as if it were
statistically independent. Such a view of the
Lagrangian correlation time T (z) may at least be
more valuable than were similar views (once
fashionable) about ‘mixing lengths’ - above all,
because time is one-dimensional; whereas the
three-dimensional character of space, and moreover
the constraints on velocity fields provided by the
equation of continuity, place obstacles in the way
of any spatial analogue to the simplitying
interpretation given in Fig. 1.

The present model not only adopts this crude
simplification (assuming statistically independent
vertical displacements of a parcel of air in successive
times of flight) but also — with the principal object
of maximum simplicity - uses for the time of flight
a single uniform value T independent of z. That
additional simplification is made even though, in
established descriptions of turbulent boundary layers
over rough solid surfaces, the Lagrangian correlation
time T increases with height z. Admittedly, the
atmospheric boundary layer over a deeply heaving
ocean surface might, for small heights z above mean
sea level, involve increased coherence of vertical
motion, which would tend to smooth out the variation
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of T with z; even so, the primary purpose of assuming
a uniform time of flight T is to obtain in spray model
simple enough to facilitate extrapolation to greatly
increased wind speeds. The assumption may be
‘cautious’ (in the sense suggested at the end of section
1) because it neglects enhanced vertical displacements
experienced by droplets that have reached high levels.

Once the time of flight 7 has been taken independent
of z, it is logical to postulaie the same height-
independence for a key probability distribution g({)
which will be called ‘the gust function’. Here g({) is
the probability distribution for {, the vertical
displacement of a parcel of air in the fixed tume T.
(Its height independence can reasonably be assumed
from the fact that measured root-mean-square values
for the vertical component of velocity are practically
uniform across a turbulet boundary layer.) If R is the
range of possible values of {, then the gust function
2(0) satisfies the equations

[ ewat=1, [ todi=0.] ?ea0d=G
R R R

3)

for a probability distribution with zero mean and
with variance G. In what follows, g({) will normally
be taken as an even function with range I{1<Z.

This paper’'s primary concern is 1o estimate flz, 1),
the probability distribution for the height z of a spray
droplet at time i after leaving the level z = 0. During
the time of flight T a droplet within a parcel of air
descends relatively 1o it by a distance close w VT
where V is its terminal velocity (at least, on a ‘cautious’
assumption that ignores any possible levitating influcnce
of such coherent eddy motons as may help to keep
droplets aloft in rain clouds). This implies that (z, 1)
satisfies the integro-differcnce equation

A=V, i+ =JR fa-Log@ds @

where the right-hand convoluton of the probability
distribution for the droplet being at height (z-0) at
time ¢ with the probability of the parcel air being
displaced by C, during the tme of flight T gives
the probability distribution for the parcel being at
height z, and so also for the droplet being at height
z-VT, at time (: + T).

Evidently, the initial condition appropriate to
solutions of this integro-difference equation is

flz,0)=8(2) (5)

because the probability distribution f (z, t) by its
definition is concentrated at just one value z = 0
at time r = 0. The boundary condition, on the other
hand, needs more careful consideration.

Essentially, this boundary condition must take into
account the fact that the life of a spray droplet cannot
continue after it has once rewurned to the ocean surface.
Admitedly, that surface’s height changes continually;
here, however, the cautious assumption is made that
a droplet disappears as soon as it has regained its
initial height; in other words, when z becomes zero.
This assumption may be described as cautious (erring
on the side of over-predicting the reabsorption of spray
droplets) simply because the majority of droplets are
believed to be generated at levels higher than mean
ocean-surface levels. For applying such a boundary
condition to the integro-difference Egqn. (4), it is
sufficient to specify (as an overriding requirement)
that

fn=20 forall z <0 6)

This excludes from the range of integration R all
values of { greater than z; while, still more simply,
it requires Eqn. (4) to be ignored whenever z < VT.

In the next two sections, exact solutions of Egn.
(4) under conditions in Eqns. (5) and (6) are compared
with exact solutions of a partial differential derived
from it by an approximation scheme of Fokker-Planck
type. In this scheme, the expression fz — §, 1) is
approximated as just the first 3 terms of its Taylor
series, 10 make the right- hand side

F 129
_H fan-L L e 855 |s@ ™
which by Eyn. (3) is
flz t)+l(}§-2£
' 27 52

The left-hand side is then approximated as
(¥ ¥
ﬂz,r)+?[a[ Vaz
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to yield a partial differential equation of convection-
diffusion type,

F o _, ¥ _G
5~V =D5z » where D=op (10)

is the diffusivity. In the ‘comparison’ sections 3 and
4, appropriate solutions of Eqn. (10) are found to
represent solutions of Eqn. (4) in an asymptotic
sense, with quite reasonable accuracy achieved already
for surprisingly modest values of #/T.

3. Comparisons in the ‘weightless drops’ case

Such comparisons are attempted first in the case
V= 0: the ‘weightless drops’ case with gravity neglected.
Then Eqn. (10) becomes the pure diffusion equation,

(1)

A boundary condition appropriate to Eqn. (11),
corresponding to the exact boundary condition that
droplets disappear on once again reaching z = 0, can
be obtained by writing in two ways the diffusive
transport of droplets into z = 0 during time T as

}:I; ﬂz.:)dzfg(QdC
(12)

Here the square-bracketed diffusive flux into the
surface z = 0 is multiplied by T to give the transport
per unit area in time T; which also, can be written
as a convolution of the probability distribution f{z , o)
for a droplet being at height z with the probability

I, sva (13)

for a droplet making a vertical displacement of —z
or less during time 7. Here, |1{|<Z is the range
of g({), and the integral in Egn. (13) can be rewrilten
as an integral from z w Z because g({) is an even
function.

Now Eqn. (12), with reversed order of integration
and f (z , t) represented by two terms of a Taylor
series, while D is substituted from Eqn. (11), becomes

-;—o(gfl_o.é [ s

o]

=0
= Jf(o.t)+%6[%fl ; where J=I:§g(0dC

(14)

is the one-sided moment of the distribution g({).
Egn. (14) gives the required boundary condition in
the relatively, simple form,

f=A-g'E onz=0, withA= (15)

In this approximate boundary condition in Eqn.
(15), the quantity A has the dimensions of length and
bears a simple relationship to the root-mean-square
deviation 6=G"? of the probability distribution
2(D). Thus

A O

oW us)
which for all possible distributions has the rigorous
minimum 0.500 while taking values only a little
greater than 0.500 for familiar forms of g({). For
example, it is 0.577 for the ‘top-hat’ distribution

s0=55081<2), 0081 > 2) an

with sharp discontinuities at {=%2Z; yet, for a
perfectly smooth Gaussian distribution it is 0.627.

Actually, Egn. (11) for f possesses Gaussian
solutions, and a multiple of the first derivative of one
of these is the solution

= (18)

172 _G+a)’
f=B[TJ z+ A . 4Dt

2D

which may be recognised as satisfying the boundary
condition in Egn. (15) asymptotically; that is, when
t is large compared with

2
%=(%TT (19)
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Fig. 2. Comparisons, for V = 0, between exact (kinked)
and asymptotic smooth forms of o flz, 4T)
and 2of(z, 5T)

With the ratio in Eqn. (16) taking values as small
as those just mentioned, this condition could perhaps
be met for values of #T as low as 4 or 5.

Fig. 2 confirms that this solution in Eqgn. (18) of
Egn. (11) which asymptotically satisfies the boundary
condition in Eqn. (15) does indeed (with the choice
B =1 for the multiplying constant) compare closely
for 4T = 4 or 5 with computed solutions of the
integro-difference Eqn. (4) under the boundary condition
in Eqn. (6). This is an exacting comparison, made for
the case when g({) has the ‘top-hat’ form in Egn.
(17) with its discontinuities at | { |=Z. These lead to
discontinuities of slope at z = Z in f (z, 1), yet
representation by the perfectly smooth curve of Egn.
(18) is a reasonably close one.

4. Analysis when V is a positive constant

A similar comparison is now made in the case
when, besides gusts, gravity is taken into account (so
that V > 0) but evaporation is as yet ignored (so that
V = constant). The partial differential equation now
takes the form of Eqn. (10), of which an appropriate

03

005

Fig. 3. Similar comparisons as in Fig. 2 for values of
VT/o given in brackets

exact solution is,

(20)

172 _Gavien)
sz[TJ z+ A 4Dt

m | 207 ¢
This modified form of Eqgn. (18), with z replaced
by z + Vi in the exponent (but not in the multiplying
factor, so that condition given by Eqn. (15) is sl
closely satisfied) was suggested by numerical solutions
of Eqn. (4), which all show portions farthest to the
right for curves with V > 0 displaced to the left by
about V¢ from similar portions with V = 0; the far
right being where variations in the exponential dominate
over variations in the multiplying factor. (Of course,
replacing z by z + Vi in the solution Eqn. (18) of
Egn. (11) must give a solution of Eqn. (10) - of which,
however, the part with V7 in the multiplying factor is
Just an exact Gaussian solution, leaving the difference
given by Eqn. (20) as itself an exact solution).

Fig. 3 gives four illustrative comparisons of Eqn.
(20), this time with the choice

vr
B—»l+0 (21)

for multiplying constant, against computed solutions
of the integro-difference Egqn. (4) for the top-hat
form Eqn. (17) of g(). Agreement continues to
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appear close enough for Eqn. (20) to be viewed as
a useful asymptotic form of f.

Now, before any attempt is made to include
evaporation in the analysis, implications of this
asymptotic form for steady-state volume distributions
of droplets may be looked into, beginning with a brief
study of the ‘weightless drops’ case (V = 0) of section
3. In this case, if § is the number of droplets generated
per unit area per unit time, then § dt multiplied by
the height distribution fiz, 1) for droplets after time ¢
gives the volume distribution of those droplets that
were emitted at times from ¢ o (1 + df) earlier than
the present time. Therefore, the volume distribution of
all droplets (regardless of when they were emitted) is
SF (z) where

F(z) = J: fz, 0 dt (22)

Now, for larger values of z (say, z2 50 ), exact
solutions of the integro-difference equation vanish for
smaller times (say < 37). Yet for larger T they are
well represented by the asymplotic solution given by
Eqn. (18), which therefore can be used in expression
of Eqgn. (22). This integral is readily evaluated by a
substitution,

_@+AP? @ +A)
- a=- 0, ©3)

o give
1/2
i -1/2
F(z)=B('-nb"J J:‘E e’ dt
1/2
_e(T) _Thn
_B(D] _02 (24)

a uniform volume distribution. In words, ‘weightless
droplets reach arbitrary heights’. (Note: those powerful
fliers, the swifts, are frequently observed in strong
winds feeding at heights exceeding 1 km on the
aeroplankton of insects which remains abundant at
such heights).

Conclusions, as might be expected, are very different
when the terminal velocity lakes for each droplet a
constant value V > 0. Then a ‘source function” §(V)
must be defined so that S(V)dV is the rate of production
per unit area per unit time of droplets with fall speeds
between V and V + dV. Now it follows as before (i)
that [S(V)dV]F(z) is the volume distribution at height

z for this group of droplets, and (i) that, in the integral
expression of Egn. (23) for F(z), the new asymptotic
form given by of Eqn. (20) can be used for fiz, 1).

After the substitution given in Eqn. (23), the
exponent within that asymptotic form given by Eqn.
(20) is

2
;:+n+2;. where n=ﬂ125—“‘1; @5)

so that the integral at Eqn. (22) becomes

1/2 N +11f]
F(z)=8(%] e-n[J:‘t_Vle [1 . er
(26)

The large brackets in Eqn. (26) enclose a standard

integral from Bessel-function theory, equal to
n'/2¢ ™ which, with the definition given by Eqn.

(25) of m, yields

r 2 r V2
F(z)=B[—) e—V(:-l-A)/D:C[_J & VP

nD D
27
here, by Egn. (21),
C=Be VAP (l+%]e’l'“’7’° 28)

for a typical vlaue of A/c around 0.6. Clearly, C
is very close to 1 for those small fall speeds V
which are of primary interest.

Essentially, then the volume distribution of all
droplets at height z is close to

172
[% J J: sy e V7P gy (29)

Thus, it is a simple multiple of the Laplace transform
of S(V).

There is, of course, nothing very surprising in the
conclusion that a steady-state distribution given by

Eqn. (27) may be proportional to e V¥, which, of

course, is among the steady-state solutions of the
convection-diffusion Eqn. (10). Yet no information
regarding the amplitude factor outside that exponential
would have emerged in any analysis using the
steady-state form of Eqn. (10); while, even more
crucially, such analysis would have been incapable of



496 MAUSAM, 48, 4 (October 1997)

taking evaporation into account — as can now be
attempted from the present approach dependent on the
development with time ¢ of the probability distribution
flz, ) of the height of an individual droplet.

5. Model allowing for evaporation

During this development with time, the droplet’s
terminal velocity V decreases as a result of evaporation.
Indeed, V is a known function of the droplet’s radius
r; while, for given wind conditions (principally, relative
humidity), evaporation reduces r at a rate which may
depend both on 7 and V. It follows that the fall speed’s
rate of decrease can itself be written as a function of
r and V and therefore (because of the relationship
between them) as a function E(V) of V itself.

av _
- EW) (30)

For a droplet whose fall speed V decreases in this
way after it leaves the surface when ¢ = 0, its net
downward motion during time ¢, relative to that parcel
of air in which it is sitated, becomes

x:fo vV, @31)

and it may appear plausible to use X in place of
Vit in the formed asymptotic solution given by Eqn.
(20), which would then become

172 _Grx+4)
ﬂz,t)=5‘(£) %e O (32)

As noted after Eqn. (20), this involves a simple
shift (from z to z + X) within the exponent to allow
for downward displacement of the droplet relative to
an air particle, while interfering insignificantly with
satisfaction of the boundary condition given in Egn.
(15).

In general, however, Eqn. (32) is no longer an
exact solution of Eqn. (10); whose right-hand side it
equates to,

@+ X+A)
3 I 1/2L 6_%
it 2Dt
_3(z+A)+(z+A)(z+x+A)2_§
2 4DP t

(33)

while its left-hand side takes the same form with
dX/dr = V replacing X/t as the last of the terms
within large brackets. Thus they exactly coincide
only when V is constant; on the other hand, the
difference between them may plausibly be considered
slight enough for Eqn. (32) to be regarded as a
useful approximate solution of Eqn. (10). Then this
expression may, for a drop where V takes the value
Vo when it leaves the surface at time r = 0, be

used along with two integral relationships.

[ v _ o vav
v EW)’ v E(W)

between {, X on the one hand and Vi, V on the
other.

(34)

Earlier, the source function S(V) was defined in
such a way that [S(Vj) dVjlds is the production per
unit area in time interval ds of droplets with fall speeds
between V and V;+dV},. In addition, a spray density
function s(z, V) can be defined so that s(z, V) dV is
the number per unit volume at height z of droplets in
the fall-speed interval dV. These two functions are
linked by the simple integral relationship

V)=

Wj: S(Vg) fiz1 1) AV, (35)

in which of course fiz, 1) is a probability distribution
per unit height for a spray droplet at time ¢ after
it leaves the surface. In Eqn. (35), multiplication of
an area distribution [S(Vy)dVgld: by a height
disribution f{z, ) yields after integration a volume
distribution s(z, V) dV; and Egn. (35) then follows
because the factor outside the integral is the ratio
Ide/dW1.

At larger heights (say, z > 5 o) the asymptotic
form given by Egn. (32) of fiz, f) may be used in
the relationship of Egn. (35) between s(z, V) and
S(Vp) ; provided that ¢ and X, where they appear in
it, are expressed in terms of V; and V by Eqns. (34).
Then the integral given by Eqn. (35) lends itself to
steepest-descents estimation because of the exponential
factors in the form of Eqn. (32) for f.

As a function of Vj, the exponent,

2
@+X+A)
4Dt (30)
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needs in a steepest-descents estimate to be minimised.
But this exponent, with ¢ and X given by Eqn. (34),
has zero first derivative where

Vo z+X+A
E(Vy) 2Dt

1 @+X+A?
E(Vy)  4pP? o L

This gives a simple condition

z+X+A=2Vy (38)

as the basic relationship identifying the predominant
initial fall “speed Vj for those droplets which at
height z, through evaporation, have acquired a given
reduced fall speed V. The relationship given by Egn.
(38) appears to be a nontrivial conclusion from the
line of argument presented in this paper.

At the value of V, for which the exponent’s first
derivative given by Egn. (37) vanishes, its second
derivative takes the positive value,

o, Vo
E(Vy) 2t E(Vp)

k :|>O ; 39

so the stationary point really is a minimum and
steepest-descents estimation can be applied. It
approximates the integral relationship of Eqn. (35)
as

1/2
e 2n .
@< 5w SV fz, :)[ : ) o~ i & (40)

of course, + and X are given by Eqn. (34).

given in terms of V by Eqn. (38) while,

Now this section ends by setting out numerical
results for a specially simple case with the convenient
property that all the conclusions can be displayed in
a single diagram. It is the case when E(V) takes just
a constant value.

Actally, computations of E(V) at pressures and
temperatures typical of a Tropical Cyclone, and at
relative humidity ry, show [1] that E(V), while
decreasing, falls by less than a factor of 2 as V
increases from 0 to Im/s (droplet radius rising from
0 to 0.15 mm). Thus the constant-E approximation -
while adopted here mainly as a conveniently .concise
way of illustrating the model is not impossibly
unrealistic. (An appropriate value for the constant, with

Pla)

1.2

1.0

08

06

04

02

0 ' | Q€
] 2 3

Fig. 4. Dependence of V/Vp, P(a) and Qo) on o

V in the above range, is 0.03 (1 — ry) m/s?, from
which E(V) deviates by +30% at the lower end and
by -30% at the upper.)

For constant E, Eqns. (34) become Et=V;,-V and

2EX=$%—V2, so that the condition given in Eqn.
(38) linking V;; and V is a quadratic equation,

2E(z + A) = 3V, — 4V + V2 (41)

and V/V, can be expressed, in terms of a
non-dimensional variable,

EG+A)Vy =a, as VIV =2 - (1 + o)
(42)

Fig. 4 shows how V/V, is reduced as the measure

of height « rises; note that, on the steepest-descents
approximation, droplets with initial fall speed V|, have
evaporated completely (since V = 0) where o = 3;
that is, where

W
z+A= SE (43)
Yet their number density has decayed with height
somewhat less steeply than was suggested for cases
without evaporation by Eqn. (27), simply because of
the retardation in terminal velocity V as z increases.
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Indeed the number density for all spray droplets
at height z may be written as an integral

5p(2)= J: s(z, V) dv (44)

with respect to V, which can be reformulated as an
integral with respect to V;, by use of the relationship

of Eqn. (41) between V and Vo With Egn. (40)
for s(z, V), this gives,

o N2
splz) = B(é ] J: S(Vy) P() e~ Q0@ Vy(z+AVD v,

(45)
where the non-dimensional expressions,

Qo) =20 ' [(1 + )2 - 1], P()

= [ 1+ 2204 @21 ]

1/2

(46)

are also plotted in Fig. 4. With no evaporation,
a = 0 so that Q(a) = P(ar) = 1 and Egn. (45) agrees
precisely with the results of section 5. (Unexpectedly,
agreement is exact because the integral expression
of Egn. (26) in the case without evaporation has
an unusual property; namely, that steepest-descents
estimation gives its accurate value.) On the other
hand, Q(a)<1 for positive o so that decay in
number density with height for droplets of initial
fall speed V, occurs with an e-folding distance

augmented from D/Vj to

D

7
VoQ(@) “n

the presence of the multiplier P (o) making little
difference to this conclusion.

It is interesting that evaporation sets an upper limit
on height, which Eqn. (43) specifies as increasing with
initial fall speed Vi while, within that upper limit,

gravity brings about an exponential decay in number
density with an e-folding distance given by Eqn. (47)
which responds to increase in V;, by steadily decreasing
- albeit rather more slowly in consequence of
evaporation.

6. Concluding remarks

To draw conclusions in full detail from this model
will take time, but a first attempt at using it (as
proposed in section 1) to infer a tentative extrapolation
of existing knowledge on ocean spray to much higher
wind speeds has already been made (Lighthill). It
suggests that, at doubled speed, spray mass may increase
by a factor of 3 over and above the expected big rise
in spray generation. Such a suggestion, in relation to
the thermodynamics of tropical cyclones, may possibly
mean that acceleration to extreme wind speeds produces
a so greatly increased mass of spray per unit horizontal
area that ‘spray cooling’ grows in effectiveness even
as relative humidity approaches 1 at the eyewall. This
could create, in turn, a ‘self-limiting’ effect (Lighthill
1997) in any possible influence of global warming on
tropical cyclone intensitites.

References

Andreas, E.L., Edson, I.B., Monahan, E.C., Rouault, M.P., and
Smith, §.D., 1995, Boundary Layer Meteorol., 72, 3-52.

Fairall, C.W., Kepert, J.D. and Holland, G.J., 1994, The Global
Atmasphere and Ocean Sysiem, 2, 121-142,

Hunt, J.CR., 1985, Annual Reviews of Fluid Mechanics, 17, 447-485.

Lighthill, J., 1997, "Typhoons hurricanes and fluid mechanics”, In:
Tatsumi, T., Watanabe, E. and Kambe, T. (eds.) Theoretical
and Applied Mechanics 1996, Amsterdam, Elsevier, 29-54.

Lighthill, J.,, "Ocean spray and the thermodynamics of Tropical
Cyclones", J. Engineering Mathematics (1o appear).

Pudov, V.D., 1993, "The ocean response to the cyclones’ influcnce
and its possible role in their tracks”, In: Lighthill, J., Zheng
Zhemin, Holland, G. and Emanuel. K. (eds.) Tropical Cyclone
Disasters, Beijing: Peking University Press, 367-376,

Smith, §.D., Katsaros, K.B., Oost, W.A. and Mesuyer, P.G., 1996,
Boundary Layer Meieorol., 78, 121-141.

Taylor, G.I., 1921, Proceedings of the London Mathematical Sociery,
20, 196-212.




	Image00001
	Image00002
	Image00003
	Image00004
	Image00005
	Image00006
	Image00007
	Image00008
	Image00009
	Image00010
	Image00011
	Image00012
	Image00013
	Image00014
	Image00015
	Image00016
	Image00017
	Image00018
	Image00019
	Image00020
	Image00021
	Image00022
	Image00023
	Image00024
	Image00025
	Image00026
	Image00027
	Image00028
	Image00029
	Image00030
	Image00031
	Image00032
	Image00033
	Image00034
	Image00035
	Image00036
	Image00037
	Image00038
	Image00039
	Image00040
	Image00041
	Image00042
	Image00043
	Image00044
	Image00045
	Image00046
	Image00047
	Image00048
	Image00049
	Image00050
	Image00051
	Image00052
	Image00053
	Image00054
	Image00055
	Image00056
	Image00057
	Image00058
	Image00059
	Image00060
	Image00061
	Image00062
	Image00063
	Image00064
	Image00065
	Image00066
	Image00067
	Image00068
	Image00069
	Image00070
	Image00071
	Image00072
	Image00073
	Image00074
	Image00075
	Image00076
	Image00077
	Image00078
	Image00079
	Image00080
	Image00081
	Image00082
	Image00083
	Image00084
	Image00085
	Image00086
	Image00087
	Image00088
	Image00089
	Image00090
	Image00091
	Image00092
	Image00093
	Image00094
	Image00095
	Image00096
	Image00097
	Image00098
	Image00099
	Image00100
	Image00101
	Image00102
	Image00103
	Image00104
	Image00105
	Image00106
	Image00107
	Image00108
	Image00109
	Image00110
	Image00111
	Image00112
	Image00113
	Image00114
	Image00115
	Image00116
	Image00117
	Image00118
	Image00119
	Image00120
	Image00121
	Image00122
	Image00123
	Image00124
	Image00125
	Image00126
	Image00127
	Image00128
	Image00129
	Image00130
	Image00131
	Image00132
	Image00133
	Image00134
	Image00135
	Image00136
	Image00137
	Image00138
	Image00139
	Image00140
	Image00141
	Image00142
	Image00143
	Image00144
	Image00145
	Image00146
	Image00147
	Image00148
	Image00149
	Image00150
	Image00151
	Image00152
	Image00153
	Image00154
	Image00155
	Image00156
	Image00157
	Image00158
	Image00159
	Image00160
	Image00161
	Image00162
	Image00163
	Image00164
	Image00165
	Image00166
	Image00167
	Image00168
	Image00169
	Image00170
	Image00171
	Image00172
	Image00173
	Image00174
	Image00175
	Image00176
	Image00177
	Image00178
	Image00179
	Image00180
	Image00181
	Image00182
	Image00183
	Image00184
	Image00185
	Image00186
	Image00187
	Image00188
	Image00189
	Image00190
	Image00191
	Image00192
	Image00193
	Image00194
	Image00195
	Image00196
	Image00197
	Image00198
	Image00199
	Image00200
	Image00201
	Image00202
	Image00203
	Image00204
	Image00205
	Image00206
	Image00207
	Image00208
	Image00209
	Image00210
	Image00211
	Image00212
	Image00213
	Image00214
	Image00215
	Image00216
	Image00217
	Image00218
	Image00219
	Image00220
	Image00221
	Image00222
	Image00223
	Image00224
	Image00225
	Image00226
	Image00227
	Image00228
	Image00229
	Image00230
	Image00231
	Image00232
	Image00233
	Image00234
	Image00235
	Image00236
	Image00237
	Image00238

