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ABSTRACT. The wopical storm surge models depend critically on the maximum surface wind
and shape of the wind profile. Since none of them are easy to measure, designing the parametric
wind models for the siorm surge prediction becomes divergent. Two widely used, but very different,
wind models are examined. The study of their parameters showed that their resulting maximum wind
and the shape of the wind profiles are similar. This property is a very useful guide for evaluating

different surge models.
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1. Introduction

It 1s generally accepted that the central pressure of
a tropical storm is most conservalive measure for
intensity. However, the storm surge is generated
primarily due to the surface stress from wind forcing.
The storm surge model for operational prediction
preferred the central pressure as primary input [

- maximum wind speed, and then derive wind/pressure

in two dimensions. This is a very common practice,
but choices vary widely. Two most significantly
different approaches are : (i) using a standard pressure
profile and (if) using a standard wind profile. The
former approach is more popular because pressure is
a more conservalive surface weather element. If
reconnaissance data are available, flight level wind
data can add the latter possibility.

Holland (1980), representing the former case in
this study, introduced an additonal parameter, B,
implying the steepness of the pressure gradient near
the inner core of the convection, based on the analysis
of reconnaissance data from western North Pacific
(Weatherford 1985). The early suggestion is that the
intensity of storm, measured by Minimum Sea-Level
Pressure (MSLP) may vary quite independently from
the Outer Core Strength (OCS), winds (kt) 1-2.5° from
center of the storm. But, as confirmed later, their
relation did exist if the dawa is stratified with eye
diameters (Fig. 1). For a fixed pressure, OCS is related
with eye sizes. Jelesnianski and Taylor (1973), (JT),
assumed a normalized wind profile, and the sieepness
of the wind profile is characterized by an inverse
relationship between the maximum wind and the size.
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Fig. 1. Intensity versus strength differs by eye class (small
eye 0-7.7 n mi; medium eye 7.5-15 n mi; large
eve 15-50 n mi). Courtesy from Weatherfold 1985.

Fig. 2 (a) shows a family of wind profiles for a given
pressure drop (Ap), the deficit of central pressure from
the ambient pressure. JT's wind has been used in the
surge models, called SPLASH and SLOSH. The peak
surge generated on the coast has been shown sensitive
to A p, but insensitive to a family of wind profiles,
like Fig. 2 (Jelesnianski 1972). It was an intended
design to not rely on less dependable size information.

Although Holland's parameter B infers only the
core intensity, Weatherfold’s study suggests that the
intensity changes must result to some extent in
contraction and expansion of the storm, the change in
OCS. This fact coincides the designed property of JT
for storm surge prediction.

2. A Simple Model Estimate

A simple commonly used formula for the western
Pacific typhoons (Atkinson and Holliday 1977) is

= 344 (A P)® (1)

where, Ap is in hPa V,,
1-minute surface wind. The exponent is empirical.
It is a simple first order guess. For 10-minute wind
comparison, the curves with 80% and 90% are chosen
for comparison.

, in m/s, is the sustained

3. Gradient Balanced Vortex Model

Schloemer (1954) and Myers (1954), SM, used a
pressure formula

-p.=(Ap)exp(-R,/T) 2)
v.=C@p'? €))

where, p, is the central pressure,
cyclostrophic wind speed near the steepest pressure
gradient, r=R,,, C is an empirical constant. Holland
(1980) generalized this form by introducing a
‘steepness’ parameter, B which measures the pressure
gradient near the radius of maximum wind:

V,, is the maximum

p-pe=(8p) exp [R/r)] @)
V._,=C@ap? (5)

C = (Blpe)'” ©)
2.7183, A=(R,)?

1, it reduces o
V. _j is the maximum

where, p is the air density, e =
in Holland’s notation. When B =
Schloemer and Myers' formula.
cyclostrophic wind at R,. Holland suggested that B

value should normally range from 1 to 2.5. The
gradient wind speed, V,, can be determined by:

V.=V,_,[1/x exp (1 - U2, x = @R’ (D

Vp=V, (1 +a)? -a (8)

a=.5 (N, ®

The location of maximum gradient wind Vg _h Can

be proved very close to the location of maximum
cyclostrophic wind V. _,, R, because a < < 1 within

the parameter ranges. The parameter B meaning the
steepness of the pressure profile near R, is associated

with the storm intensity. For surface value, a simple
reduction of 80 percent is used (Powell 1980) in this
study.

The formulae for V,_, and maximum V,_, (V,
at R,), depend on B, but not on the radius of maximum
wind, R,. The parameter B stands for an intensity

measure of the storm, associated with inner core
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Figs. 2(a&b). (a) A family of SLOSH's wind profiles with different radii of maximum wind for a fixed
pressure drop (b) Same as (a) except for Holland's formula with different B values

dynamics. The vlaue of R,, is to measure the spread 4. Surface Trajectory Model

of winds from storm center. Holland implied that the Jelesnianski and Taylor (1973), (JT), used the
storm’s inner core intensity (referred by B) is somewhat equations derived for the surface spiral trajectory
independent of the outer core strength from the computation (Myers and Malking 1961) :
reconnaissance data by the early study of Weather- N

ford and Gray (1988). The typical profiles of Holland 1.dp_ ﬁf: VQZ (10)

are shown in Fig. 2 (b) for fixed Ap and R,,. p, dr sind S dr
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Fig. 3. Comparison of relations between maximum wind and pressure drop estimated by SLOSH with a range

of R and by Holland with a range of B, against Atkinson and Holliday's curves
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(11)

The kg and &, are empirical friction constants, other
notauons are referred to the text of JT (1973). The
wind speed profile, scaled by radius of maximum wind,
R, s

m*

VI =V, _ *2x/(1+x°), x=r/R (12)

LY o m

With V,, maximum wind speed, undetermined.

Under dlerative process, Eqns. (10) and (11) are
integrated, with a specified pressure drop, Ap, and
R,.. The maximum wind is determined in the process

of malching the pressure gradients 1o the cmpirical
friction and centrifugal terms. The inflow angle is so
determined at the balance. If the friction is reduced,
the wind approaches to one balanced by a pressure
profile. The resulting maximum wind is roughly
proportional to the square root of Ap, and mildly
dependent on R, For smaller R, , with same¢ pressure

drop, it results higher gaximum wind speed.

5. Comparison

Both Holland and JT provide a range ol variability
ol maximum wind estimate to pressure drop, bascd on
parameter B, or K,, respectively. Fig. (3) shows
Vin-g and V,_, with Ap. for a range of R, = 20,
30, 40, 50 mi and B = 1, 1.5, 2. The mean valuc is
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Fig. 4. Comparison of two methods by relating the parameter B and Rm

at B = 1.5, or R,, = 30 mi. It is clearly seen the

similarity of their variabilities. The SM’s formula,
B = 1, underestimates the maximum wind compared
with other two methods. Atkinson and Holliday’s (AH)
80 and 90 percent reduction curves are included to
represent 10-min averaged wind), and can be seen that
AH’s curves form a band through the middle of
variations from different R, ’s and B's, except the two

extremes, small weak storms and strong large storms
which are most unlikely.

JT's profiles shows that intensifying storms must
cause storm to shrink in size: whereas the larger values
of Holland’s B reflect storm’s intensification and but
necessarily resulting the size changes (R, or A). It
seems Holland offers one more degree of freedom.
However, from Fig. (1), Holland's R,, (A) can not be

completely independent of B. Only for small eye class,
or intense storms, this constraint is weaker, OCS would
vary less dependently of inner core changes. This
OCS’s a typical behaviour, sometimes concerned by
forecasters, can only be captured by an additional
degree of freedom to the wind or pressure profile.

But, to the first order concern, if one sets

B = 15 30/R,)"* (13)

where, R, in mi, and the limiis of B will be

between 1 and 2.5 for almost all storm sizes. The
estimates of maximum surface wind by both methods
come very close, as shown in Fig. (4). Maximum
differences do not exceed 2 m/s, as B is kept under
2. When B > 2, or R, < 168 mi, the change
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of maximum winds becomes 0o sensitive 10 B,
as cxperienced by many users. An upper limit of
B = 2 seems to be reasonable for Camille-type

storms, See Fig. § for four storms.

In practice, Holland’s pressure profile fit with a
sct of B and A is not always feasible in the forecast
mode. Estimating R, from the radar image of inner
cloud band (half the diameter plus S nm) would provide
a simple option 1o estimate B.

For testing Australian storm orson, that Ap = 105
hPa  (p. = 905 hPa) RMW = 18 mi (30 km) gives

B = 1.94, agreed with the pressure fit (Lance er al.
1997, unpublished). V, is 64 m/s, but with 70%

reduction, is then 56 m/s, confirmed by the surface
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5. Comparing SLOSH and Holland’s wind profiles for four historical storms using Eqn. 13

observation. For western North Pacific Typhoon Herb,
1996, Ap = 80 hPa (P, = 930 hPa) RMW = 15 mi (eye

diameter estimated from radar is 30 km), B = 2.1

Vin = 53 m/s, 56 m/s with motion correction, which

»

Is consistent with cstimated over 60 m/s in 1-min
wind. However, the broad wind field is not captured
with the model wind profile.

Parallel runs for hurricane Fran, 1996 of cast coast
of U.S. showed good agreement on the maximum surge
profile along the coast, Fig. 6. For Holland’s run, a
constant 25 degree cross- isobaric angle was used, and
B = 1.25.

More comparing studies for historical storms are
underway.
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Fig. 6. Maximum storm surges on the coast from Huricane Fran, 1996, computed by SLOSH surge model

with two wind models
6. Conclusion

The additional ability of Holland's pressure
steepness parameter B to better fit the pressure profiles
has been proven to provide the same quality of
maximum wind variabilities as that used by Jelesnianski
and Taylor with R,,. The maximum storm surges based

on both schemes showed consistency so that a
comparable measure of peak surges can be achieved.
It is hoped the analysis used here can provide a basis
for testing different parametric wind models for storm
surge prediction and lead to agreement toward
improvements.
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APPENDIX

For past Atlantic storms used on storm surge
verifications, the JT’s estimates of maximum wind are
plotted against central pressure, assuming ambient value
is 1010 hPa [Fig. (7)]. It compares against WMO
TCP-31 for Atlantic hurricanes and NW Pacific
typhoons (86% used to convert 1-min to 10-min wind).
SLOSH’s estimate is consistent with TCP-31 for
Atlantic storms for small size storms (< 30 mi), but
for large size storms (> 30 mi), TCP-31 may
overestimate the maximum wind. SLOSH surge model
has claimed to calculate the peak surge conservatively
due to the compensating property in this study, and
with larger inflow angles for larger size storms. It
becomes part of surge model calibration. To calculate
sea surface stress, an additional unknown constant,
drag coefficient, should also be chosen in the
calibration.
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SPLASH/SLOSH vs. WMO TCP-31
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Fig. 7. Maximum wind estimates by SLOSH from historical storms differ by large (> 30 mi) and small
(< 30 mi) of R,'s, as compared with WMOQ TCP-31 for Atlantic and NW Pacific storms
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