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ABSTRACT. Two cold sea surface temperature (SST) regions are found in the Arabian Sea in
boreal winter. One is located northeast of Madagascar, and another is located in a northemn part of
Arabian Sea. The mechanism for appearance of the cold water is investigated by using monthly
climatological ocean observation data. The cold water found northeast of Madagascar is caused by
upwelling owing to Ekman divergence associated with a reversal of wind direction. On the other
hand, the decrease in SST in a northern part of Arabian Sea is basically caused by decrease of net
heat flux associated with reduced shortwave radiation and increased latent heat flux. These results
are consistent with results obtained from a numerical investigation by McCreary and Kundu (1989).
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1. Introduction

The Indian Ocean is the smallest of all oceans
including the Southern Ocean and has several different
features compared with other oceans. The most striking
difference is the seasonal reversal of the Somali Current
depending on the wind direction of the monsoon. Also
the northern boundary of the Indian Ocean is located
at considerably low latitudes. As a result, intermediate
and deep water cannot be formed in the northern
Indian Ocean. Therefore, heavy water must come from
the Southern Ocean and the Mediterranean Sea including
the Persian Gulf, The Red Sea, and the Australatian

Mediterranean Sea (Tomczak and Godfrey 1994).
Surface warm waler flows into the Indian Ocean from
the Pacific Ocean as the Indonesian Through Flow
and return to the Atlantic Ocean in the inter-ocean
exchange system of sea water (Gordon 1986). The
exchange of sea water in the Indian Ocean is considered
lo be an essential part in the global system. The role
of the Indian Ocean in the global climate system is
discussed in detail and summarized by Godfrey et al.
(1995). They demonstrated that many scientific
questions about the Indian Ocean still exist and
mentioned about what oceanic processes gencrate and
maintain SST anomalies as a basic guestion.
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Fig. 1. SST distribution in January. The SST has a contour interval of 1.0°C

It is well known that the cool temperature region
found off the Somali Coast in the summer is caused
by a coastal upwelling generated by the southwest
monsoon. However, therc are not so many studies
about the mechanism of variability of sea surface
temperature (SST) in other regions. McCreary and
Kundu (1989) numerically investigated SST variability
in the Arabian Sea. They could succeed in simulating
the observed SST patterns, generally differing by no
more than 0.5°C. They demonstrated that the remarkable
decrease of SST near Somalia and the Arabian peninsula
during the southwest monsoon is caused by the
cntrainment of cool sub-surface water at the coast and
its subsequent advection offshore, while that during
the northeast monsoon is caused pardy by reduced
solar radiation and by increased evaporative cooling.

In this paper, we study SST variability in the
Arabian Sca using historical ocean observation data.

SST distribution in January is shown in Fig. 1. Lower
SST regions are found in the northwestern region of
the Arabian Basin and the northeast of the Madagascar
Island. The main focus of this work is to investigate
a mechanism of these lower SST regions. The data
and the methods are described in settions 2 and 3
respectively. Results are given in section 4. Finally,
conclusions are presented in section 5.

2. Data

In this study we have used the Monthly Summary
Trimmed Group (MSTG) data in Comprehensive
Ocean-Atmosphere Data Set (COADS) for 1960-92.
The data for 1960-79 are in Release 1 and the data
for 1980-92 are in Release la. MSTG data are
summarized statistically for each month of each year
during 1954-92, using 2° latitude x 2° longitude boxes.
Many physical variables (Table 1) observed over the
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TABLE 1

List of observed and derived variables
(Variables, 16-19 are sensible and latent heat
parameters)

(Slutz et al. 1985)

S.No. Symbol  Variable
Observed
1. S sea surface temperature
2 A air temperature
3 w scalar wind
4 U vector wind eastward component
5 14 vector wind northward component
6 P sea level pressure
7 C total cloudiness
8 Q specific humidity
Derived
9 R relative humidity
10. D § —A = sea — air temperature difference
11. E (§-A)W = sea — air temperature
difference x wind
magnitude
Tz F Qs - Q = (sawration Q at §) - Q
13; G FW = (Qs — Q) W(evaporation parameter)
14. X WU (wind stress parameter)
15. Y WV (wind stress parameter)
16. I UA
17. 7 VA
18. K vQ
19. L VQ

ocean by ocean buoys and ships are included in COADS
(Woodruff er al. 1987). We use some variables 10 be
necessary for calculating each component of heat flux,
for example; the wind speed(W), sea-level pressure
(P), specific humidity (Q), air temperature (A), sea
surface temperature(S) and total cloudiness(C).
However, COADS includes many physical values
derived from above-mentioned basic variables. Since
most bulk formula are nonlinear, using these values
derived by a sampling average seems to be more
suitable than to use a monthly value of basic variables
for calculating monthly heat flux. Therefore, we use

the derived values, such as, (S-A)W as many as possible.
Also ocean observation data in the Indian Ocean are
not enough to understand time variability for the various
temporal scale. Therefore, we focus on the seasonal
variability of SST in the Indian Ocean in the present
study.

3. Method

Net heat flux between atmosphere and ocean is
represented by the following equation :

QNm=Qm-Qom—QL-QH (n

Net heat flux consists of shortwave radiation
(Qmy), longwave radiation (Qoyy), latent heat flux

(Q,) and sensible heat flux (Qp). A positive value

means heat transfer from atmosphere to ocean, i.e.,
heat gain of ocean.

3.1. Shortwave radiation (QIN)

We use Zillman (1972)'s formula for calculation
of shortwave radiation following Oberhuber (1988),

L 2
Q —uﬂj Socm n
N- 2 | [(cosn +2.T)re.(Ty)/p+1.085cosn +0.]
1

where,
cos 1 = sin & sin ¢ + cos & cos @ cos ¢
SiN M po0n = 8in 3 sin @ + cos 8 cos @
k=1-062c+0.00197,,
¢(TA) = 611 X 10(1" —273.16)/“" - 35.36) x7.5
(g T = 1.00011 + 0.00128sin(B)
+ 0.034221cos(B) + 0.000077sin(2B)
+ 0.000719cos(2p)
5 = 0.006918 + 0.070257sin(B)
- 0.399912cos(B) + 0.000907sin(2B)
-~ 0.006758cos(2B)
+ 0.00148sin(3f) — 0.002697cos(3p)
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t = (12 hours-solar time) xn/12
(Parkinson and Washington 1979)
where, Sy : Solar constant (= 1370 W/m?)
7 : Sun elevation (unit : rad)
1- ¥ : Albedo (= 0.06)
o : Tuning coefficient (= 0.9)
d : Actual distance between the sun and the earth

d : Annual average of d
e(T,) : Sawration vapour pressure in T,
¢ : Cloudiness factor (In tenths)

p : Sea surface pressure

¢ : latitude (rad)

-~

: hour angle (rad)
t; @ Sunrise time (rad)
> : Sunset time (rad)

B : Julian day (rad)

& : declination (rad)

Since shortwave radiation exists only at the daytime,
we carried out the above integration day-by-day by
using the sunrise and sunset times on each day. The
monthly mean value is estimated by averaging these
daily values. Oberhuber -(1988) reported a wo strong
net heat input unless a tning coefficient is set to be
0.9. However, we basically use 1.0 as a tuning
cocfficient in the present study, because the theoretical
reason of using the tning coefficient is not clear.
Also a too strong net heat flux is not detected in the
present study even if a tuning coefficient is not set
to be 0.9. The difference from Oberhuber (1988)’s
results may be caused by calculaung the integration
on the daily basis in this study.

3.2,  Longwave radiation (QouT)

We estimated longwave radiation by using Clark
et al. (1974)’s following formula. This formula is based
on the Berliand and Berliand (1952)'s formula with
cloud correction factors given by Johnston et al. (1965).

Qoyr=28Ts (039 - 0.05¢, ") F(C) + 4.060T, (Ts~T,)
&)
e,=Ey X R/100 @)
logyo Ey = 10.79574 (1 - T}/T,,)
- 5.02800log;o (T4/Ty)
+ 150475 x 1071 - 107326 TyT),

+ 042873 x 1073104795 A-T/T) _ )

+ 0.7865 (5)
FC) = 1 - b2 (©6)
b =05 +44 x 1072 ¢ (7

where, T, : (= 273.16 °C)

T, : Absolute temperature at sea surface (°K)
T, : Surface air emperature (°K)

€ : emissivity of the ocean surface (= 0.97)

o : Stefan-Bolzman constant (= 567 x 12 W/mz'K4)
€, . Vapour pressure

Ey @ Saturated vapour pressure

F(C) : Cloud correction factors

3.3. Latent heat flux (Qr), sensible heat flux
(On)

Turbulent heat fluxes, such as, latent heat flux and
sensible heat flux are generally estimated by using
bulk formula. In the present study latent and sensible
heat fluxes are estimated by the following formulae :

QL = LpCyW-(Q; - Q) (3)
Oy = CopCyW-(S - A) ©)
p=P/2.841(A + T)) (10)
L = (24926 - 2.14-5) x 10° (11)

The bulk wansfer coefficients C;, Cy given by
Kondo (1975) are adopted.
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TABLE 2

Parameters in expressions for neutral bulk transfer
coefficients for latent heat flux (Kondo 1975)

TABLE 3

Parameters in expressions for neutral bulk transfer
coefficients for sensible heat flux (Kondo 1975)

W (m/s) a b dy P, W (m/s) ay by dy Py
03~2.2 0 1.23 0 .16 0.3~22 0 1.185 0 -0.157
22~50 0.969 0.0521 0 1 2.2-5.0 0.297 0.0546 0 1
5.0-8.0 1.18 0.01 0 1 5.0~8.0 1.15 0.01 0 1

8.0~25.0 1.196 0.008 -0.004 1 8.0~25.0 1.17 0.0075 —0.00045 1

25.0~50.0 1.68 -0.016 0 1 25.0~50.0 1.652 -0.017 0 1

10°C, =a, +b, Wp, +d, (W - 8.0) (12)
10°Cy; = ayy + by Wpyy + dif(W - 8.0) (3)
where C, : Specific heat of air
p : Density of air (kg/m’)
W . Wind speed (m/s)
L : Latent heat of evaporation (J- kg)

Q : Specific humidity (g/kg)

Q; : Saturated specific humidity at sea surface
temperature (g/kg)

C;.Cy : Bulk transfer coefficients

The dependency of constants a;, b, d,, p; (i = L, H)
on wind speeds is shown in Tables 2 and 3.

4. Results and discussion

It is well known that a remarkable cold SST region
off in the Arabian Sea appears in summer. There are
so many studies about the mechanism of this cold
region, which show that the cool SST is caused by a
coastal upwelling associated with a strong southwesterly
summer monsoon. On the other hand, there are few
studies about the cold SST region in winter found in
the Arabian Sea (Fig. 1) except McCreary and Kundu
(1989). Since the winter monsoon in the Arabian Sca
is northeasterly (Fig. 2) and the wind speeds are a
little bit high compared with that in spring and autumn

(Fig. 3), not a coastal upwelling but a coastal
downwelling can be expected to exist in winter.
Therefore, we cannot explain the mechanism of the
winter cold SST in the Arabian Sea by using a coastal
Ekman divergence associated with the winter monsoon.

A remarkable cold tongue can be detected in boreal
autumn and winter in the eastern equatorial Pacific
except in El Nino year, while a cold SST region can
be found northeast of Madagascar in Fig. 1. It is
well-known that the cold tongue in the eastern equatorial
Pacific is caused by the equatorial upwelling associated
with the easterly trade wind (Philander 1990). Therefore,
the cold SST region northeast of Madagascar is expected
to be related to the wind system in the Indian Ocean.
Wind speeds in the equatorial Indian Ocean in winter
are not so high (Fig. 2). However, an interesting feature
of a reversal of zonal wind direction at 10°S in the
Indian Ocean is observed in Fig. 2. These features are
quitg different from wind system in the equatorial
pacific. The reversal of zonal wind direction suggests
a strong Ekman divergence and upwelling there.
Therefore, the cold SST found northeast of Madagascar
in winter is caused by the reversal of zonal wind
direction. This is in contrast with a feature in the
equatorial Pacific, caused by a combination effect by
the strong trade wind and a reversal of a sign of a
Coriolis parameter.

In order to confirm the mechanism of the cold
SST found northeast of Madagascar in winter, we
calculated Ekman flows at sea surface except an
equatorial region, shown in Fig. 4. Though basically
the surface Ekman flow is zonal, that in low-latitudes
in the southen hemisphere is meridional and strong
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Fig. 3. Seasonal variation of wind speeds at 10°N, 52°E
and 10°S, 60°E

divergence regions are found around 10°S. It should
be noted that the cold SST region north of Madagascar

in Fig. 1 corresponds to the region of the strong Ekman
flow divergence. Therefore, it is concluded that the
cause of the cold SST there in winter is the Ekman
upwelling.

Generally, heat flux at sca surface is critical for
the mechanism determining the SST variation. We
estimated a lag cross-correlation coefficient between
the monthly SST difference and the monthly net heat
flux. The results are given in Fig. 5. The points with
cross-correlation more than 0.5, which correspond to
the 1% significance level, are shown by black dots.
The respnse of SST to the heat transfer through the
sea surface seems 1o be fairly rapid because the
correlation is quite low for the results with one-month
lag. The high values are located at mid-latiudes in
the southern hemrsphere and not found in the region
corresponding to the cold region in winter. If the cause
of the cold region is a dynamical effect, such as an
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Fig. 4. Distribution of Ekman flow vectors in January

Ekman pumping, the correlation bétween the monthly
SST difference ‘and the monthly net heat flux should
be low. Also if the cause of the cold region depends
on the season, the correlation ajso should be low.
Therefore, it is suggested that the heat flux at sea
surface may not be the main mechanism for the two
cold regions shown in Fig. 1. Fig. 6 shows seasonal
variation of SST and net heat flux at two points in
the two cold regions. Positive heat flux means heat
transfer from the atmosphere to the ocean. As known,
the SST variation is quite different from the net heat
flux variation at 10°N, 52°E in summer because the
main mechanism for the low SST in summer is not
a hcat transfer but a coastal upwelling related to the
summer monsoon. However, the similarity of the time
variation between the net heat flux and the SST is
remarkable except in summer. It is concluded that the
net heat flux is a dominant factor for the SST variation
there except in summer. On the other hand, the variation

of SST at 10°S, 60°E is not so simple compared with
that of the net heat flux. The relation between the net
heat flux and SST variations is not so clear, though
a general feature of the annual variation is common
in both variations.

Fig. 7 shows seasonal variation of net heat flux
and the four components at 10°N, 52°E. The amplitudes
of seasonal variation for the sensible heat flux and the
longwave radiation are negligible. On the other hand,
the variation of the net heat flux is anti-phase and
strongly depends on that of the latent heat flux.
However, the effect of the shortwave radiation on the
decrease of the net heat flux in winter is not negligible.
The large decrease of the net heat flux in winter is
caused by the combined effect of the increase of the
latent heat flux and the decrease of the shortwave
radiation. Our results are quite consistent with McCreary
and Kundu (1989)’s results. They investigated SST
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variability in the Arabian Sea and concluded that during
the northeast monsoon (December-March), the decrease
in SST is caused in part by reduced solar radiation
and by increased evaporative cooling, with additional
cooling by entrainment in the northern Arabian Sea.
Their conclusion obtained from their numerical
investigation are also supported by the observational
investigation in the present study.

The anomaly of the net heat flux in January is
~73 W/m? of which 47% can be explained by the
decrease of shortwave radiation and 33% by the increase
of latent heat flux. It is concluded that the contribution
by the shortwave radiation for the decrease of the net
heat flux in winter is larger than that by the latent
heat flux. The bulk formula for latent heat flux includes
wind speed and humidity difference as a basic physical
value. Fig. 8 demonstrates that the humidity difference
is remarkably large and the wind speed is not so large
at 10°N, 52°E in January when the SST is the minimum.
Therefore, the decrease of the SST in January depends
not on the wind speed but the humidity difference.
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Areas of high correlation beiween wind speed and
SST variations are shown in Fig. 9. The areas are
limited in the case of O-month lag, while the areas
are larger in the case of 1-month lag. It should be
noted that the high correlation areas are found in the



, 48, 4 (October 1997)
MAUSAM ( LAG1

¥ o
20N g:"\
0] o 7

. \lj
. g
40S,
o * * 5 cee® * e -
605&' N LR T "-.‘5‘}1

805

T | T l T "I__| I T I T
10E JOE S50E 70E 90E 110E 130E

20N

20S

40s.
60S »
;ﬂ__l\/ﬁ,r—x“h.(_jno W S iy
80S
T_“"‘—Ihr\l%'—‘T—‘_ﬁ

1OE 30E S50E TOE 90E 110E 130E

SST — w
Fig. 9. Same as Fig. 5 except of SST and wind speeds



KUBOTA & KAWAGUCHI : MECHANISM OF COLD WATER REGIONS IN INDIAN OCEAN 655

{a) WON 52

I e ———— i 16
- ==~ Wind speed A
—_—55T £ =

Wind speed (m/s)

SST [*c)
wind speed (m/s)

Month

Figs. 10(a&b). Seasonal variations of SST and wind speed
at (a) 10°N, 52°E and (b) 10°S, 60°E

western Arabian Sea and in the South China Sea which
are located in the remarkable monsoon area. In these
areas effects of the wind speed on the SST appear
after one month. This feature in the Arabian Sea is
also detected in Fig. 10(a) showing seasonal variations
of the SST and the wind speed at 10°N, 52°E. On
the other hand, the remarkable lag between the SST
and the wind speed cannot be found in Fig. 10(b)
showing the seasonal variation at 10°S, 60°E.

5. Conclusions

It is well known that very cool SST appears near
the coasts of Arabian Sea and Somalia because of
coastal upwelling caused by the strong northwest
monsoon in summer. However, there are not so many
studies about the SST variability in the Indian Ocean
in other seasons and other arcas. McCreary and Kundu
(1989) developed a numerical model to swmdy the
thermodynamics of the Arabian Sea and succeeded in
simulating the observed SST patterns. They showed

the decrease in SST in boreal winter in the northern
Arabian Sea and the decrease is caused in part by
reduced solar radiation and by increased evaporative
cooling. In the present study the cause of the decrease
in SST in boreal winter in the northern Arabian Sea
is investigated by using ocean observation data. Other
cold SST regions can be found northeast of Madagascar
in winter. In this study the cause of the cold water
is investigated by using climatological monthly ocean
observation data.

Zonal direction of the trade wind changes around
10°S in winter. As a result, a remarkable Ekman
divergence and an associated upwelling can be found
because the Ekman flow is meridional. This upwelling
is the reason why the cold SST regions exist northeast
of Madagascar in winter. The mechanism for appearance
of the cold SST regions are in contrast with the cold
water tongue in the eastern equatorial Pacific. The
strong trade winds and the reversal of a sign of the
Coriolis parameter on the equator are critical for the
latter phenomenon, while the reversal of the wind
direction is critical for the cold SST northeast of
Madagascar.

On the other hand, considerably cold SST regions
are detected in the northern Arabian Sea in winter.
Since the northeast monsoon prevails in this season
there, a coastal upwelling cannot be expected to be
the reason of the cold SST. McCreary and Kundu
(1989) demonstrated by the numerical study that during
the northeast monsoon (December-March), the decrcase
in SST in the Arabian Sea is caused in part by reduced
solar radiation and by increased evaporative cooling.
Our study also indicates the decrease in SST is caused
by reduced shortwave radiation and increased latent
heat flux. The contribution of the former is larger than
that of the latter. A bulk formulae for latent heat flux
includes wind speed and humidity difference. The
increase of latent heat flux there is caused by the
increase of humidity difference because wind speed in
winter is not so strong. The larger latent heat flux in
the northern Arabian Sea in winter is pointed out by
Jones et al. (1995), though they investigated decadal
variability of surface fluxes over the Indian Ocean.

Mechanisms of appearance of the cold SST regions
is investigated by using monthly climatological data.
However, the data density is not so enough for this
kind of investigation in the Indian Ocean. Therefore,
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more detailed investigation will be carried out by using
satellite data in future.
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