The variation of the angle of incidence of P waves with epicentral distance

R. K. DUBE

Central Seismological Observatory, Shillong

(Received 28 July 1966)

ABSTRACT. Angles of incidence of P waves were obtained from the records of the short and long period seismographs of W.W.S.S.N. at Shillong. The study covers the range of epicentral distances from 20° to 100°. The observations indicate that the velocity of P waves at the earth's surface is approximately 6 km/sec which is the velocity of the upper layer (granitic layer) of the earth's crust.

1. Introduction

Nuttli and Whitmore (1961) made a study of the variation of the angle of incidence of P waves with epicentral distance and observed P wave velocity of 8.0 km/sec which is the value just below the crust fitted satisfactorily with the observed angles of incidence. It was, however, surprising to the authors that the observations could not be fitted with the P wave velocity near the surface of the crust as expected from theory. No satisfactory explanation was offered for the peculiar behaviour. The authors, however, suggested the use of data from seismographs in which daily calibration pulses are recorded so that the performances could be checked for each component for day-to-day recording. This condition is satisfied by the long and short period seismographs of W.W.S.S.N. in operation in Shillong since April 1963. The work has, therefore, been taken up again.

The present study was undertaken with data from the above seismograph system. The instrumental constants of the short period system are given below —

 $T_0 = 1.0 \text{ sec}, T_g = 0.75 \text{ sec}$

Both seismometers and galvanometers are critically damped.

During the entire period, the long period seismographs did not operate with the same constants. The constants of the instruments were as follows —

 $T_0 = 30$ $T_g = 100^s.0$ from April 1963 to 23 April 1965.

In the later part the seismometer period was changed to $15 \cdot 0$ sec (Both the seismometers and galvanometers were critically damped).

The present study is not, however, affected by the change in the instrumental constants. Because our requirement is that the components should be matched so that the constants and magnification of two horizontal and vertical components should have the same value. This will enable us to make direct use of the recorded trace amplitudes without any reference to actual response curves. In doing so we have assumed that the period of the initial P motion is same for two horizontals and the vertical.

2. Method

The apparent angle of incidence i is defined as the angle between the resultant P motion and the normal to the surface. This is given by —

$$\tan i = U_h/U_z$$

where U_h and U_z are the horizontal and vertical components of the ground motion due to the incident P wave, respectively, U_h is obtained from the relation —

$$U_h = (U_N^2 + U_E^2)^{1/2}$$

where U_N is the ground motion recorded in the N-S component while U_E is the ground motion recorded in the E-W component. The initial motions of the P wave were measured from the three components and the value of \overline{i} is computed for shocks of different epicentral distances. In selecting shocks proper care was taken to select those records for which the initial motions are very well recorded. The real angle of incidence i is related to the apparent angle of incidence \overline{i} by the following relation (Bullen 1953) —

$$i = \sin^{-1} \left[\begin{array}{c} \frac{a^2}{2b^2} & (1 - \cos \overline{i}) \end{array}
ight]^{1/2}$$

The ratio a/b of P and S wave velocities were computed for Poisson's ratio σ for two assumed values, viz.,

 $\sigma = 0.25$ and $\sigma = 0.286$.

Assuming different values of P wave velocities a it is possible to calculate the $i-\triangle$ curve by using the relation (Bullen 1953) —

$$dT/d \triangle = (r/a_0) \sin i$$

where r is the radius of the earth. Nuttli and Whitmore (1961) have constructed a set of theoretical $i - \Delta$ curves for different assumed values of a_0 ranging from $6 \cdot 0$ to $9 \cdot 0$ km/sec. The solid curves in Figs. 1, 2, 3 and 4 based on the Jeffreys-Bullen travel-time tables, are taken from their paper.

279

R. K. DUBE

 Fig. 1
 Fig. 2

 Observed and theoretical values of $ivs \ \triangle$; theoretical values based on Jeffreys-Bullen Tables

Fig. 3

Fig. 4

Observed and theoretical values of $i vs \triangle$; theoretical values based on Jeffreys-Bullen Tables

VARIATION OF ANGLE OF INCIDENCE OF P WAVES

Observed and theoretical values of $i vs \triangle$; theoretical values based on Jeffreys-Bullen Tables

3. Observations and Conclusion

With a view to examine whether there is any systematic difference in the observed $i - \Delta$ curve as far as they relate to the observations from short and long period seismograhs, these results are presented separately in Table 1. The data from short period instruments were plotted in Fig. 1 for $\sigma = 0.25$ and in Fig. 3 for $\sigma = 0.286$. The data from long period seismograms are presented in Figs. 2 and 4 for value of $\sigma = 0.25$ and 0.286 respectively. The epicentral distance \wedge was calculated from P - O values, the time of origin O is taken from the P.D.E. cards of U.S.C.G.S. Although \triangle computed by this method will not be very accurate, it is felt that it will serve the purpose of the present study.

On examination of Figs. 1-4 it is noticed that the observed data scatter about the theoretical curve for $a_0=6\cdot0$ km/sec. This is in perfect accord with the theory that the real angle of incidence is dependent on the velocity of the wave in the upper crustal layer. The present writer is unable to account for the observations of Nuttli and Whitmore (1961) for higher value of $8\cdot0$ km/sec. In case the wave lengths are sufficiently large as compared to

the thickness of the crustal layers, it is quite possible that the angles of incidences are not modified by the upper crustal layers having smaller velocities of wave propagation. Even with data from long period instruments (Figs. 2 and 4) the author could not find any noticeable effect. Moreover, it is almost an established fact that the seismic body waves do not suffer any dispersion.

The plotted data of Figs. 1-4 lie more or less centred about the curve $a_0=6\cdot 0$ km/sec and they are scattered about the mean position. The author is unable to account for the same, although the observations were made with much care using luminous magnifiers having a graduated graticule in the eyepiece. One fact was, however, very clear that deviation or scattering is very much more for smaller ground motions when the movements are comparable with the microseismic noise level of the ground.

It is worth mentioning here that in a similar study from the long period matched component seismographs of W.W.S.S.N. of Delhi data for which are given in Table 2 and are plotted in Fig. 5, identical results have been obtained, which probably leads to more weightage for the results of of the present study.

R. K. DUBE

-			•	-	
		ĸ		MC -	
- 24	~			-	

P waves arrival time (GMT)			Origin time O (GMT)			Epicentral	Apparent angle of incidence		Pool on	ala of	Desta	1 6	
						from	(SP)	(LP)	incidence for $\sigma = 0.25$		Real angle of incidence for $\sigma = 0.286$		
h	m	8	6	h	m	8	(in deg)	period seismo- graph	period seismo- graph	SP	LP	SP	LP
23	42	31.0	2	23	38	00.5	$21 \cdot 3$	$32 \cdot 9$	$36 \cdot 0$	$29 \cdot 4$	$32 \cdot 4$	$31 \cdot 2$	$34 \cdot 4$
08	16	$38 \cdot 5$	()8	11	$33 \cdot 7$	$22 \cdot 7$	$42 \cdot 6$	$37 \cdot 1$	$39 \cdot 0$	33.5	$41 \cdot 6$	$25 \cdot 6$
06	17	$02 \cdot 5$	()6	12	$00 \cdot 4$	$22 \cdot 9$	- (marked 1)	$42 \cdot 0$		$38 \cdot 4$		$40 \cdot 9$
15	24	$06 \cdot 5$	1	5	19	$03 \cdot 2$	$23 \cdot 0$	_	33.3		$29 \cdot 8$		$31 \cdot 6$
18	19	$25 \cdot 5$	1	8	14	$23 \cdot 0$	$23 \cdot 0$	—	$31 \cdot 0$		$27 \cdot 6$		$29 \cdot 2$
23	28	$11 \cdot 0$	2	23	22	$53 \cdot 0$	$24 \cdot 6$	33.7		$30 \cdot 1$		$32 \cdot 0$	
22	21	$20 \cdot 0$	2	22	15	$42 \cdot 5$	$26 \cdot 6$	$33 \cdot 0$	$36 \cdot 0$	$29 \cdot 5$	$32 \cdot 4$	$31 \cdot 3$	$34 \cdot 4$
17	25	$07 \cdot 0$	1	7	19	$26 \cdot 0$	$27 \cdot 0$	$39 \cdot 0$	$45 \cdot 0$	$35 \cdot 3$	$41 \cdot 5$	$37 \cdot 6$	$44 \cdot 4$
16	37	$08 \cdot 0$	1	6	31	$22 \cdot 0$	28-2		$34 \cdot 5$	_	$30 \cdot 2$		32.8
00	10	$24 \cdot 0$	0	0	04	$34 \cdot 7$	$28 \cdot 5$	$30 \cdot 4$		$27 \cdot 0$		28.6	
23	27	$44 \cdot 0$	2	23	21	$10 \cdot 6$	$32 \cdot 9$	$32 \cdot 0$	$29 \cdot 0$	$28 \cdot 5$	$25 \cdot 7$	$30 \cdot 2$	$27 \cdot 2$
17	50	$04 \cdot 5$	1	7	43	$21 \cdot 4$	$34 \cdot 1$	$30 \cdot 3$	$35 \cdot 0$	$26 \cdot 9$	$31 \cdot 4$	$28 \cdot 5$	$33 \cdot 3$
09	49	$39 \cdot 0$	0	9	42	$28 \cdot 2$	25.5	$32 \cdot 0$	$32 \cdot 0$	$28 \cdot 5$	$28 \cdot 5$	$30 \cdot 2$	$30 \cdot 2$
16	28	$8 \cdot 5$	1	6	20	51/4	$38 \cdot 1$	$28 \cdot 0$	$31 \cdot 5$	$24 \cdot 8$	$28 \cdot 0$	$26 \cdot 3$	$29 \cdot 7$
09	04	$08 \cdot 0$	08	8	56	$46 \cdot 0$	$39 \cdot 7$	$31 \cdot 8$		$28 \cdot 3$		$30 \cdot 0$	
23	49	$36 \cdot 0$	2	3	41	$58 \cdot 8$	$39 \cdot 9$	$25 \cdot 0$	$37 \cdot 0$	$22 \cdot 0$	$33 \cdot 4$	$23 \cdot 3$	$35 \cdot 4$
00	17	$04 \cdot 0$	0	0	09	$34 \cdot 4$	$40 \cdot 1$		$28 \cdot 9$		$25 \cdot 6$	_	$27 \cdot 1$
20	48	$22 \cdot 0$	2	0	41	$16 \cdot 0$	$41 \cdot 0$	$31 \cdot 0$	_	$27 \cdot 6$		29-2	
12	:3	49.5	1	2	26	$06 \cdot 2$	$41 \cdot 3$	$37 \cdot 0$	_	$23 \cdot 4$		$35 \cdot 4$	
11	16	$11 \cdot 0$	1	1	08	$16 \cdot 2$	$42 \cdot 9$	$27 \cdot 0$	$31 \cdot 0$	$23 \cdot 8$	$27 \cdot 6$	$25 \cdot 3$	$29 \cdot 2$
00	19	$17 \cdot 0$	0	0	11	$12 \cdot 1$	$43 \cdot 3$	$28 \cdot 6$		$25 \cdot 3$		26.8	
16	54	$25 \cdot 0$	1	6	46	$15 \cdot 5$	$43 \cdot 8$	$27 \cdot 0$	$27 \cdot 0$	$23 \cdot 8$	$23 \cdot 8$	$25 \cdot 3$	$25 \cdot 3$
10	55	$46 \cdot 0$	1	0	47	$37 \cdot 6$	$44 \cdot 3$	$29 \cdot 6$	$26 \cdot 0$	$26 \cdot 3$	$22 \cdot 9$	$27 \cdot 8$	$24 \cdot 3$
02	25	$53 \cdot 0$	0	2	17	$38 \cdot 5$	$46 \cdot 0$	$26 \cdot 0$	_	$22 \cdot 9$		$24 \cdot 3$	_
11	47	$08 \cdot 0$	1	1	38	$28 \cdot 0$	$48 \cdot 3$		$31 \cdot 0$		$27 \cdot 6$	_	$29 \cdot 2$
16	35	$20 \cdot 5$	1	6	26	$21 \cdot 2$	$51 \cdot 6$	$33 \cdot 1$		$29 \cdot 6$		$31 \cdot 6$	—
14	39	$48 \cdot 5$	1	4	30	$29 \cdot 1$	$56 \cdot 3$	$27 \cdot 0$	$25 \cdot 0$	$23 \cdot 8$	$22 \cdot 0$	$25 \cdot 3$	23*3
09	57	$19 \cdot 5$	0	9	47	$30\cdot7$	$58 \cdot 6$	$24 \cdot 0$		$21 \cdot 1$		$22 \cdot 3$	
08	26	$16 \cdot 5$	0	8	15	$39 \cdot 3$	$64 \cdot 7$		$24 \cdot 3$		$21 \cdot 4$		$22 \cdot 6$
13	41	$22 \cdot 0$	1	3	30	28.0	$65 \cdot 0$	$34 \cdot 0$		$30 \cdot 4$		$32 \cdot 3$	—
13	18	$48 \cdot 0$	1	3	07	$50 \cdot 0$	68.0	$24 \cdot 0$	$17 \cdot 0$	21.1	$14 \cdot 9$	22.3	15.7
23	55	$57 \cdot 5$	2	3	44	$46 \cdot 2$	70.2	24-4		$21 \cdot 5$	26.4	22.7	28.0
03	10	17.5	0	2 6	59 50	02+0 20+0	70.9	94.9	29.8	21.3	16·6	22.5	17.6
23	12	41.0	2	3	00	23.0	81.8	25.7		22.7		24.0	
15	01	44.0	1	4	49	$23 \cdot 0$	83.0	$17 \cdot 2$	_	$15 \cdot 0$		$15 \cdot 9$	
13	48	$55 \cdot 0$	13	3	36	$30 \cdot 7$	$83 \cdot 2$	$18 \cdot 3$	$19 \cdot 8$	$16 \cdot 0$	$17 \cdot 3$	$16 \cdot 9$	18.3
00	52	$41 \cdot 0$	00	0	41	$11 \cdot 0$	$83 \cdot 4$		18.0		15.7		16.6
15	42	$27 \cdot 0$	14	5	28	43.0	100.0		18 0		19+7		10.0

VARIATION OF ANGLE OF INCIDENCE OF P WAVES

S. No.	Date	Origin time (GMT)			Epicentre		Douth	Manut	∆ (mea-	7		Azimuth	
		$-\frac{1}{h}$	m	8	Lat.	Long.	(km)	tude	degrees)	(deg)	(deg)	Mea. sured	Compu- ted
1	1-5-1963	10	03	20.0	19.08	$169 \cdot 0E$	140	$6 \cdot 2$	$100 \cdot 8$	19.0	16.6	107	104
2	8-5-1963	10	22	11.2	$36 \cdot 6N$	141 · 0E	53	$6 \cdot 1$	53-4	$26 \cdot 5$	$23 \cdot 1$	63	$65 \cdot 5$
3	12-5-1963	20	08	43	$57 \cdot 4N$	153 · 9W	-	$5 \cdot 9$	83.7	18.3	16.1	25	37
4	22-5-1963	13	56	43.0	48.6N	154·7E	22	6.3	61	25.5	22.0	48	54.5
5	22-5-1963	15	42	48.6	$4 \cdot 3N$	$127 \cdot 9E$	33	-	53.8	27.6	24.4	106	106.7
6	22-5-1963	21	52	$02 \cdot 5$	8.28	$115 \cdot 7E$	33	$5 \cdot 4$	$52 \cdot 5$	28.3	25.1	128	126
7	29-5-1963	08	35	$02 \cdot 9$	$27 \cdot 2N$	$59 \cdot 3E$	33	$5 \cdot 4$	16.0	43.2	39.5	268	270
8	4-6-1963	21	04	$42 \cdot 3$	$1 \cdot 2S$	$127 \cdot 3E$	31	$5 \cdot 2$	56	26.7	23.6	114	119.7
9	28-6-1963	21	55	38.8	$46 \cdot 5N$	$153 \cdot 2E$	33	6.1	60	27.5	24.3	48	53
10	10-7-1963	05	22	$57 \cdot 1$	$46 \cdot 3N$	$152 \cdot 9E$	33	$5 \cdot 6$	$59 \cdot 5$	27.9	24.6	48	57
11	4-9-1963	13	32	$12 \cdot 3$	$71 \cdot 4N$	73 · 3W	33	5.9	78	18.8	16.3	351	349
12	9-9-1963	02	45	$45 \cdot 5$	$4 \cdot 48$	$152 \cdot 7E$	34	$5 \cdot 6$	80	22.8	20.0	101	107.3
13	15-9-1963	00	46	$54 \cdot 1$	10.38	$165 \cdot 6E$	43	6.3	93	19.6	17.2	101	106.1
14	17-9-1963	19	20	. 08	10.18	$163 \cdot 3E$	17	6.1	93	20.8	18.2	101	107
15	18-9-1963	16	58	12.5	$40 \cdot 9N$	$29 \cdot 2E$	33	$5 \cdot 2$	41	28.3	$25 \cdot 2$	298	299.7
16	23-9-1963	09	01	$56 \cdot 8$	16.68	$28 \cdot 8E$	33	5.8	65	20.7	18.2	228	238
17	20-10-1963	09	10	43.9	$44 \cdot 4N$	$150 \cdot 2E$	40	$5 \cdot 5$	58.8	24.1	20.6	53	60
18	20-10-1963	11	52	20.7	44.7N	$150 \cdot 2E$	45	$5 \cdot 1$	59	27.5	24.3	53	57.3
19	5-2-1964	11	30	15.7	$36 \cdot 5N$	$141 \cdot 0E$	46	$5 \cdot 4$	53.4	21.3	18.7	63	59
20	6-2-1964	13	07	$25 \cdot 2$	$55 \cdot 7N$	$155 \cdot 8W$	33	$5 \cdot 6$	84.5	$16 \cdot 2$	14.2	26	$24 \cdot 6$
21	14-2-1964	16	29	$45 \cdot 0$	$5 \cdot 18$	151·7E	55	6.0	79	20.4	17.8	102	113
22	29-2-1964	15	20	$12 \cdot 8$	$34 \cdot 8N$	141.7E	34	$5 \cdot 1$	54	24.1	21.2	65	63.5
23	29-2-1964	23	49	$40 \cdot 8$	8·5S	$112 \cdot 7E$	73	5.8	55.5	22.6	19.9	131	143
24	15-9-1964	15	29	$32 \cdot 2$	$8 \cdot 9N$	93·1E	37	6.2	24.4	31.1	27.1	138	141
25	16-9-1964	01	26	$26 \cdot 9$	10·9N	93.1	47	5.7	23.0	33.2	29.6	135	137

TABLE 2

The observations were carried out in Shillong where the thickness of sedimentary layer is very insignificant and the observations are in good accord with the velocity of 6.0 km/sec which is approximately the velocity of P waves in the granitic layer. The same is true for Delhi also. In places where the thickness of the sedimentary layer is appreciable, it might be worthwhile to make a similar study and to examine whether the

real angle of incidence is modified by the sedimentary section having velocities much less than the velocity of the granitic layer underlying the sedimentary top.

It is difficult to draw any conclusion on the 20° discontinuity in the travel time from the study of the $i - \Delta$ curve because of the steepness of $i - \Delta$ curve near that range of distance. The study has,

however, verified the theoretical result that the real angle of incidence is dependent on the velocity of the upper crustal layer. No conclusion, however, could be drawn regarding the appropriate value of Poisson's ratio in the upper crustal layer because there is very little difference in the observations when we use $\sigma = 0.25$ (Figs. 1 and 2) and $\sigma = 0.286$ (Figs. 3 and 4).

4. Acknowledgement

The author wishes to acknowledge his sincere thanks to Shri B.P. Saha for suggesting the problem and for his continuous guidance during the investigation, and also to the referee for his valuable comments and supplying the worked data for New Delhi.

REFERENCES

Bullen, K. E.	1953	An Introduction to the theory of Seismology, Cambridge Press, 2nd Edition.
Jeffreys, H. and Bullen, K. E.	1948	Seismological Tables.
Nuttli, O. and Whitmore, J. D.	1961	Bull. seismol. Soc. Amer., 51, 2, pp. 269-276.