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The Growth of Cloud droplets by Coalescence

P. K. DAS.
(Received 24th October, 1949).

Abstract. An attempt is made to obtain an estimate of the percentage of small droplets swept out
of the path of a large drop. The method followed is along the lines of a similar treatment by G. 1.
Taylor and developed by Glauert for droplets approaching a cylinder and an aerofoil. Similar compu-
tations were also made by Langmuir and Blodgett in U. S, A. usiog a differential analyser ; but neglect-
ing the discrete sizes of small droplets. This has been taken into account in the present work.

Sets of trajectories are drawn for droplets approaching a sphere having the dimensions of a large

cloud drop. Using thesc trajectories new values of the percentage catch have been computed in a
number of cases.

1. Introdaction.

Estimates of the growth of cloud droplets hav beene made in recent years by
Findeisen® and Schumann® assuming that collision of drops leads to coalescence.
Their work, however, suffers from the limitation that no account is taken of the
deflection of on= drop approaching another by the flow of air relative to the drops.
Langmuir?® took account of this factor but did not take into consideration the finite
sizes of small droplets in working out the ¢ collection efficiency * of large drops.

Owing to the streamline pattern round a spheftical drop, it is able to sweep n:lip
only a fraction of small droplets in its downward path., The amount swept up depends
also on the size of small droplets that come in the way of a large drop. We have,
therefore, obtained new values of the percentage catch for drops of three different
sizes approaching a large drop.

2. The © Percentage Cateh® of small droplets made by a large drop.

The method used in determining the percentage catch was similar to that used
by Taylor and Glauert in connection with water droplets approaching an aerofoil,

We consider two drops A and B (Fig. 1) falling independently with
te:lmil:_lal velocities V, and V,.  The drop B when distant from A approaches it with
velocity,

8 = VW (21)
The  free-stream ” or undisturbed velocity of air at a large distance from A is given by,
i (RS S < (22)

Let P represent the centre of the small droplet (B) such that its trajectory from P
provides tangential contact with the large drop (A). If the droplet (B) be further
displaced from the axis of symmetry it would be so deviated as not to touch the large
drop. The ¢ Percentage Catch’ (M) made by large drop A is then defined by,

B2 %-P'. 100 (2+3)
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it being assumed that contact leads to coalescence. Such a definition provides for
a possible catch greater than 100°/, as would be the case for (R + a) > OP > R,
whete “a’ is the radius of the smaller drop.

3. Thsz equations of motion of the small drop.
. The trajectory of a small drop such as B (Fig. 1) was obtained by integrating
its equations of motion using the method of finite differences.

To derive the equations of motion the axes of symmetry asshown in Fig. 1
have been rotated as in Fig. 2. The equations of motion of a small drop at any poiat P
in a steady stream (see Fig. 2) moving relative to a fixed larger drop are then given by,

d
s o, ad cf:—' =4 ma% Cp, p. 4. (u=u,)

dv
Lwo, Al dtl -5 ma* Cp, p. q. (vev,) (31
whete uy, v; =Compoanents of drop velocity at a point x, y of its trajectory, along axes
ox, oy fixed to the large drop.

u, v=Components of the air velocity relative to the large drop at a point
x, y on the streamline, along the axes ox, oy.

q = {(a-u)p4(v -V
a = Radius of small drop
Cp =Coefficient of drag on small drop
p = Density of air
o = Density of drop
For small drops obeying Stoke's Law the above equations r¢duce to,
' du,

k. “dt =ueu,
dv :
; Ldf =v=v (32

where K=2 . TT . a?
7 = Coefficieat of viscosity of air.

The above equations may be made non-dimensional in terms of a standard velo-
city and length. We take as our standard welocity the free stream velocity of air,
This is equal to the terminal velocity of the large drop. The standard length is taken
as the radius of the large drop.

Expressing each of the variables in 32 in terms of the above standards, the equ-
ations become.

k. :l;:l =u=-u
¥ L0 33
gt =V=" (3-3)

where uy, v, etc,, are now expressed in terms of U
X, y etc., are expressed in terms of R.

| 2
ead, k=3. 3 22 (34)
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We shall consider for the present only the case in which the smallet of the two drops
obeys Stoke’s Law. The size of the large drop is not limited by this except as provided

below.

THE GROWTH OF CLOUD DROPLETS
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4. Significamce of the parameier k.

_ For drops obeying Stoke’s Law the terminal velocity vaties as the square of th:
radius, The “free strcam’ velocity of air may thus be expressed in terms of the

radius of the large drop,
(4-1)

U ==1-313%10%R?
The variation of )* with temperature is small. Its mean value between +15%

and - 37°c is givea by,

N =166 . 10-4gm. cm™2, Sec? (4.2)
and ¢-1'00 gm, cm-?
Putting the abova values in 34 we get,
(4.3) .

k=1759 . 10% (50). (aR?)
L

The relation between k, ‘a’ and ‘R’ for three atbitrarily chosen values of i

shown in the fullowing table.
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k.| 2:00 1-00 075 05 025 | 0-10

sR R@Wa@ | R a() R@a@) R@E a@® |REa®) R@Eak)
01| 485 49 | 385 39 | 349 35 | 305 31 | 242 24 17.8
02| 385 77 | 305 €1 | 277 56 | 242 49 | 192 39 142
03| 233 70 | 185 55 168 50 | 147 44 | 116 35 8%

The tesults are shown graphically in Fig. 3.
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It is apparent that apart from being a function of drop sizes as shown above, the
parameter ‘k’ is also a measure of the inertia of the smaller drop. For smaller values
of ‘&’ the trajectories show large deviation, while for larger values of k, they remain
almost undeviated. The functional relationship between ‘k’ and the ‘percentage catch’
is established by determining the latter for different values of k%

5. Imiegration of the equations of motion.

The equations of motion in 33 were integrated using tinite differences and the
values of x; y; thus obtained were used to trace the trajectory of 2 drop.

For a petfect fluid the values of u, v at any point a head of a sphere ate given by,

u=-[ 14+ 32};( 1-3‘2)]

1
—=93,1%y
=ale
where r=(x34-yi)# (51)

(Aetodynami¢ Theory—Durand, Vol. 1)
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The above are expressed in non-dimensional units and refer to a diametral plane
of the sphere. Strictly, trajectory computations should be started from iafinity where
the streamlines become parallel and the small drop is undisturbed, as Langmuir bas
done. However, the variation of u, v is very small for x>3 which has been chosen
as the starting point for the computations.

We have also to define the condition of the small drop at x=3, and two assump-
tions have been made according to the size of the small drop .. according to the
value of k. When the drop is very small indeed, its motion telative to the air in its
neighbourhcod will differ only infinitesimally from its terminal velocity V,, that is,
the drop has fully responded to the very small acceleration of the air at x> 3.

Formally.
u=u=-V,
V=V * for k £0-5 at x=3
In non.dimsnsional units the above becomes,
' 3
w3

—
1=

For larger drops (k>0'5) we assume that the motion of the drop telative to
the air is the Eiﬂ'crence in the terminal velocities of the two drops, that is the wvery
small acceleration of the air for large x has left the droplet unaffectel, We then have,

uy=V; -V, .
for k05 at x=3
=0

In non-dimensional units,
m==14F)
v,=0

The above two boundiry conditions represent two extremes and ia teality the
motion of the drop lies somewhere between these above values., The inclasion of
=05 in both categories gives an opportunity of assessing the effect of the change in
boundary conditicns.
The change in velocity and position of a drop during a time interval At, is
given by the following equatians,

1
U|Xp+1— le’} 5 T (UXD 3 Uix;. ). At

Vima= iy T (Va7 Vs ). A (52)
and,

pa=%p+yAt 4

Vori=Vp+vi. At (5:3)

Trajectories were obtained for several values of k’. A typical set for k=011 is
shown in fig. 4. They have been drawn for three values of a/R=01,0°2, 0-3
tespectively, as shown by dotted citcles round the large drop,

The shape of the k—7 catch cutves is shown in Fig. 5. As expected they show
a small discontinuity at k=05, This however, is only of the order of 5% in
“ petcentage catch *so that the meaa value could be taken, i
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6. Limitations of the above method.

(a) The time intervals bad to be made small to obtain accurate trajectories. The
smallest time interval used was of the order of 0+1. Thus, At==0'1 was used for all
trajectories with k<05, and was opened upto At=03 for larger ‘k’ in the early
intervals, tests having shown this to be satisfactory.

(b) The above treatment is only valid for small drops in the Stoke’s Law regime.
It has also been assumed that theair flow ahead of a large drop is that of a perfect
fluid. The streamlines for viscous flow ahead of a sphere ate more deviated than in
a perfect fluid, consequently the catch will be less than that for a perfect fluid. The
air flow abead of a large drop is in reality between the limiting cases of perfect and
viscous fluid flow. Within the boundary layer the flow is likely to correspond to
viscous flow while beyond the boundary “layer the flow would be more like that of a
p:_:fect fluid. Further work is now in progress to take jnto account the viscosity
of air. ,

7. Diseussion of Results.

Langmuir computed the percentage catch for different values of “k’ both for
¢ perfect fluid* flow and viscous flow. He does not appear, however, to have computed
the catch for different values of a/R, wheteas, as we see from Fig. 5, the catch is
markedly dependent on a/R as well ason‘k’. We have chosen three values of a/R
and computed trajectories for each. It is realised, however, that a/R cannot be
indcﬁnitcr; increased, for if the small droplets bz of size comparable to that of the
latge drop the air flow would no longer be that ahead of a single sphere. 1t has not
been possible to determine the maximum possible value of a/R such that the air flow
remains relatively uadisturbed but it is thought reasonable to go as far as a/R=0.3.

The following tables show the difference betwesn values of percentage catch
obtained by Langmuir and those obtained by us :—

9 catch 7,eateh computed

k Langmuir a/R = 01 02 0-3
0-0833 0 24:2 685 88-3
0-100 10 265 L95 89-00
025 1100 308 697 100-00
0-50 2490 876 825 111-50
075 26560 69-75 92:5 119 90
1-00 4460 785 1010 . 126-60
2:00 64:00 93-0 117-25 14050

It was shown by Taylor that for droplets approaching a cylinder there was a
critical value of < k* beyond which no droplets could touch the cylinder. He assumed
that stteamlines just ahead of the stagnation point were rectangular hyperbolas such
that the flow could be represented by,

u= - cx
v= Cy (7-1)

Putting the above in the equations of motion, the condition for no drops touching
the cylinder was, :
ko C < }
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Where ko, = % "?‘;'a"‘

for flow past a cylinder,

(7.2)

_2u
Y
Where U = Free stream velocity of air
R = Radius of cylinder
Therefore, the critical condition is,
2 o a?
2(g - W<
ork & 4 (73)
For flow past a sphere Langmuir obtained the critical value of k to be 0+0893,

In our method the k — | catch cutves so far obtained by drawing trajectories
upto k=01 suggest very small values of critical k. Indeed, the cutves all tend to pass
through the origin suggesting that the percentage catch becomes nil as ¢ k ° approaches
zero.
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APPENDIX.

Critical trajectory data.

vs/R for different a/R. % Catch=100{y,/R) 2

k' 01 02 03 01 02 03
2:00 0-965 1-085 1-185 9312 1772 1404
100 0-885 1:010 14125 78:32 102:02 126'56
0-76 - 0-835 0965 1095 69-72 93-16 11990
0:50 (A) 0765 0-920 1060 58-52 83-84 112:36
0-50 (B) 0755 0-960 1045 57400 81:00 109-2
0-23 0630 0-835 1000 39-69 6974 1000
10 0-515 0-780 0945 2652 60-84 89-30

The critical trajectoty in each case was determined by interpolating between a
trajectory that just makes contact and another that just misses the large drop. The
trajectories were so spaced that errors due to this could not exceed 57 in the percent-
age catch,
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