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सार — प्र तुत शोधपत्र म ईरान म वषार् की मॉडिलगं के िलए बॉक्स जेनिकंस पद्धित के अनुप्रयोग को प्र तुत िकया 
गया है। 44 वष  के मािसक वषार् के आँकड़  के िलए, रेखीय प्रसंभा य मॉडल िजसे म टीि लकेिटव सीजनल एिरमा 
(ARIMA) के नाम से जाना जाता है, तैयार िकया गया। कुछ कारण  से बीच के 34 महीन  के आँकड़ ेअनुपल ध पाए गए। 
इस कमी को पूरा करने के िलए पहले 180 उपल ध पे्रक्षण  के आधार पर एक सीज़नल एिरमा (ARIMA) मॉडल तैयार 
िकया गया और अगले 34 महीन  के अनुपल  ध आँकड़  को पूवार्नुमान द्वारा प्रित थािपत िकया गया। िफर स पूणर् आँकड़  
के िलए SARIMA मॉडल तैयार िकया गया। पिरणाम  से ज्ञात हुआ िक यह मॉडल स पूणर् आँकड़ ेठीक से िदखाता है। 

 
ABSTRACT. This paper presents an application of the Box-Jenkins methodology for modeling the precipitation in 

Iran. Linear stochastic model known as multiplicative seasonal ARIMA was used to model the monthly precipitation data 
for 44 years. Missing data occurred in between for 34 months for some reason. To fill the gap a SARIMA model was 
fitted based on the first 180 available observations and the missing observations were substituted by the forecasts for the 
next 34 months. Then a SARIMA model was fitted for the full data. The result showed that the fitted model represent the 
full data well. 
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1.  Introduction 

 
There are many hydrological variables whose 

observations change with time and such observations 
constitute a time series. One of such variables is 
precipitation. In many instances, the pattern of changes in 
these kinds of observations can be ascribed to an obvious 
cause and is readily understood and explained, but if there 
are several causes for variation in the time series 
observations, it becomes difficult to identify the several 
individual effects. The definition of the function of this 
needs very careful consideration and may not be possible. 
The remaining hidden feature of the series is the random 
stochastic component which represents an irregular but 
continuing variation within the observed values and may 
have some persistence. It may be due to instrumental or 
observational sampling errors or it may come from 
random unexplainable fluctuations in a natural physical 
process. 
 

A time series is said to be a random or stochastic 
process if it contains a stochastic component. Therefore, 
most hydrologic time series such as precipitation may be 
thought of as stochastic processes since they contain both 

deterministic and stochastic components. If a time series 
contains only random/stochastic component it is said to be 
a purely random or a white noise process. 
 

A number of modeling studies have been carried out 
on rainfall, one of the hydrological variables, Amha and 
Sharma (2011) attempted to build a seasonal model of 
monthly rainfall data of Mekele station of Tigray region 
(Ethiopia) using Univariate Box-Jenkins’s methodology. 
The method of estimation and diagnostic analysis results 
revealed that the model was adequately fitted to the 
historical data. Mohammed (2018) fitted SARIMA (2,1,0) 
(0,1,1)12 to describe the rainfall of Addis Ababa (Ethiopia) 
based on monthly data for 18 years. In the current study 
time series analysis on monthly precipitation for 44 years 
with an approach for tackling the problem of missing data 
is presented. 
 
2. Materials and method 
 

The data on precipitation were provided by Sara K. 
from Iran because she was experiencing in the analysis of 
data. She requested from the first author but due to 
business the first author could not help her. Now we got 
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time so we tried to analyze the data. The monthly data 
consist of the first 180 (15 years) observations followed 
by 34 monthly missing entries followed by 314 monthly 
observations. Before embarking on the analysis first a 
seasonal model was fitted on the first 180 available 
observations to estimate the missing ones by way of 
forecasting assuming that past patterns would continue in 
to the future (Table of the Appendix of this article for the 
full data). In order to analyze the time series for 
precipitation, linear stochastic model known as either 
Box-Jenkins or ARIMA was used. The MINITB software 
package was employed for data analysis. 

 
The Box-Jenkins methodology [Box and Jenkins 

(1976)] assumes that the time series is stationary and 
serially correlated. Thus, before modeling, it is important 
to check whether the data understudy meet these 
assumptions. Let  X1, X2, X3,..., Xt-1, Xt, Xt + 1,..., Xn be a 
discrete time series measured at equal time intervals. A 
seasonal ARIMA model for wt is written as (Vandaele, 
1983). 
 ϕ(B) Φ(Bs)wt = θ(B)Θ(Bs)at                                                      (1) 

 
where,  
 ϕ(B) = 1- ϕ1B- ϕ2B

2…-ϕp B
p  Φ(Bs) = 1- ΦBs - ΦB2s…-ΦBPs 

 θ(B) = 1- θB - θB2…-θq B
q 

 Θ(Bs) = 1- ΘBs –ΘB2s…-ΘBQs 
 
wt = (1 − B)d (1 –Bs)D Xt 

 
Xt  is an observation at a time t; 
 
t is discrete time; 
 
s is seasonal length, equal to 12;  μ is mean level of the process, usually taken as the 

average of the wt series (if D + d > 0 often μ ≡ 0); 
 
At normally and independently distributed white 

noise residual with mean 0 and variance a2 (written as 

NID  a2,0  ; 

 ϕ(B) non-seasonal autoregressive (AR) operator or 
polynomial of order p such that the roots of the 
characteristic equation ϕ(B) = 0 lie outside the unit circle 
for non-seasonal stationarity and the ϕt, i = 1, 2,..., p are 
the non-seasonal AR parameters; 

(1 − B)d non-seasonal differencing operator of order 
d to produce non-seasonal stationarity of the dth 
difference, usually d = 0, 1, or 2; 
 Φ(Bs) seasonal AR operator or order p such that the 
roots of Φ(Bs) = 0 lie outside the unit circle for seasonal 
stationarity and Φt, i = 1, 2, . .. , p are the seasonal AR 
parameters; 
 

(1 – Bs)D seasonal differencing operator of order D to 
produce seasonal stationarity of the Dth differenced data, 
usually D = 0, 1, or 2; 

 
wt = (1 − B)d (1 – Bs)D Xt stationary series formed by 

differencing Xt series (n = N – d –sD) is the number of 
terms in the wt series); 

 θ(B) non-seasonal moving average (MA) operator or 
polynomial of order q such that roots of θ(B) = 0 lie 
outside the unit circle for invertibility and θt, i = 1, 2,..., q; 
 Θ(Bs) seasonal MA operator of order Q such that the 
roots of Θ(Bs) = 0 and Bs lie outside the unit circle for 
invertibility and Θt, i = 1, 2,..., Q are the seasonal MA 
parameters. 
 

The notation (p, d, q) (P, D Q)s is used to represent 
the SARIMA model (1). The first set of brackets contains 
the order of the non-seasonal operators and second pair of 
brackets has the orders of the seasonal operators. If the 
model is non seasonal or an ARIMA, only the notation            
(p, d, q) is needed because the seasonal operators are not 
present. 
 
3. Box and Jenkins approach to model building 
 
 Box and Jenkins (1976) recommend that the model 
development consist of three stages (identification, 
estimation and diagnostic check) when an ARIMA model 
is applied to a particular problem. 
 
(i) The identification stage is intended to determine the 
differencing required producing stationarity and also the 
order of both the seasonal and non-seasonal autoregressive 
(AR) and moving average (MA) operators for a given series.  
 

In general, for an MA (0, d, q) process, the auto 
correlation coefficient (rk) with the order of k cuts off and 
is not significantly different from zero after lag q. If rk 

tails off and does not truncate, this suggests that an AR 
term is needed to model the time series. When the process 
is an MA (0, d, q) (0, D, Q), rk truncates and is not 
significantly different from zero after lag q + sQ. If rk 

attenuates at lags that are multiples of s, this implies the 
presence of a seasonal AR component. For an AR (p, d, 0) 
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process, the PACF (ϕkk) with the order of k truncates and 
is not significantly different from zero after lag p. If ϕkk 

tails off, this implies that an MA term is required. When 
the process is an SAR (p, d, 0) (P, D, 0), ϕkk cuts off and 
is not significantly different from zero after lag p + sP. If ϕkk damps out at lags that are multiples of s, this suggests 
the incorporation of a seasonal MA component into the 
model. 
 
(ii) The estimation stage consists of using the data to 
estimate and to make inferences about values of the 
parameter estimates conditional on the tentatively 
identified model. In an ARIMA model, the residuals (at) 
are assumed to be independent, homoscedastic and usually 
normally distributed. However, if the constant variance 
and normality assumptions are not true, they are often 
made to meet these requirements when the observations 
are transformed by a Box-Cox transformation (Wei, 2006). 
 

Box and Jenkins (1976) state that the model should 
be parsimonious and recommend the use of as few model 
parameters as possible so that the model fulfils all the 
diagnostic checks.  
 
(iii) The diagnostic check stage determines whether 
residuals are independent, homoscedastic and normally 
distributed. The residual autocorrelation function (RACF) 
should be obtained to determine whether residuals are 
white noise. There are two useful applications related to 
RACF for the independence of residuals. The first is the 
ACF drawn by plotting rk(a) against lag k. If some of the 
RACFs are significantly different from zero, this may 
mean that the present model is inadequate. The second is 
the Q(k) statistic suggested by Ljung and Box (1978). A 
test of this hypothesis can be done for the model adequacy 
by choosing a level of significance and then comparing 
the value of the calculated χ2 to the actual χ2value from 
the table. If the calculated value is less than the actual                χ2 value, the present model is considered adequate on            
the basis of the available data. The Q(k) statistic is 
calculated by : 
 

         212 arkknnnkQ

                          

(2) 

 
where, 

 
rk(a) = autocorrelation of residuals at lag k; 
 
k = the lag number; 
 
and n = number of observations or data. 

    
There are many standard tests available to check 

whether the residuals are normally distributed. 

Chow et al. (1988) stated that if historical data are 
normally distributed, the graph of the cumulative 
distribution for the data should appear as a straight line 
when plotted on normal probability paper.  

 
The purpose of a stochastic model is to represent 

important statistical properties of one or more time series. 
Indeed, different types of stochastic models are often 
studied in terms of the statistical properties of time series 
they generate. Examples of these properties include: trend, 
serial correlation, covariance, cross-correlation, etc. If the 
statistics of the sample (mean, variance, covariance, etc.) 
are not functions of the timing or the length of the sample, 
then the time series is said to be weekly stationary or 
stationary in the broad sense. If the values of the statistics 
of the sample (mean, variance, covariance, etc.) are 
dependent on the timing or the length of the sample, that 
is, if a definite trend is observable in the series,                       
then it is a non-stationary series. Similarly, periodicity      
in a series means that it is non-stationary. For a stationary 
time series, if the process is purely random and 
stochastically independent, the time series is called a 
white noise series (Akaike, 1974; Rediat, 2012). 
 

Records of precipitation form suitable data 
sequences that can be studied by the methods of time 
series analysis. The tools of stochastic modeling provide 
valuable assistance to statisticians in solving problems 
involving the frequency of occurrences of major 
hydrological events. In particular, when only a relatively 
short data record is available, the formulation of a time 
series model of those data can enable long sequences of 
comparable data to be generated to provide the basis for 
better estimates of hydrological behavior. In addition, the 
time series analysis of precipitation and other sequential 
records of hydrological variables can assist in the 
evaluation of any irregularities in those records. 
 

Basic to stochastic analysis is the assumption that the 
process is stationary. The modeling of a time series is 
much easier if it is stationary, so identification, 
quantification and removal of any non-stationary 
components in a data series is under-taken, leaving a 
stationary series to be modeled. 
   
4. Results and discussion 

 
4.1. Modeling to forecast the missing observations 
 

 Fig. 1 shows the time plot of all the monthly 
precipitation for the first 180 observations from Iran. The 
ACF (Fig. 2) drawn for the data reflect the seasonality of 
the data. Subsequently one degree of regular and one 
degree of seasonal differencing were applied to yield the 
plot in Fig. 3 for the differenced series. 
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Fig. 1.  Time series plot for precipitation of the first 180 precipitation 
data (the red dots are precipitation in mm against the months 
beginning with January of the first year and ending with 
December of the last year) 

 

 
 

Fig. 2.  ACF for the time series plot for precipitation of the first 180 
precipitation data (where the dotted lines are the 2 standard 
error limits of the corresponding estimates here and also 
elsewhere for autocorrelations and partial autocorrelations) 

 

 
 

Fig. 3.  Time series plot of differenced series of precipitation of the 
first 180 precipitation data 

 

 
 

Then the ACF and the PACF (Figs. 4&5) for the 
differenced data were examined in order to identify the 
form of the ARIMA model. Visual inspections show that a 
SARIMA (0,1.1) (1,1,1)12 may be considered as                         
a  tentative  model.  Then this model was fitted and plot of 

 
 

Fig. 4.  ACF for the differenced series for precipitation of the first 180 
precipitation data 

 
 

 
 

Fig. 5.  Partial autocorrelation function for the differenced series              
time series plot for precipitation of the first 180 precipitation 
data 

 

 
 

Fig. 6.  ACF for the residual of the final model for precipitation of the 
first 180 monthly precipitation data 

 

 
residuals produced (Fig. 6). The final estimates of the 
model parameters are given in Table 1. The plot for the 
residual ACF shows that all autocorrelations are zeros 
implying that the residuals are white noise. To check 
model  adequacy  the  modified  Box - Pierce (Ljung-Box) 
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TABLE 1 
 

Final estimates of parameters 
 

Type Coef SE Coef T P 

SAR  12 -0.2187 0.0833 -2.63 0.009 

MA   1 0.9971 0.0015 671.37 0.000 

SMA  12 0.9214 0.0497 18.54 0.000 

Constant 0.008900 0.004440 2.00 0.047 

 
TABLE 2 

 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag 12 24 36 48 

Chi-Square 5.9 16.2 28.1 32.7 

DF 8 20 32 44 

P-value 0.663 0.707 0.665 0.895 

 
 

 

 
 

Fig. 7. Time series plot for precipitation data 

 

 
 

Fig. 8. Time series plot of differenced series (C3) of precipitation 

 
 
Chi-Square statistics were computed and presented                         
in Table 2 below. These statistics confirm that the               
model is adequate (P-values are all greater than or               
equal to 0.663). 

TABLE 3 
 

Forecasts from period 180 
  

95 Percent Limits 

Period Forecast Lower Upper 

181 9.550 -43.206 62.306 

182 41.139 -11.618 93.895 

183 53.853 1.096 106.609 

184 56.516 3.759 109.273 

185 51.966 -0.791 104.724 

186 74.603 21.845 127.360 

187 70.330 17.572 123.087 

188 43.432 -9.326 96.190 

189 13.354 -39.404 66.112 

190 7.735 -45.024 60.493 

191 -0.172 -52.930 52.587 

192 2.272 -50.487 55.031 

193 11.320 -41.933 64.573 

194 35.528 -17.725 88.781 

195 45.077 -8.176 98.330 

196 53.509 0.256 106.763 

197 71.941 18.687 125.194 

198 64.706 11.452 117.960 

199 67.434 14.180 120.688 

200 38.183 -15.071 91.437 

201 13.051 -40.203 66.305 

202 7.795 -45.460 61.049 

203 0.205 -53.050 53.459 

204 2.123 -51.132 55.378 

205 11.289 -42.290 64.869 

206 37.121 -16.459 90.701 

207 47.371 -6.210 100.951 

208 54.550 0.970 108.131 

209 67.965 14.384 121.546 

210 67.271 13.691 120.852 

211 68.477 14.896 122.058 

212 39.750 -13.831 93.331 

213 13.545 -40.037 67.126 

214 8.218 -45.363 61.800 
 

 
4.2. Modeling the full data 
 
Fig. 7 shows the time plot of all the monthly 

precipitation data from Iran with the estimates (forecasts 
from the model fitted on the first 180 observations) in 
place for modeling (Table of the Appendix). This plot 
suggests that there is seasonal variation in these data. 
Then plots of the ACFs drawn for the data were examined 
in  order to identify the form of the ARIMA model. Visual  
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Fig. 9. ACF for precipitation 

 

 
 

Fig. 10. ACF for the differenced series 
 

 
 

inspections show that the plot of original series and the 
ACF graph for the data (Fig. 9) reflect the periodicity of 
the data and possibly indicate the need for seasonal 
parameters in the model. 
 
 4.3. Autocorrelation Function (ACF) 
 

Fig. 9 shows the ACF for the original precipitation 
data. This ACF clearly shows that there is marked 
seasonality. 

 
The non-stationarity and seasonality were removed 

by apply in regular differencing of degree one and seasonal 
differencing of degree two (Fig. 8 for the plot of the 
differenced series). The ACFs and PACFs were estimated 
for the differenced data and depicted in Figs. 10&11.  
 
 The ACF (Fig. 4) cuts off after the twelfth lag. This 
may suggest the presence of a seasonal AR term. The 
PACF (Fig. 5) possess significant values at some seasonal 
lags and tails off. This may imply the presence of SMA 
terms. Moreover there are peaks on the graphs of the 
PACFs at lags that are multiples of 12; namely lags 12, 
24, 36 and 48 that may suggest seasonal MA terms, but 
these peaks damp out. It appears that the non-seasonal lags 

 
 

Fig. 11. Partial autocorrelation function for the differenced series 

 

 
 

Fig. 12. ACF of residuals of the final model to precipitation 

 
 

have little or no effect on the model to be fitted. 
Consequently a seasonal ARIMA model of order (1,0,0) 
(1,2,3)12 was identified as a tentative model and estimated 
based on the patterns of the ACF and PACF graphs from 
the differenced monthly data obtained for precipitation 
(Figs. 4&5). 

 
Table 4 shows the parameter estimates for the 

tentative model. From these parameter estimates the 
constant is not significant even at the 10% level                   
(P-value = 0.729). So the constant was dropped and the 
parameters were re-estimated to give the results shown in 
Table 5. This re-estimation raised the P-value for the only 
regular AR parameter estimate to 0.166 greater than the 
10% level of significance. Yet it is retained as the 
multiplicative seasonal model theory requires both regular 
and seasonal parameters to appear in a SARIMA model. 

 
Additionally, the Ljung-Box Q statistics were 

estimated for lags 12, 24, 36, and 48 (Table 6). The Q(k) 
statistics at these lags were obtained using equation (2) 
and are found out to be insignificant (the P-values are 
greater than or equal to 0.484 for all of them). This shows 
that the fitted model can be considered adequate to model 
the precipitation. Therefore, they emphasize that the
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Fig. 13. Time series plot of residuals from the final model 
 
 

TABLE 4 
 

Estimates of parameters for the tentative model 
 

Type CoefSE Coef T P 

AR   1 0.0607 0.0449 1.35 0.177 

SAR  12 -0.9667 0.0409 -23.63 0.000 

SMA  12 0.9034 0.0447 20.22 0.000 

SMA  24 0.9106 0.0825 11.03 0.000 

SMA  36 -0.8312 0.0438 -18.98 0.000 

Constant -0.00968 0.02796 -0.35 0.729 

 
TABLE 5 

 
Estimates of parameters for the tentative model without constant 

 

Type Coef SECoef T P 

AR   1 0.0622 0.0448 1.39 0.166 

SAR  12 -0.8875 0.0366 -24.28 0.000 

SMA  12 0.9817 0.0094 104.65 0.000 

SMA 240.7587 0.0598 12.68 0.000 

SMA 36-0.7564 0.0526 -14.38 0.000 

 
TABLE 6 

 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag 12 24 36 48 

Chi-Square 5.7 16.3 30.7 34.7 

DF 7 19 31 43 

P-Value 0.580 0.636 0.484 0.812 

ACF of residuals (Fig. 12) obtained from the final model 
are not different from zero. In fact a SARIMA model with 
four seasonal parameters was fitted to clear the suspicion 
that the ACF suggests but this parameter estimate was 
found out to be insignificant (P-value = 0.683). 

 
Moreover, Fig. 13 shows various plots of residuals 

versus the order of data. Clearly there is no serious 
problem in the patterns revealed by these plots. Hence the 
residuals appear to be normal, random and homoscedastic. 
Moreover, diagnostic checks were applied in order to 
determine whether the residuals of the fitted model from 
the ACF and PACF graphs were independent, 
homoscedastic and normally distributed. These plots 
confirm that the residuals may be regarded as a purely 
random or a white noise process. In addition, the pattern 
of residuals for 44-years from the fitted model for 
precipitation shows that one can safely conclude that the 
fitted model has transformed the precipitation data into 
residuals that are a white noise process. Therefore the 
model to represent the precipitation can be considered to 
be SARIMA (1,0,0) (1,2,3)12. 

 
5. Conclusions 

 
Based on the analysis to model precipitation by the 

seasonal multiplicative ARIMA the following conclusions 
were drawn : the SARIMA model application to the 
precipitation showed that predicted data preserved the 
basic statistical properties of the observed series. 
Unfortunately, as the data are old enough and the lead 
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time is so long no attempt has been made to forecast 
precipitation and the subsequent analysis done although the 
main objective of time series modeling is making forecasts.  

 
The content and views expressed in this research 

paper are the views of the authors and do not necessarily 
reflect the views of the organizations they belong to. 
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Appendix 
 

Monthly Precipitation Data for 44 years 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
15 18 28 22 37.5 109.5 67.1 26.5 68.9 12 0 0 
0 113.3 74.7 52.1 108.3 175.8 143.8 33.8 0.6 3.5 0 10.4 

64.5 51.6 11.2 48.2 60.4 62.2 0.2 65.7 0 23.2 3.1 0 
1.8 2.4 87.2 19.8 63.2 19.1 63.2 25.8 6.2 0 1.7 0 
0 46.7 15.6 63 63.8 112.3 49 109.4 20.6 6.2 11.6 1.9 

7.6 31.1 104.3 45.8 59.4 62.3 59.6 2 0.2 0 0 0 
0 7.2 55.9 62.7 41.5 96.9 59.3 7.8 15 47 1.2 2.2 

1.8 17 66.9 97 36.2 104.9 7.9 72.3 16 0 0 0 
0 28 52 117 110.1 52.9 73.3 62.6 13.8 0 1.5 2.8 

9.5 9.8 31 89 50 3 98.3 34 30.5 0 2.2 24 
52 77 54 39.1 55.7 76.5 13.6 15 4.4 0.8 0 0 
3.5 44 73.3 36.5 76.5 36 119 62.5 25.3 0 0 9 
0 15.5 62 46.5 86 71 65.5 29.5 0 0.2 0 0 

14.5 64 29.5 51.5 48.5 66 102.5 44 15 21.5 0 0 
16.5 14.3 12.5 41.5 142 28 55.7 18 10.5 6.5 0 0 
9.55 41.14 53.85 56.5 51.97 74.6 70.33 43.43 13.354 7.735 0 2.272 
11.32 35.53 45.08 53.5 71.94 64.71 67.43 38.18 13.051 7.795 0.205 2.123 
11.29 37.12 47.37 54.6 67.97 67.27 68.48 39.75 13.545 8.218 4 4.5 
2.5 28.4 70.3 17 50.1 21.7 127.4 87.3 15.3 0 9.4 1.1 
1.9 27.2 100 17 45 172 67.5 23 2 0 15 0 
53 69 55.5 87 82 111 35.5 68.5 3.5 18 6.5 11 

23.5 27 70 86 75 59 25 19.5 2.5 0.5 0 3.5 
2 15.9 90.5 48.2 87.7 29.8 44.5 13.5 0 0 0 0 
1 42 14.5 53 44.5 123.7 79.3 22.5 25 0 0 0 

5.7 4.5 92.2 58 31.9 110.8 53.8 118.9 21.5 6.5 0 2 
1.2 12.5 42 53.8 91.7 139.5 18 45 9.5 0 0 0 
0.5 55 61 51.5 60.5 38.5 21.5 59 15 0.5 0 4 
11.5 111 118.5 28 15 68.5 3.5 68.5 54 0 0 2.5 

0 10 23.5 36.2 94.2 235 119.5 73.5 13 16 0 5 
15 0 14.5 32.5 13 53 79 2.5 6.5 4.5 0 0 
1.5 49.5 63.5 74 91.5 49.5 60.5 62.5 11.5 0.5 37 9 
8 4.5 72 52.5 46 59.5 30 20.5 0 18.5 13 0 
4 79.3 33.5 27.5 82 18 23.5 4 0 0 0 2 

34.5 38.5 115.5 10.5 25.9 27 13 29.8 8 2 4 51.5 
4.5 48 74 49 14.5 30 125.5 34.5 0 1 1.5 0 
0 20 142.5 25.5 105 72 135.5 38.5 25.5 0 1.5 0 
1 20 72 87 29 48 83 32 11.5 35 0 0 
4 60 40 62.5 93 128.5 22.9 41 13 0 18.5 8 
1 47 8 91 83.5 1.5 52.5 27 1 10.5 0 2 

48.5 56.5 21.5 28.8 64 31.5 149.5 57.5 4 25.5 3.5 0 
13.5 20.5 109 40.5 53.5 17.5 6 7.5 9.2 2 0.5 4 

2 47.5 40.5 18 52.7 11.5 61 48.5 16 0.5 0 21 
0.5 68 33 23 63.5 42 95 64.5 0 0 0 1 
10.5 54 2 80.5 74 121.5 17.5 28 2.5 1 0 30.5 

 


