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The change in the distribution of drops in a cloud
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ABSTRACT. The change in the drop-size spectrum, and the liquid water content has been computed for

different types of distribution eurves, The

rop-size distribution was assumed to follow a Gaussian curve, and the

change in the spectrum was computed numerically from an equation developed by Schumann. It is shown that the
number of large drops in a cloud cannot increase hy coalescence, unless the spectrum has u very large range or a

sharp peak.
1. Introduction

In recent years much work has been done
to study the growth of drops in a cloud by
coalescence. The starting point in much of
the work has been to assume a homogeneous
cloud (a cloud consisting of drops of the same
size), and, then, to inject a comparatively
large drop in it. The rate of growth of the
latter is next computed by a step-by-step
method. This procedure is somewhat un-
realistic because a cloud is seldom homo-
geneous; it consists of drops having all
different sizes. For this reason it was con-
sidered worthwhile to find out in what man-
ner does the drop-size spectrum chenge,
both with respect to time and space, in a
cloud. We begin, however, with the recent
experimental evidence regarding observ-
ed drop-size spectra and liquid water con-
tent of clouds.

2. The observed drop-size spectrum and liquid water

content of clouds

Squires and Gillespie (1952) developed
a technique of measuring the size of cloud
droplets from an aircraft. Their observa-
tions showed that the histogram of cloud
droplets was similar to a Gaussian distri-
bution, particularly in six of the ten slides
shown in their paper. The diameter of drops
observed by them varied from 10 to 60 g,
with a mean value of approximately 30,
and the liquid water content was from 0-2
to 1-6 gm/m® Similar features were also
noticed by Weickmann and Aufm. Kampe

(1953) in another series of experiments using
the impactor technique.

In the subsequent work, therefore, it will
be assumed that the size-distribution of
drops in a cloud is given by a Gaussian
curve, namely,

(n)r = ng. €xp. & (r—7)? (2.1)

where, n(r) dr is the number of drops bet-
ween r and r+dr; and ny, o are constants
depending upon the liquid water content
and the standard deviation of the radius
(6). The mean drop radius is given by
r and n, is the number of drops correspond-
ing to r.

The total liquid water content of the cloud
is obtained by the following equation—

w= % . P-ff’. n(r). dr (2.2)

where N = f n(r) dr is the total number of

drops in the cloud, and p is the density of
water. It thus follows that if the range of
the drop-size spectrum, the standard devia-
tion of the radius and the total number of
drops in a cloud be known, then the liguid
water content can be computed by using the
equations (2-1) and (2-2).

In the present work four different types
of distribution curves were studied. They
are shown in Table 1 with their properties,
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TABLE 1
Standard Mean Total No, Range
Squation of curve deviation radius in per c.c.
af radius in microns
microns
(7 ) \ ()
(a) nlr) = 12 exp. {—H-IE !r—-l-‘r-ﬁ} 15-0 150-0 5-25
(b) n(r) = 30exp. {~—-U-I_Pﬂ (r——[.'nj'-’} 15-0 370-0 5-25
(e) n(r) = 115 cxp.{—-f)-ﬂh‘ (r‘—-ll))’} 25 100 7200 o-15
d) a(r) = 200 exp.d —0002 (r—55)? 15-0 55-0 7500 per litre 10-100
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TABLE 2

Distribution Total No. Liquid
curve of drops water
content

‘_4V) (H‘]
(gm/m?*)

(a) 150 per c.c. 2.2

(b) 370 per c.c. 46

(¢) 720 per e.c. 44

(d) 7300 per litre 50

These curves are shown graphically in
Figs. 1-4. In the last curve the volume con-
sidered was one litre instead of 1 c.c.. other-
wise the number of extremely small or large
drops in the two extremes of the spectrum
would be less than unity. The range of drops
in each case was so chosen that 95 per cent
of the drops were included in the spectrum.
The contribution of drops outside this range
was not considered significant for computing
the liquid water content. The distribution
curves were also chosen in such a way (by
adjusting the constants) that it would be pos-
sible to ascertain the effect of sharp peak and
a narrow range (curve c), a large range and
comparatively few drops (curve d) and a
medium range with low peak value (curves a
and b) on the overall change in the spectrum.

The liquid water content (w) for each of
the above distribution curves was obtained by
evaluating the integral in (2-2) numerically
for different values of 7 spaced at appropriate
intervals, and using Simpson’s rule. The
values obtained are shown in Table 2.

It is thusapparent that the above distribu-
tionsrefer to clouds of high liquid water con-
tent. These values are higher than those re-
ported by Squires and Gillespie (1952) or by
Weickmann and Aufm. Kampe (1953), but
they are not necessarily unrealistic, because
values as high as 5:0 gm/m3 have also been
reported (Lacey 1940).

8. Change in drop-size spectrum with time

To evaluate the rate of change in the drop-
size spectrum with time, we consider the
number of drops of radius between R and

R+-dr. The number of such drops is decreased
by collision with other drops (both larger
and smaller than R); at the same time there
is an increase in the number due to collision
of drops smaller than R, which coalesce to
form bigger drops. Summing up for all the
drops in the spectrum, we get,

o0
d’%iﬂ:—n(R} f ﬂm[ V(R)gV(r)] s E(Ry) x
0

R

w()dr +3 =] Voya¥iry | x
nir)ar 6]‘ l"z[ r]

E(ryr"(r) X n(r') X R3r? x dr’

=—5L+1, (3-1)
where, n(R) is the number of drops between
Rand R-+dr; V(R), V(r), V(r') are the ter-
minal velocities of drops of radius R, r, +" and
E(rys’) is the collection efficiency of a
drop r falling through smaller drops+. By
r and 7' we denote the radii of two small
drops which coalesce to form a drop of
radius R. The relation between r, +' and R is
given by

R = 924 o3 e (3:2)

Equation (3-1) was first given by
Schumann (1940) in a slightly different form,
In its present form the equation gives the
rate of change of n(R) due to large drops
overtaking small ones; fluctuations in the
velocity caused by turbulence are not con-
sidered. Schumann “obtained solutions ‘of
(3-1) for two particular cases: for a constant
collision frequency and, also, for a collision
frequency varying linearly with drop radius.
But, as we can see, there is no simple relation
between the collision frequéncy and the radii
of colliding drops. An attempt wss made,
therefore, to solve the equation by the appro-
ximate method of evaluating the integrals I,
and I, numerically, by Simpson’s rule (vide
Appendix 1). This was dane for different
parts of the spectrum, -

Two simplifying assumptions were made in
the calculations. Firstly, it was assumed that
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the collection efficiency for all drops was
unity. It was realized that this assumption
was not likely to be valid in reality—parti-
cularly for very small drops, or drops of
almost equal size—but it was felt that the
order of magnitude of the final result will
not be altered by this assumption. Secondly,
it was assumed that the terminal velocity
of all drops was given by Stoke's law, i.e.

V(r) =1-3 X 10% X 2 (3-3)

There might be some deviation from Stoke’s
law for the largest drops (of radins 100y)
considered in the last distribution curve
(curve d), but for the others this assumption
is not likely to cause much error.

4, Results obtained

Using the method outlined above, the rate
of change in the drop-size spectrum was
evaluated for different values of the radius
in each of the four distribution curves. The
range of the spectrum in each case was limited
to+ 26 (so as to include 95 per cent of the

DAS

drops). The contribution of drops outside
this range was neglected. The results obtained
are summarised in Table 3.

The above values of da(r)/dt are also
shown graphically in Figs. 5-8. These figures
bring out a number of interesting features:
it is noticed, for instance, that there is a well
defined maximum value of dn(r)/dt, which
generally coincides with the mean radius. Tt
is also noticed that there is a tendency
for broadening of the spectrum in all cases,
and it is only when the spectrum has a sharp
peak or a large range (as in ¢ and d) that we
get positive values of da(r)/df. This is also
to be expected from a priori considerations,
because unless the spectrum has a sharp peak
or a large range, the integral I,, which is
the additive term in (3:1), cannot predo-
minate. This fact is also of some interest in
view of the recent observation of a few large
drops (of radius 100 p) in growing cumuli by
Weickmann and Aufm. Kampe (1953). The
number of such drops, if they exist, can

TABLE 3
Curve r(w) n(r) dn(r)/dt. sec—1
per c.c.

5 1-6 — 0:05x10-°
10 7-3 — 0-60 53
(a) n(r)=12 exp.{-—O-O‘Z (r—-l.'i)‘} 15 12:0 —1-50 ,,
20 7-3 —1-40 ,,
25 1-6 — 010 i
5 4-1 — 0:003 - ,,
10 18-2 — 001
13 280 =780
(b) n(r)=30 oxp.{—O-OE (r—lﬁ]'} 16 30-0 Z10-40
20 18-2 — 070,
23 §-2 — 400,
25 4-1 — 040
5 15-5 — 087 ¥
8 835 — 6-96

10 115-0 — 7:60
() n(r)=115 uxp.{—O-OS (-r—]())'} 11 106-0 550 ::
12 835 4 1107 4
15 155 + 040,
10 1-0 — 001,
40 127-0 —11-50 .

it 200-0 —23-00
(@)* n(r)=200 axp.{—O-OOE (r—55)’} 58 i BX =
85 330 — 4:30
100 1-0 <+ 9:00 FH

*Values of dn(r)/dt for this curve refer to one litre
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increase by coalescence with smaller drops
only if the drop-size spectrum has the
characteristics mentioned above.

From the above values of dn(r)/dt it is also
possible to determine the change in the
spectrum with distance of fall. We have,

dn(r)/ds = 1[/V(r) . dn(r)/dt (4-1)

With the help of (4-1) the change in n(r) was
computed for a fall of 3 km for different
values of 7, but the change was found to be
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very small. It was less than 5 per cent of the
original value of n(r) in all cases, It may be
concluded, therefore, that the drop-size
spectrum is unlikely to change even after the
drops have fallen through considerable dis-
tance.
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APPENDIX 1

To determine /, , we first abtain a set of valuez of
ramd r* from the relution,

firs

for n particular value of r is shown helnw— s = 3 3

We consider the first distribution curve, i.e.,

-+

The values obtained were ax foliows.—

nir) = 12°0 exp.—0+02 (r—15)2 P )
and caleulate dnl(r) 't for B 151, We have, 50 14-8
25 7-0 14-5
- ( ) 9-0 13-8
Tp= w (R). =R (Ve 1 )- E(R,n). 11-0 127
' f t LA 130 10-5
i 14-8 540
n(r). dr Next, we have
Putting E(R,r) =10 o
V(R)~F(r)= L3.(152—r2) . 1%

and a(f) = 12-0
we get after some simplifieation,

25

Ip= 1. 107" f(i.’,s._re).

5
exp. — 002 (r—15)% dr

25

Let f(r) =Xy= f(lﬁ”—rz)r'vp.—-()'ﬁi’ (r—15)%dr

which gives the following values of y for different r—

rip) y

5-0 Yo = 2741
7:0 y = 48%-0
9.0 Vo = T1-5
11-0 g = T7-0
13-0 Yy = BH1-7
15-0 Yo = 0-0
17:0 ¥g = 501
19-0 ity = 100-7
21-0 ¥g = 107-3
230 Yo = 82.9
23-0 Yo = Bi-1

Summation by Simpson's rule gives—
fr) = (y+ dyy + 2y Ly AL
=013

Hence, I, = 1-7x 10-4

I
Iy =1 f.-r r2 ( V‘,.--.Jl’r,) E (rp') . niryon (7).
3

Rt dre’

15

=060 x l(]"f(.l'*,«_.ar'ﬂ) exp.—>0-02 (r-—15)2,
a

exp. —0-02 (r'—15)2, dr’
As before we put,
15
Jirry =Xy :f(:""',—-..lr’:j exp.—0-02 (r—15)2,
&
exp. =002 (r'—15)2 dp

which gives the following values of i for different +*

ri(p) y

a0 Yo = 26-3
70 o= 43-9
-0 Yy = H2-5
11-0 Wy = 27-(
13:0 Mo = 36:4
15-0 Wy = 26-3

Summing up by Simpson’s rule we get,
flrp')=3-7 % 107e
I, = 0-25 x
e ]1 'E'I!

= —1:5 x lo-¢

r'3 Consequently, 10—

so, da(r)dl =




