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1, Definition and the field of turbulence

Inspite of recent striking advance in the
study of turbulent motion in the laboratory
as well as in the atmosphere, considerable
vagueness still appears to exist in the de-
finition of turbulence and our conception of
the real nature of turbulent motion. The
mental picture appears to be far from being
complete. Prandtl (The physics of solids and
fluids, Blackie, p. 277) conceives of turbulent
motion as consisting of some kind of actual
physical movement of small vortices of a
fluid called eddies from one level to another
carrying in the process the original values of
their properties such as heat, mass and mo-
mentum and delivering them to the new level
before finally mixing with the new environ-
ment. This conception of turbulence has
led to the idea of a mixing length analogous to
that of a mean free path in Brownian motion
where discreet molecules move in a somewhat
similar manner colliding against one another
over varving distances in a precess of diffusion,
Brunt (1939) defines turbulence as an irregular
motion which in general makes its appearance

in fluids, gases or liquids when they flow past
solid surfaces or even when the neighbouring
streams of the same fluid flow past or over
one another. Similarly there have been
other attempts at an acceptable definition of
turbulence but it may be said without, per-
haps, undue pessimism that none of the de-
finitions so far advanced can claim to have
represented the nature of turbulence in a clear
and satisfying manner.

But inspite of insufficient knowledge of the
real nature of turbulence we all seem to know
what turbulence means and what role it plays
in the transfer or diffusion of physical pro-
perties such asheat, mass and momentum in
the atmosphere. The almost incessant fluc-
tustions of the natural wind in the form of
gustsand lulls (Fig. 1), the rapid dispersion of
matter such assmoke froma factory chimney
ora locomotive engine, the continuous evapd-
ration and diffusion in space, of water vapour
from liquid surfaces exposed to the atmos-
phereare amply evident of a kind of turbulent
motion in the natural atmosphere

+ Sections 5-9 which form part 1T of the article will be published in a later issue of this Journal -
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Fig. 1. Typical velocity fluctuations on a summer
day in India

Aceeptedly, motion in a turbulent fluid is
highly complex as would he evident from its
effects on phvsical phenomena and not amen-
able to an exact quantitative or mathematical
treatment unless some kind of simplifving
assumption is introduced to take account
of the fluctuations or rvandom motion due to
turbulence.  The approach must, of necessity,
be through statistics. It was Revnolds (1895)
who first showed that an instantaneous velo-
ity in a turbulent fluid may he looked upon
as the result of superimposition of a turbulent
velocity on the mean motion of the fluid. In
other words, if w, v, w he the components of
an instantancous veloeity along the three
rectangular axes x, y, z respectively, Reviolds
assumed that

u=u4u’ 1 v="00"s w—=wiw'

(1)

where 4, , w are the components of the mean

motion and ', ¢, w’ the components of the

turbulent velocity along the same axes.
The field of turbulence in a medium, there-

fore, consists of a mean motion with compo-
nents defined by (mean taken over time 7).

_ 1 r I T
il = f'fn u(fydt; v= ﬁf’f., o (t) di 3

.
=),

and a turbulent veloeity with components

w (1) dt (2)

w'=u ()—i; v'=v (0—7; w'=w(t)—wn

When the turbulent fluid is at rest, a par-

= = ticle which is initially at the origin of a set of
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orthogonal axes (Ozyz) will diffuse in time ¢
to a point (r, y. z) where the values of the
space coordinates are given by the expressions

¢ t
z r:f wix)da 1y :f v (2) da

t
: = w' (=) du

(1}

3)

Reynolds (1883) showed for the first time that
the components of a turbulent velocity are
not quite independent of one another but a
certain measure of correlation obtains bet-
ween them. Three types of correlation coeffi-
cients are used in experimental measurements
on turbulence (Frenkiel 1952) ;

(/) Eulerian time-correlation coefficients
for successive values of the turbulent
veloeity at a fixed point, considered
as a function of an interval of time ;

(i¢) Eulerian space correlation coefficients
for simultaneous values of the turbulent
velocities at two points in the field,
considered as the function of the dis-
tance hetween the two points ; and

(#7) Lagrangian time-correlation coeffi-
cients found when the turbulent
velocity of the same fluid particle is
considered as a function of the time.

2. The turbulent boundary layer and the hydrodynamieal
treatment

The early theories of turbulent motion in
fluids were inspired to a large extent by a
series of beautiful experiments by Reynolds
(1883) on the flow characteristics hy putting
colouring matter in a fluid in motion in a tube,
The observation was that the flow remains
laminar upto a certain eritical value of the
free-stream velocity, beyond which it turns
into the irregular motion of turbulence. The
explanation of this transformation was sought
in terms of the effect of the boundary on the
fluid motion. The flow in contact with the

tube surface is assumed to be hrought to rest
by frictional drag due to viscosity and attain
the free-stream velocity at some distance from
the boundary. The layer of the velocity
gradient begins at the entrance of the tube
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and - gradually thickens downstream the
free-stream velocity being reached at the axis
of the tube, Tts thickness atany distance x
downstream depends upon the type of the
velocity gradient assumed and may be found
by making use of the famous Karman’s
Integral Equation (Karman 1921)

d 1 d
wdy—U — | " ud
= fo uldy—U &= f“ udy

.. v(_?") 1)
p cx oy / y=0

where u is the fluid velocity at a distance y
from the boundary, U the free stream velo-
city, v the thickness of the boundary layer,
and the other terms have their usual mean-
ings, t.e., @p/dr is the pressure gradient
along the x-axis, p the fluid density, and v
the coefficient of kinematic viscosity. If we
assume a velocity distribution (Lamb 1932 2)

(9)

with the boundary conditions u=0, 8%u/oy?=0
fory = 0,4 = U and &u/oy = 0 fory =,
substitution in Eq. (4) with the omission of
ép/éx, gives

N = 4:804y/vz[U

u = Usin (wy/2 )

(6)
Hence the tangential drag on the lamina is
(Pay) y=0 = 0-328 ¢ U24/(v/Ux)

an expression which is almost the same
as the Blasius expression

('Pmy)y-() = 0 3329[72'\/(\;‘)’(]31)

found from theoretical considerations (Blasius
1907).

Reynolds showed that as long as the
dimensionless number U/d/y known as the
Reynolds number, where d is the diameter
of the tube, remained below a certain eritical
value, the flow in the boundary layer was
laminar. The moment the value exceeded
the limit, the laminar bound-ry layer became
turbulent. But close to the surface of the
boundary, a thin laminar sublayer was still
perceptible. Owing to the transfer of mo-
mentum down the velocity gradient and
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resultant mixing, the gradient of the mean
velocity in the turbulent boundary layer is
smaller than that in a laminar boundary layer

Mathematically, the flow in a laminar
boundary layer in the case of an incompress-
ible viscous fluid is given by the famous
Navier-Stokes equation (Lamb 1932 b)

Dy _x 2 2y ™)

Dt P dr
where Du/Dt is acceleration following the
motion of the fluid, X the z-component per
unit mass of the external force, @p/éx the presa
sure gradient along the z-axis, and 72 the
Laplace Operator for

7 n = a*

owt T Gyt ' o)
and two other equations for flow along the
y-and the z-axes, In terms of the viscous
stresses in the fluid, Eq. (7) may be written
Du_ 1 @ﬁx 1 Héf’-";v + O (8)
Dt a \ oz oy o2

whe: o

= Lo ou . - du o .
p:m: o p L o ,.L' » Pry I 87.] I’a__t ]

ow o
) — i ——
Pos 'u( ox T Bz)

w being the coefficient of molecular viscosity.

Slight rearrangement of Fq. (8) gives

w0y ?
e ot ox Pra—pt oy

(P, —pw)+-

0

-

oz

(p.i'z-——t"“w) + p‘X (9)
Now, when the boundary layer becomes
turbulent, the fluid velocity and the stresses
fluctuate but mean values may still be used

for the turbulent boundary layer.
Substituting Eq. (1) in Eq. (9) we get

p f‘)_i't: 3 (p ar — pul —.'DT.'?) 4

ot ox

-Pg(?’ry __ pip— prf’?) +
: (p — P — pfu’F) +

L cX
&z

(10)
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and the equation of continuity gives

ol v w
RS SRR S 0N
or cy o2

Comparing Eq. (10) with Eq. (9) we find
that motion in the turbulent boundarv laver
may be represented by taking into considera-
tiol'] certain additional stresses, known as
Reynolds stresses,

These stresses are

T
T =—pu"° g — gu i
xrr ; Ty
79 e,
T = — ' T =—crw;
vy yz '
T = —ow'?; 7. = —au'w . (11)
22 ¥ 1z !

In streamline flow the viscous stresses due to

molecular agitation in a boundary laver in

the =zz - plane, the flow being along the
T-axis, 18

cu au ,

z T R =Y — (12)

P iz 0z

where p is the coefficient of molecular vis-

cosity and v the coefficient of kinematic
viscosity,

When the flow becomes turbulent. the cor-

responding eddy stress is  given by
_— . B
T =—puw = —puwl _
xrz cz
= oit c i
= — 9 — = — 3
2K % 1 = (13)

where [ is the distance over which the mean
flow velocity fluctuates by «" and is called
the mixing length, Ky the coefficient of ediy
diffusion of momentum (= /') and A the
coefficient of Schmidt’s Austausch or intep-
change of momentum (Schmidt 1925). Thus
a change over from a laminar motion to a

turbulent motion involves replacement of

p by A, and v by Ky.
the values of pand vare practically constant
or vary slightly with temperature and pres-
sure but those of 4 and Ky are far from
being so. Itishere that further progress along
hese lines received a set-back because then
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it was not possible to solve the Navier-Stokes
equation which is now to be written in the
form

D 1 ép

— Ky 720 (14)

=~
-~
b
s

because of the variability of the term K.

The experimental value of v is of the order
of 107! em? sec-!, whereas studies in
diffusion give K varving over a wide range of
10° to 10" em® sec-! (Richardson 1926).
Thus althongh the hydrodynamical approach
failed to solve the problem of turbulent
diffusion it served to reveal for the first time
that the transfer or diffusion of properties in
a turbulent medium is on an enhanced scale.
This result marked a great advance in the
early study of turbulent diffusion.

3. Eddies as diffusing agents—transfer of heat, momen-
tum and matter in the atmosphere

(a) Transfer of heat in the vertical by eddies

Taylor (1915) showed that the net upward
flux of heat by eddies across an isobaric
surface of unit area per unit time is given by

Heat flux, Fyy = —pep Kn (iT + T ) (15)

where ¢, is the specific heat at the isobaric
surface, T the adiabatic lapse rate of tem-
dT/ez  the lapse
rate of temperature, o the density, and
K ; the coefficient of eddy conductivity.

perature, prevailing

The heat transfer equation deduced by him ig

eT @& ¢, (aT .
= 6
A= k(G )} oo

If the varation of K with height be neg-
lected,
aT o7

— = Ky
ot oz

(17)

Relation (15) is important for the atmosphere
becanse it states that in a stable atmosphere
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in which —a7/oz <<T, the net heat flux is
negative, i.e., downward, while in the case of
an unstable atmosphere characterised by 2
lapse rate greater than I', the net flux is
positive, i.e., upward. Sutton (1949) in a
theory of convection near the ground gives
for the upward flux of heat the expression

I By £
(Fn)o (Fr)o o Ot

where (Fu )y is the value of the flux of heat
at the ground.

(18)

From observations made by Johnson and
Heywood(1938) on clear June days at Leafield,
England, Sutton (loc. cit.) computed values
of 8T /état four heights, wiz, 1-2m, 12-4m,
30-5m, and 87 7m and showed that in the
hours around noon, 1030-1330, aT/at is very
nearly constant with height and time. These
enabled him to come to the conclusion that in
the mid-hours of a clear summer day in the
height range 10m to 100m the upward flux
of heat is invariable with height. He also
gave the following “expressions for Ky the
coefficient of eddy conductivity, and{; the
temperature mixing-length :

Ky =

= const. z

4/3
const. Iy

A 135 (19)

Priestley and Swinbank (1947) contends
that Taylor's expression (15) should be
modified to take account of the buoyancy
forces of the eddy at the level of its origin,
They give for Fj; the expression

Fp :—‘PC_U{ o .;r;';(g? + I‘) +&?f”}(2n)

where T is the temperature anomaly at the
level of origin of the eddy.

Eq. (17) for the transfer of heat was
applied by Taylor (loc. cit.) to study some in-
teresting cases of diffusion of heat through the
lower atmosphere. An interesting case
studied was the modification in temperature
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distribution in a current of warm land air
which is advected over a cool sea. If T is
the surface temperature and B the vertical
temperature lapse rate on reaching the coast,
and T'; the sea surface temperature, the tem-
perature at a height 2 at time ¢ after leaving
the coast is given by the error-function

relation :
T =1y o+ T —T{1— 2
: v
2ja/iK gt _ w0
f € dfp.]
0

In arriving at Eq. (21) Taylor assumed that
Ky was invariable with height and that the
maximum height to which the surface tem-
perature change was appreciable could be
traced to z = 4/ 4 Kyt. Analysing the
data of an actual case of advection over the
Great Banks of New Foundland, Taylor
obtained the value of Kj of the order of
103 em? sec-l.  Taylor (loc. cit.) also
studied the vertical diffusion of the diurnal
temperature wave from the earth’s surface
If the variation at the earth’s surface he
represented by the relation

T'=1T,+Asinpt (22)
the solution of Eq. (17) with this boundary
condition gives for the temperature at height z
the relation

(21)

T=1T, ——,qul-.fh’._hsin(pﬁ —bz) (23)
where b= Vp2Ky , 2nd

PR .

B 7.3x1078
By studying the changes in the amplitudes
of the diurnal wave of temperature and the
times of occurrence of the maximum tempera-
ture at different heights along the Eiffel
Tower, Taylor deduced for K;; a value~105
em? sec -1, He also found in the course of
the same investigation that Ky was variable
with height. Tts value fluctuated with the
state of stability of the atmosphere, high
values being found in unstable conditious,

and low values in temperature inversions,




210

Beers (1944) has solved the equation of
heat transfer for the general case where the
surface temperature is known as function of
time on the assumption that the eddy con-
ductivity K is a discontinuous step-function
of elevation. Computations by this method
are compared with the Lindenberg observa-
tions of diurnal variations of temperature
aloft and the agreement is found to be
fairly satisfactory.

Recently, direct experimental measure-
ments have been made of the vertical eddy
flux of heat by Cramer and Record (1953),
and also by Swinbank (1951). In the layer
from 2 to 12 metres, Cramer and Record
obtained eddy velocities from  hot-wire
anemometers and light bivanes mounted at
four intervals. Temperature fluctuations
were measured with fast-response thermo-
couples, mounted at three levels. The ob-
servations were obtained principally over a
rough Jand surface, under varying conditions
of thermal stratification, with one set of
observations for flow coming directly over a
water surface. The flux-data show a maxi-
mum variation from two to four-fold within
the layer. In Table 1 are presented the

INDIAN JOURNAL OF METEOROLOGY AND GEOPHYSICS [Vol. 5 No. 3

values of Fz and Ky computed by Cramer
and Record from their measurements.

Swinbank (loc. cit) has measured the
vertical flux of heat by eddies in the lower
atmosphere by taking a continuous record,
by photographic means, over a five-minute
interval, of the detailed structure of tem-
perature, total wind speed and its vertical
component, of the air passing a fixed point.
Observations made over an open grassland
at two levels (2 and } m above the ground)
give values for the heat flux about 13104
cal em= sec”! and for the eddy conductivity
5 » 10% em?® sec™! in a case of temperature
lapse with height. The corresponding quan-
tities for a case of temperature inversion were
found to be -3-4 x 10-* cal em? sec!
and 265 ¢ 10% cm? sec™! respectively.

(b) Eddy transfer of momentum or vorticity—
the micing-length hypothesis. The varia-
tion of wind with height

To represent the wvertical transfer of
momentum by eddies in a turbulent layer,
Schmidt (1925) deduced the equation

o 0 ou
i (5%

P a (24)

oz

TABLE 1

Measurements of heat fiux, /';; and eddy conduetivity, K "

(Time is BEastern Standard and p—=1-2x ]ﬂ"aglv't‘m“)

10 June 11 June 1952 20 August
1952 1952
z{m) A N r A \ r A a)
1500-1512 0955-1006 1310-1322 1524-1534 2119-2130 1557-1609
Fo (cal em™ sec™ % 107
11-9 0-1 23 1-8 0-4 —0-4 0-2
6-4 0-3 1-0 2-4 0:6 —0-7 01
2-3 2-9 1-6 2.7 14 -2 04
I"\-;”(vm! sec=' x 10°%)
11-9 1-1 42-5 396 81-1 5-5 —1-4%
6-4 1-5 16-9 19-8 13-7 8.0 1-2
2.3 3-8 4-6 6.0 60 2-4 0-8

* The minus sign results from an upward heat flux and a temperature inversicn
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In arriving at this equation Schmidt and
Prandtl introduced the concept of the mis-
chungsweg or the mixing-length. According
to this concept, an eddy which originates at a
level z, and is a part of the mean motion
at that level conserves its momentum in
moving to a new level z and delivers it to the
level z before mixing with new environment.
The distance (z—=z,) is called the mixing-
length and may be said to correspond to the
mean free path of molecular motion.

Taylor using the same concept of the
mischungsweg derived on the assumption of
the conservation of vorticity instead of
momentum the relation

ou &%
a~ K am (25)

On account of inadequate knowledge of the
variation of Ky with height, neither Eq. (24)
nor Eq. (25) when applied to the actual
atmosphere was able to explain the actual
variation of wind with height.

Numerous investigations of fluid motion in
pipes and tunnels have proved that under
conditions of neatral stability, the velocity
profile in the turbulent boundary layer over a
plane surface is given by a logarithmic law
of the type (Brunt 1939)

w 1 z
where u is the velocity at distance z from
the boundary, wu,=4/7/p called the frictional
velocity, 7, the surface value of the hori-
zontal shearing stress, p the fluid density,
zo the roughness parameter, and £k, the
Kdrmén constant.

Prandtl (1932) suggested that Eq. (26)
should be appropriate to the wind velocity
profile in the lowest layers of the atmosphere
under conditions of neutral stability and a
logarithmic relationship between » and 2
has in fact been shown to be satisfactory
under these conditions by Best (1935),
Sverdrup (1936), Paeschke (1937) and others.
Rossby and Montgomery (1935) from measure-
ments of wind gradients over open grasslands
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have shown that the logarithmic law of
variation of wind with height is in good
agreement with observations when the
atmosphere is adiabatic or unstable. It is
to be noted that Eq.(26) is valid for the
lowest layers of the atmosphere where = the
shearing stress is effectively constant. Ex-
periments by Nikuradse (1932) and Dryden
(1936) in smooth tubes and over flat plates
showed that Eq. (26) is only satisfactory for

values of 4/7,/p greater than about 30.

Deacon (1949) assumed for the velocity
gradient a relation

du -p’
7 = az (27)

where @ is a constant, and '<<1, g'=1 or
f'=1 according as the atmospheric condition
is stable, neutral or unstable. Using the
logarithmic relation for u, Eq. (26), in Eq. (27)
Deacon derives a generalised velocity profile

Sl ﬂ(qf—ﬁ')[ (z‘z‘ ) Tl e

for the lowest layers of the atmosphere.

Sutton (1934, 1947 a) has shown that the
mean velocity distribution in the turbulent
boundary layer can be represented equally
satisfactorily by the conjugate power-law
relationship of Schmidt, wiz.,

u(z)ocz™
K(z) 2™ (29)

where m has a fractional value which is 1/7
for a wide range of observations but decreases
to 1/10 when the stability of the flow decreases
with the Reynolds number Re ~ 10° or more
(Kérmén 1921).

Recent experimental measurements by
Cramer and Record (loc. cit) give values of
the horizontal shearing stress, 7, and the eddy
viscosity Ky (see Table 2, taken from Cramer
and Record’s paper). The values of the
Kéarmén constant, k,, found by the same
authors are also included in the same table.

-
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TABLE 2

Measurements of horizontal shearing stress, T+ eddy viscosity A ,, and Karman constant I,

10 June

20 Angust

1952 11 June 1952 1952
z(m) .} = — . —  —— A
1500-1512 0955- 1006 1310-1322 1524- 15334 2119-2130 1557-1609
T (dynes cm?
11-9 0.2 1-7 SR 3.1 16 0-5
6-4 0-5 ]2 2.0 2.3 (18 0-2
3-7 3-7 ol 38 -5 05 0-7
2.3 2.9 2-0 340 30 e 08
Ky fem? sec™® o 109
11-9 1-4 16-% 25:0 53-0 15:0 17-8
G-4 1:6 T4 115 Tt he6 4-4
3-7 7-3 0.3 -5 148 40 7-6
243 3-8 G0 81 8.2 9.4 5.8
llﬂ

11-9 0-1 0:3 03 0-7 0.2 0-8
G4 0-1 0-3 0-3 06 0-2 0-5
3.7 0-3 05 0-5 07 -2 08
2.3 0-3 05 05 0-7 0-2 0-8

Tt will be seen from Table 2 that although
the mean value of kg works out to be approxi-
mately 0-4, its actual variation with height
and stability is rather complicated and covers
a wide range of values.

(¢) Turbulence in agrar itating field— Richayd-
son’s erilerion

Much, if not most. of the preceding work
could be fairly described as a straight-forward
application of the aerodvnamical theory of
the turbulent boundary layer to meteorology.,
The factor which sharply differentiates the
meteorological problem from those of aerody-
namics is undoubtedly the effect of variable
temperature distribution on the nature of the
flow. Inother words, the meteorologist nust
take into account the effects of the gravita-
tional field on the motion of the eddies.
The basic result in the theory of turbulence

in a gravitational field is that due to Richard-
son (1920) who enunciated the eriterion that
the kinetic energy of the eddying motion will
inerease or decrease according as the rate at
which energy is extracted by the Reynolds
stresses exceeds or falls helow that at which
work has to be done by the turbulence against
gravity, From this it is easy to show that
turhbulence will inerease or decrease according

30)

If Ky is assumed to be identical with Ky
(as assumption

for which there is little
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justification), the critical value of the
Richardson criterion
q {eT
1’" (E‘z- f-L
Ri —\i 7aiv2]  (31)

(OGN

In the derivation of his eriterion Richardson
assumed an atmosphere with very little
turbulence (just-no-turbulence), Ths matter
has since heen the subject of intensive
research, chiefly theoreticel. Taylor (1931)
and Goldstein (1931) showed that in the case
of an inviscid incompressible fluid with a
linear velocity profile end a continuous
density distribution, Ri=0-25 but the most
detailed and realistic investigation is that of
Schlichting (1935) on the decay of turbulence
in the boundary layer of a smooth plate.
Schlichting found that Ri varied between
0-041 and 0-¢29, depending upon the inertia
effects of the density distribution, a result
which was later confirmed by Reichardt
(1938) in the Gottirgen hot-cold wind tunnel.
Recently, a detailed investigation of the
mathematical aspects of Richardson’s deriva-
tion has heen made by Calder (1949) who
finds that the inclusion of certain terms,
neglected by Richardson because of his
assumption of ° just-no-turbulence ’ changes
the form of the criterion to Ri=1—3§, where
3=0, but he was unable to give a definite
value of §, except that § must he small if
the initial degree of turbulence is small.

tends to unity.

There have heen several attempts to
determine the value of B¢ in the atmosphere,
Durst (1933) agrees with Richardson in
finding a value Ri=1, but Paeschke (1937)
concludes that the Schlichting Value, Ri=
0-04, is appropriate. Some of the best
evidence is that found by Deacon (1949) who
proposes Ri=0-15 for conditions near ground,
while for the free atmosphere Petterssen
and Swinbank (1947) suggest Ri=0-65.

Recently, Gifford and Mikesell (1953) have
buorght to light a very interesting observa-
tion on the relation hetween atmospheric
turbulerce and stellar scintillation.  Quanti-
tative observatory measurements of stellar
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scintillation have been correlated by these
workers with the observed wind-speeds and
shears at certain levels of the atmosphere
and they find that the scintillation index
which expresses information on both low and
high frequency components, is best related
to the high level wind-speed and shear. In
recent years, the existence of a layer of
high-level turbulence at a height of about
30,000 ft above ground has been confirmed
by a number of workers (Hislop, 1951 ; Wyatt,
1952 ; Arakawa, 1953 and others).

(d) Diffusion of matter in a turbulent medium

Fick’s equation :

IZX_" - _? E &Xe +i K q)f'c
Dt ox Dz gy oy Dy oy
é - gXe
+% ( Kp ) (32)

has been employed in an attempt to repre-
sent the rate of change of concentration of
mass, X, at a point (, , 2) in space, emitted
from various types of ground sources. 1In this
equation, the z-axis is chosen downwind,
the y-axis cross-wind, the z-axis vertical and
K., Kp, Kp. are the components of the
coefficient of eddy diffusion along these axes
respectively. The law of variation of the
diffusion coefficient components along the
axes not being known with any certainty, a
golution of Eq. (32) was tried assuming
Kp,~Kp,~ Kp. = Kp, an assumption for
which there is no physical justification.
Obviously, even with this assumption the
solution showed no agreement with observa-
tion. To fit in with observation further
assumption had to be made that the absolute
value of Kp increased with distance from
the source, or with the scale of the phenomena
This further assumption was mathematically
indefensible and it virtually marked the end
of the approach to the problem along these
lines. As we shall see in the next Section a
statistical theory of turbulence which was put
forward by Taylor (1921) has been applied to
the problem of atmospheric diffusion with
remarkable success and of late there has been
great advance alongtheselines, The classical ,




INDIAN JOURNAL OF METEOROLOGY AND GEOPHYSICS

—

PO

4 6 8 10 I2

8 20
LY/

Fig. 2. Form of Lagrangian correlation curve, I ., as

a function of £. (After Frenkiel 1852)

studies by Taylor (loc. cit), Richardson
(1926), Karmén (1936) and others have been
lately followed by more recent studies of
Kolmogoroff (1941), Onsagar (1943), Weiz-
sieker (1948), Heisenberg (1948), and Bat-
chelor (1947) and others who have devoted
considerable attention to the study of the
structure of isotropic turbulence, To these
recent studies we shall return later in the
paper.
4 The statistical theory of turbulence and the treatment

of diffusion

Taylor (1921) expressed the diffusion of &
group of particles suspended in a medium
with statistically uniform and steady turbu-
lence (u'® independent of locality and time)
by the famous equation

9" j‘T f’ Ry dii
0 0

where X is the distance travelled by a particle
in time T and Ry the correlation coefficient

Xt (33)

between the fluctuating velocities acting on
the same particle at times ¢ and (+&.
Taylor’s theory in effect means that the
diffusion in such a field is completely des-
cribed by a knowledge of the mean eddving
energy u'® and the Lagrangian correlation
coefficient Ry, To investigate the variation
of X® with time, attempts have been made
to express Ry in terms of different functions

of § (Frenkiel 1952). Some of these functions
- are shown in Fig. 2. In these functions of
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Ry, Ly is the Lagrangian scale of turbulence

de llluil by

Th"l"‘ are two cases n which -‘iw standard
deviation does not 1[0];91111 on the shape of the
.!’i'z"l‘u.!'\(‘.

I. When the dispersion time is very small
comparcd to the Lagrangian scale of turbu-
lence Ly, i.e., when 2 < < Lx

X2 = w212 (34)

The outline of the dispersing matter in thie
case 18 a cone,

*3

2. When the dispersion time E is very

large compared to

Ly, ie., when § >-> Ly
b =

XT— 2 Ly T (35)

The outlice of the dispersing matter is a
paraboloid in this case,
Sutton (1932) suggested for Ry the form

Y

(36)

Ry — ( e

where @ is a constant length, @ the mean wind
velocity, and » a real quantity ( O<<n<<l ).

In a later paper, Sutton (1934) proposed the

form
v
R;.— o v 02

where vis the coefficient of kinematic viscosity
and w0’ the vertical component of the eddy
veloeity,

(37)

Using the methods developed by him in 1932
and 1934, Sutton gives the following expres-
siong for the distribution of concentration of
matter such as smolke, gases, and other parti-
culate clonds emitted from continuous poing
and line sources at ground level (z - 0) :

Continuous point source af (0, 0, 0) enmitting Q
grams per second

Q

70,0, e

) 1
s s ==

Xe (2,y,2) =
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Continuous infinite line source along z=0,
z=10), emitling Q grams per second per
centimeire

?

A C, g e
—Z

2
exp {m] } (39)

whereX, (z,y,z) is the concentration of smoke
or gas (g/em®) at the point (z, y, z), % the
mean wind speed assumed constant with
height, and Cy ,C, arethe generalised diffu-
sion coeflicients along the y- and the z-axes
respectively given by the expressions

40 v_-'a 1-n
Liks (1—n) 2—n)a" (a’) (40)

Xe (z,2)=

W (v
G = (1—n) (2-——%)@" (ﬁz) (41)

From the above expressions it is immediately
seen that the principal quantities measured in
diffusion experiments are given by the follow-
ing relations.

Pealk: concentration in the cloud from a conli-
nuous point source al r=y=z=
2Q
Ke)m = Xo (£,0,0) = 0. O

u z2™n

(42)

(Note : The figure 2 is used to take account
of the reflection of the cloud from the ground).

Peal concentration in the cloud from a con-
tinuous infintte crosswind line source at
T=z=0

20

Xe Jm=Xe (&, 0= G ygzmpe (43

Width of the cloud from a continuous point
source

i 2-n)/2
2y =2 (log. 10) Cy z™™ (44)

Height of the cloud (point or line source)

(2-n)/2

]
2'g=(log, 10) C; (45)
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Sutton (1947a) has presented the results
of alarge number of field experiments at
Porton, England, using true gases (chlorine,
phosgene, or sulphur dioxide) or particulate
clouds (screening smokes, dyestuffs, or ar-
senical compounds, generated by sublima-
tion or spraying) and shown that the com-
puted values of concentration as given by the
equations (42) to (45) are in satisfactory
agreement with observations.

Sutton (1947b) has also studied the
problem of diffusion of matter from an elevat-
ed continuous point source such as a factory
chimney and gives for concentration from
such a source the relation

Qexp (-4*/C5a™™")
7Cy Cy u 2%

[exp{ - (z‘ﬁ)zf'C’f P }

+GXP{—(2+?&)’/0§ x“}] (46)

Xe (@, Y, z) =

where 4 is the height of the source, 7.c., the

height of the chimney above the ground
level.

In this paper on airborne pollution from
factory chimneys, the main result derived
by Sutton (loc. cit.), for an atmosphere in
which the wind and eddy diffusivity increase
with height in accordance with the conju-
gate power-law, is contained in the relation

(Xe Jmax o 1/}“4"(2_“) (47)
where (X, )nax is the maximum concentra-
tion at the ground level. Eq. (47) means
that raising the height of the chimney-top is
equivalent to moving the source into a faster
wind with the result of increased dilution of
the cloud at the ground level.

In a recent paper Sutton (1950) has dis-
cussed the dispersion of a stream of hot gas
emitted from a point source in the atmos-
phere. An interesting part of this investi-
gation which conforms more to the actual
conditions in the atmosphere is contained in
his analysis of the dispersion in the presence
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of a horizontal wind. An approximate re:
lation is given for the shape of the plume and
it is shown that the reduction of maximum
concentration at ground level eaused by ad-
ding heat to the effluent from a stack is
directly proportional to the strength of the
heat sonrce and inversely proportional to the
height of the chimney and the cnbe of the
horizontal wind speed.

In the field of smoke-seieening, Sherwood
(1949) has made an important contribu-
tion to the study of geometry of smoke-
screens. He has applied Sutton’s expres-
sions for diffusion to predict the shape and
size of areas screened by smoke emitted from
a single smoke generator as well as from
maltiple generators placed in a crosswind
line under various conditions of atmospherie
stahility.

The relative diffusion of neighbouring

articles has been studied by Richardson
(1926), Richardson and Stommel (1948) and
others, and recently by Brier (1950).
Richardson (lor. cit.) showed in his * Distance-
neighbonr graph ' theory that if [is the pro-
jection of the separation of a pair of marked
particles on a fixed direction and 7(1) is the
number of neighbours per unit of /,

8 -

gm:f X, (2) X (a1)dz  (48)

where X, () is the concentration at the dis-
tance = from a fixed orizin. The equation of

diffusion then becomes
% % Jpa _‘EQ_}
a { O

where F () is a kind of diffusion coefficient’
If 7, is the initial value ol , and [,, its value
at ¢ seconds later,

(19)

_ mean of (l,— ,)? for all pairs
e

Fily) (50)

Observations hy Richardson and Stommel
(loc. cit.) on small objeets floating in water

indicate that

FQ=o0071" (51)
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This is a result of considerable importance
because the reeent statistical theories of
Weizsiicker and Heisenberg predict a similar
law of diffusion.

Brier {1950) studied in detail the relative
diffusion of a set of balloons released in the
atmosphere.  He tcok into account the ini-
tial seyaration of the balloons but the results
of his experiments failed to supply any con-
sistent data on diffusion process in the at-
mosphere,

The problem of evaporation and eddy diffusion
of water vapour

Recently, there has been renewed interest
in the study of evaporation from water sur-
faces and eventual diffusion of the vapour
into space. It is noteworthy that although
most of the workers in this field (Sverdrup
1936, 1937-38, 1946 ; Millar 1937 : Montgo-
mery 1940 : Norris 1948 ; Craig 1949 and
others) agree to give for evaporation from a
smooth sea surface an expression of the type

E = kﬂ?h r;, ou, (‘]5 -9, ) (52)
where %, is Kiundn constant, ¥, the resis-
tonce coefficient referred to a standard level
s within the logarithmic layer, Ty the
evaporation coefficient at level b, p the
density of the air, u, the wind velocity at
the level b, ¢, the saturated specific humi-
dity at the temperature of the sea surface,
and g, the specific humidity at the level b,
there are wide differences in the results found
for evaporation from a hydrodynamically
rough surface. Montgomery (loc. eit.) con-
cludes that the rate of evaporation from a
rough surface is about the same as that from
a smooth surface, Sverdrup (loc. cit.) puts
tlhe rate at twice the value from a smooth
surface. Norris (loc. cit), however, has
shown that the rate of evaporation from a
sea surface roughened by waves is about four
times that to be expected from a hydrody-
namically smooth surface.

Tle problem of diffusion of water vapour
in space, although a matter of great import-
ance has unfortunately failed to receive
as mach attention frem meteorologists as
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that of smoke and other gases and vapoars.
This is particularly so in respect of diffusion
over land surfaces where the wide variability
of land surface condition with respect to type
of soil, moisture content available for evapo-
ration, vegetation ete, has been a discourag-
ing factor. Some measurements of the dis-
* tribution of water vapour in the lower layers
have been made by Rossi (1933), Sverdrup
(1936), Fireash (1940) Ramdas (1943), Best
and others (1952). Swinbank (1951) has
devised a method for continuously recording
the fluctuations in the vertical eddy flux of
water vapour near the Earth’s surface.

The distribution of water vapour over the
sea surface has been measured and studied
by Taylor (1915), Wust (1920, 1937), Ficker
(1936), Jaw (1937), Montgomery (1940),
Sverdrup (1946), Craig (1949) and others. Of
particular interest has been the study of the
vertical diffusion of water vapour from a sea
surface when a relatively warm and dry air
current from the land flows out over a cool
sea. Taylor’s analysis of this problem so
far as temperature and humidity modifica-
tion is concerned was expressed in terms of
an error-function and this has already been
presented in Eq. (21). Recently, Craig
(loc. cit.) has reconsidered this problem of ad-
vection and diffusion in the light of new data
in the first 1000 ft of the atmosphere over
Massachusetts Bay and given expressions for
the proportional change of specific humidity
that would occur in the advected air mass at
different heights and distances off-shore.

A theoretical treatment of the same prob-
lem of diffusion in an advected air mass has
been given (Booker, 1948) in connection
with a study of microwave propagation in
lower atmosphere over the sea. The equa-
tion governing the vertical distribution of
humidity is

d aq aq
Z { Ke) 5 =) %

where K (z) is the coefficient of eddv diffusion
along the z-axis, u(z) the horizontal wind
speed also variable with height, ¢ the specific
hamidity, # the distance off-shore, and = the
height above the sea surface.

(53)
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Fig. 3. Advection of air mass from land to sea :
Specific humidity contours (m=})
(After Booker 1948)

Using the conjugate power-law relation-
ship of Schmidt, mz., Eq. (29), the solution
of lq. (53) is practicable if it is assumed that
g is a function of 2z¢ /(n¥r). Suhstitution
of this assumption in Eq. (53) shows that
this is possible if » = 2m--1, and the fune-
tion turns to be the incomplete Gamma fune-
tion. With the houndary conditions ¢—g,
at =0 and ¢ = ¢, at z = 0, the required
solution is

§—4qs

-=1(2/25, M) (54)
Jo—1s
where
2m+1
m
ECA
- 1 E 2m+-1
I(§, m)= . A
rf m J €. -
2m--1 0
n

and zy= { (K, /uy)m(2m —I—l)a:}, 2m-+4-1

K, and u,;, being the values of K (z) and
u (z) at unit height.

If curves of constant specific humidity are
drawn in a vertical plane containing the wind
direction, a diagram of the type shown in
Tig. 3 is obtained. '

Recently, Gifford (1953) has provided us
with an alignment chart for ready calcula-
tion of atmospheric diffusion quantities of
the type given by Sutton’s equations (38) to
(45).




218

INDIAN JOURNAL OF METEOROLOGY AND GEOPHYSICS [Vol. 5 No. 3

REFERENCES-PART I

Arakawa, H. (1953). Quart J. R. met. Soc., 79, 339,
p. 162,

Batchelor, G. K. (1947). Proc. Camb. Phil. Soc.. 43,
p. 033.

Beers, N. R. (1944), J. Met., 1, p. 78.

Best, A. C. (1935). Geophys, Mem., 65.

Best, A, C., Knighting, E., Pedlow, R. H. and Stor-
month, K. (19532). Geophys. Mem., 89.

Blasius, H. (1907). Grenzschisten in Flussigkeiten mit
kleiner Reibung (Dissertation), Leipzig.

Booker, H. G. (1948). Quart. J. R, mst. Soc., T4,
p. 277.
Brier, G. W. (1950). J, Met,, 7, p. 283.

Brunt, D. (1939). Physical and Dynainical Metearology,
p. 212.

Calder, K. L. (1949). Quar!. J. R. met. Soc.. T5, 323,
p- 7L
Craig, R. A. (1949). J. Mel., 6, 2. p. 123,

Cramer, H. E. and Record, F, A, (1953). JJ. Met,, 10,
3, p. 219,

Deacon, E. L. (1949), Quart J. It. met. Soc,, T5, p. 89,
Dryden, H. L. (1936). N. 4. C. A, Rep.. 562,

Durst, C. 8, (1933). Quart. J. R. met, Soc., 59, p. 131,
Firesah, A, M. (1940), London Univ. Ph.D.
Frenkiel, F. N. (1952). J. Mel., 9, 4, p. 252.
Giﬂ'ord,lgi: Jr. (1953), Bull. Awmer. met. Soc., 34, 3,

Thesis.

P.
Gifford, F. and Mikesell, A, H. (1953). Weather, 8, 7,
p. 195,

Goldstein, 8. (1931). Proc. Roy. Sec. A., 132, p. 524,
Heisenberg, W. (1948), Z. Phys., 124, p. 628,
Hislop, G. 8. (1951). .J. R, aero. Sac., 55, p. 185.
Jaw, J. (1937). Veraff. Meteor. Inst. Berlin, 2, 6,

Johnson, N. K. and Heywood, G.S. P, (1938). Geophys.
Mem., 77.

Kolmogoroff, A.N. (1941). (', B, Aecad. Sei., U.S,
S. R., 30, p. 301.

(1041). [Thid, 32, p. 16,
Lamb, H. (1932 a), Hydrodynamics, p. 686,
(1932 b). Ited., p. 577.
Millar, F. G. (1937). Canad. met. Mem,, 1, 2,

Montgomery, R, B. (1040). Pap. Phys. Occanogr. Met.,
Cambridge (Mass.), 7, 4.

Nikuradse, J. (1932), Forschungsheft 356 des vereins
Deutsch, Ingen.

Norris, R. (1948). Quart. J. R, met. Soc., 74, 319, p. 1.

Onsager, L. (1945), Phys, Rev., 68, p. 286.

Paeschke, W. (1937). Beitr. Phys. frei. Atmos., 24,
p. 163,

Petterssen, S. and Swinbank, W.C. (1947). Quart.
J. R. met, Soc., 73, p. 335,

Prandtl, L., (1932). Beitr. Phys. frei.
Leipzig, 19, p. 188,
(1930), The physics of solids and fluids
(Blacki= & Son Ltd.). p. 277.
Priestlev, C. H. B, and Swinbank,
Proc. Row, Soc. A., 189, p. 543,
Ramdas, L. A. (1943). Ind. met, Dep. Tech, Note, 3.
Reichardt, H. (1938). Naturwiss., 26, p. 404,
Reynolds, O, (1883). Phil, Trans., 174, p. 953.
(1805). IThid., 186, p. 123.
Richardson L. F, (1920), Proc. Roy, Soc. A, 97, p. 354,
(1926). Ihid,, 110, p. 709,
Richardson, L. F, and Stommei, H, (1948). J. Met.,
5, 5, p. 238.
Rossby, C. G. and Montgomery, R. B, (1935). Pup.
Phys, Oceanogr, Met., Cambridge (Mass.), 3, 3.

Schlichting, H. (1935). Z. angew, Math, Mech,, 15,
p. 313,

Schmidt, W. (1925). Der massenaustansch in freier Luft
wnd verwandte Erscheinungen, Hamburg.

Sherwood, T. K. (1949). J. Met., 6, p. 416.
Sutton, 0, G. (1932). Proc, Roy, Soe, A, 135, p. 143,
(1934). Thid., 148, p. 701,
(1947 a). Quart. J. R. met, Soc., T3, p- 257.
(1047 b). Ibid., 78, p. 426.
(1948). Tbid,, T4, p. 13.
(1950), J. Met., T, p. 307,
Sverdrup, H. U, (1936), Geofys. Publ. Oslo, 11, 7.
(1937-38). J. Mar. Res., 1, p. 3.
(1946). J. Met., 3, p. 1.
Swinbank, W, C. (1951), J. Met,, 8, 3, p. 135,
Taylor, G. 1. (1915). Phil. Trans. A, 215, 1.
(1921). Proc. Lond. math. Soc,, 20, p. 196,
(1931), Proc. Roy. Sec. A, 132, p. 409,

Von Ficker, H. (1936). Feroff. Melcor, Inst. Berlin,
1, 4.

Von Karman, Th. (1921). Z. angew. Math. Mech,, 1,
p- 235,

Atmos.,

W. C. (1947).

(1936). J. Aero. Sei., 4, p. 131.

Von Raossi (1933). Soc. Scient, Fennicn, Comm. Phys.
Math., 6, 25.

Von Weizsicker, ¢, F, (1048), Z. Phys., 124, 614,

Wast, (1. (1920). Veroff. Inst, Meeresk. Univ,, Berlin,
6, 66.

(1037). Met. Z., 54, p. 4.
Wyatt, W. H. (1952). Weatherwise, 5, p. 34,




