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5. Recent developments in theories of turbulent motion :

study of isotropic turbulence

The classical treatment of turbulent motion
in a boundary layer was dealt with in Section
9. The current view of turbulent motion is
that it consists of the superposition of a large
number of component motions which differ
from each other in their length scale and the
observed properties of the turbulence are to
be regarded as the statistical result of such
interaction. This conception has led to the
resolution of the velocity field into a series of
Fourier components of the general form
(Batchelor 1952).

X,

V(x)zfA(u)e dx (55)

where V(x) is the (vector) velocity at (vector)
position x, A (x) the vector Fourier coeffi-
cient, x the (vector) wave-number («¢ = 2/
wave-length), » the wave-number space
defined by x = (xl,and the integratio taken
over all x-space.

A (%) e  dx is the contribution to
the wvelocity from the wvolume element
dx of the wave-number space and

represents a sinusoidal velocity distribution
with wave-length 2#/x, which is thus a mea-
sure of the seale of the component motion.

The equation of continuity, 7-V=0, re-
quires

%A (%) =0 (56)

so that the component motions are sinusoidal
waves with velocity parallel to A (x) and
spatial variations of velocity in the direction
of

The square of the Fourier coefficient A (x)
being proportional to the kinetic energy of
the Fourier component with wave-number x
is a measure of the contribution of the com-
ponent to the total kinetic energy of the
turbulence. The Fourier resolution of the
instantaneous velocity field thus provides a
spectral distribution of kinetic energy of
Fourier components of different length
scale.

The velocity distribution represented by the
Navier-Stokes equation, Eq. (7), may now be
examined in terms of Fourier resolution of
the velocity field. Tn vector notation, the
three dimensional Navier-Stokes equation,




the Fulerian correlation co
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The expression for A deduced by him from

dimensional considerations was
—\i
A=A (]‘,,J'.\/[g")

where L s a linear dimension of the turbu-

(62)

lenee-producing deviee, v.e., mesh-size of grid,
or, in uniform flow of the largest eddy, £
is the turbulent energy per unit mass, and
A is a numerical constant of order of unity.
This formula was also found to be consistent
with the decay of turbulence ina wind tunnel,
It will he observed that as B increases A
decreases, ¢.e., smaller and smaller eddies can
be maintained against viscous dissipation
when larger turbulent energy is available to
feed them.

tunnel are a few mm ; in the atmosphere near

Typical values of X in a wiud

the ground, Tavlor (1952) finds values of 2
from 2 em at a height 2 m to 13 em at 30 m
and we may expeet to find much larger values
in the free atmosphere where L probably
increases without corresponding inerease in

E',

6. Kolmogoroff’s similarity hypotheses

The most striking advance in the statistical
theory of turbulence singe 1941 has heen du
to Kolmogorofl' (1941) and Obukhoff (1941).
Later versions of the same ideas with further
developments have been put forward in-
dependently by Onsagar (1945), Weizsicker
(1948) and Heisenberg (1948),

Kolmogoroff’s hasic idea relates to the
similarity or isotropie range of wave-numbers
The Fourier

components in this range owe their excitation

in a field of turbulent motion,

to the inertial transfer of energy from the
small wave-number components of the tur-
hulence, and the intensity of the excitation
clearly depends on the rate at which this

transfer of energy proceeds. In view of the
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fact that all the viscous dissipation oceurs in
the similarity range, the rate of transfer of
energy from the small wave-number compo-
nents of the motion to the components in the
similarity range must equal the rate of dissi-
The details of
dissipation process will also depend on the
value of v,

pation of energy (s, say).

When the Reynolds number of the motion
is increased a step higher, the similarity range
to which the ahove ideas apply widens and
larger and larger wave-numbers come within
When
s0 large that the

the range of the similarity concept.
the Reynolds number is
Fourier coeflicients at one end of the similarity
range are slatistically independent of those
at the other end, the Fourier coeflicients at
the smaller wave-number within the similarity
range will no longer be influenced by viscous
The

statistical flow of energy into any part of this

dissipation and will not depend on .

mertial subrange from sni: ller wave-numbers
is then balarced by an equal outflow to higher
the

with this subrange is ununiquely determined

wave-nui:hers  and motion associated

statistically by the single parameter, .

The above considerations lead us directly

to Kolmogoroft’s two similarity hypotheses:

(1) At

il\'l’l‘&!gl‘

the

properties of the components of

high  Revnolds  numbers,
wave-numbers in the similarity range of

turbulence are determined by g and » only ;

(2) Within the similarity range deseribed
by (1) there is an inertial subrange on the
smaller wave-number side whose average pro

perties are determined by g only.

The similarity hypotheses enable predic-
tions to he made in respect of certain stafis-

tical quantities. For instance, the spectral
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ENERGY £ (k)

WAVE NUMEER

Fig. 4. Diagrammatic representation of energy trans-
fer processes in a steady turbulence spectrum in which
similarity in eddy structure is assumed to exist among
eddies with wave-numbers larger than those represen-
ted by the point A and viscous dissipation is appre-
ciable only in eddies with wave-numbers larger than B

(After Priestley and Sheppard 1952)

T energy input from mean motion (total — & )

—>energy transfer from eddies of smaller to those of
larger wave-numbers

¢ energy dissipated by viscosity (total= € )

density of kinetic energy, E (k) sav, ad
wave-numbers within the similarity range
may be expressed by dimensional arguments
in terms of the relevant parameters € and » in
the form

L () = E* v I (Kyll‘;l'-.‘.i) (6:3)
where F is a function of universal (and wi-
determined) form. The form (63) applies for
values of ky)1/L. Now if n_ be the length-
scale of the smallest existing eddy in the
similarity range, dimensional considerations
enable us to write

b ({5
e = (+%2) (68)
so that relation (63) becomes
E (k) =<' v'F (k7,) (65)

provided xyy1/L and provided the Reynolds
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number is such that the condition

LinmL s 1 =

18 satisfied.

The prediction which is possible to make
about £ (k) when the Reynolds number is

Provided

the Revnolds number is such that the wave

still higher is even more specific.

numbers satisfying the relation, 1/Lge¢l/m,,
can be found, then for these wave-numbers the
expression (63) for E (x) must be independent
of ». The consideration gives for the inertial
subrange the relation,

E(k)=acx * (67)

where o 15 an absolute constant,

The spectrum of turbulence with the process
ol energy transfer at different parts of the
spectrum as visualised in the theory is shown
in Fig. 4.

7. Experimental tests of the similarity hypotheses—

application to the atmosphere

[nspite of difficulties of attaining large wave
numbers (k31/L) in a wind tunnel without
wnduly inereasing the size of the grid dimen-
sions and  the stream velocity, sufficient
experiniental evidence has been accumulated
whicl show the essential correctness of the
predictions made from the similarity theory.
The prediction that the motion associated
with the similarity range of wave-numbers is
always stafistically isotropic hag been tested
by many workers (Townsend 1948 ; Corrsin
1949 : Laufer 1950). Laufer studied the
turbulent flow produced by a pressure gradient
in the space hetween two parallel planes, and
by making experimental Fourier analyses of
tle
velocity recorded at a fixed point in the
chanunel, was able to compare the values of

variations of two components of the

.B] (.‘i‘) !')'11: (n’() FNHI !)’1 [IC) B:! ~$[,l('} 'f‘(_”' \-'al‘inus
values of x. Here B (x) is the Wourier co-
efficient concerned and the suftixes 1 and 2
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denote comiponents parallel to the mean
flow and perpendicular to the planes respec-
tively. When the Fourier coefficient B(«x)
becomes statistically isotropic there is no
correlation between B, (k) and B, («) and
experimental values show that there is in fact
a trend towards this state as x increased.

. Stewart and Townsend (1951) has tested
Eq. (65) by measuring the one-dimensional
spectrum ¢ («) (obtained by Fourier analysis
of the temporal variation of velocity at a
fixed point) in grid turbulence. The results
for various positions downstream from the
grid and for various Reynolds numbers show
that the curves of ¢ (x)/e v corresponding
to different Reynolds numbers conie towards
coincidence as x increases, as they should
according to Eq. (65).

A third test is provided by measurements
of dimensionless ratios of quantities which are
determined by the similarity range of wave-
numbers. One such ratio is

(&) (@) (@] e

where v, and z; are parallel velocity and
position components.

Being dimensi onless and uniquely determin-
ed by ¢ and » in the similarity range, the value
of the ratio must be a universal constant.
Measurements of the ratio in isotropic tur-
bulence and in turbulence behind a cylinder
by Batchelor and Townsend (1949) have
shown that there is a definite trend for this
ratio to attain a constant value of 4-5 at
large Reynolds numbers which will satisfy
the condition embodied in relation (66).
Stewart and Townsend (1951) have recently
shown that for the Reynolds numbers attain-
-, able by them in a wind tunnel (C, 1000) simi-
larity obtains when the wave number k>06
(¢/#%)} Ji.e., well within the viscous dissipa-
tion range. They also infer that an inertia)
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sub-range (k<<0-1 (a[ra)*) will exist only
when the Reynolds number for the viscosity
controlled eddies, ?xE‘*/r >1000. This con-
dition is likely to be satisfied in most cases
of atmospheric turbulence so that both the
Kolmogoroff hypotheses may be inferred to
have meteorological application.

Batchelor (1950) has discussed those conse-
quences of similarity hypotheses which may
have possible application to problems of
atmospheric diffusion. In the atmosphere
the range of eddy sizes that can exist is very
wide and Batchelor concludes that as the size
of the viscosity-controlled eddy given by
(»*/e)t is very small, the inertial subrange
of eddy-sizes must be very large in the atmos-
phere. Using a value of 5 cm?® sec3 for e
calculated by Brunt (1926) for the lowest 10
km of the atmosphere and taking »=0-15
in the lower layers of the atmosphere the

value of (w"je)* works out to be of the order

of 10! ¢m. Thus the range of eddy-sizes
over which the second of Kolmogorofl’s
hypotheses is applicable is very large, iudeed.
Batchelor (loc. cit) has, however, shown that
the similarity hypotheses are inapplicable
to diffusion from fixed sources. It is only
the process of diffusion of a discrete cloud
which move with the fluid to which the
similarity hypotheses would apply because
the spread here is dependent on the velocity
differences. He deduces expression for the
rate of change of mean-square separation of
particles, the problem which Richardson
had earlier dealt with but now with the
proviso that the initial separation and time
of diffusion were not too large to make the
similarity hypotheses inapplicable. Suppose
a large number of pairs of particles with
initial separation [/, to be released, then the
mean square separation of the pairs E at
time ¢ after release, always in the inertial
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subrange, 18 given by dimensional considera-

tion in terms of [,. =, and 7/ by the relation

[2—12 gl
:lu.:l
=a () ot
—_— r'__, = { :,) (3

f by -
;’-_ f—‘})r’- (7))

where ¢; and ¢, are constants of o
Charnock (1951) has tested Eq. (69) s

WO =smese

examining the relative scatter of
puffs in the free air reported by Durst (1948
for [u between 40 m and 800 ny and ¢ Letween
100 gec and 50 sec.  The resuits

were not

conclusive but there was some evidence in

favour of the validity of Eq. (649) in winds of

less thau Hm sec for which z was hetween -2

and 09 ergs g~!sec~!.  The minimuui value
3 1

of 1§ /e* in Charnock’s analysis  was 800
see, i.e., well above the values of ¢ used in t],e

analysis,

Eq. (70), for large 4, may he written in
the differential form

drz } %

- = 3(cyc) 2 (71)
i e, €) Lel)

If this be treated as the Fickian equation for
the spread of a set of particles about their

meaill ]blihili“l] I.h!'ll the l-<~|rn-.~|n-|..iin;_» o=

1 ¥ is

efficient of diffusion & = } 3
i

koo ot [F (72)

where ! is the scale of the diffusion process,

Thig 4/ 3-power velation is the same as that

derived recently by Heisenberg by an entirely
independent method and found by Richardson

over a very wide range of 1, much wider

in fact than would b expected from the
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similarity hypotheses and our present ideas

ahout tl

e 1sotropy of atmospheric turbulence,

Moreover, the wvalues of the numerical

Helents withe ~ 1 ere g - sec -1,

thont ’!\"

are
same in the two cases,

8. Weizsacker- Heisenberg theory of turbulent energy
transfer

.

Welzsiicker (1948) has advanced a workable
h\'FuH}u-‘is f'tl]' I]It‘ lll'lu'vr-_-vk =~|. Tl'alur-[‘l'!‘ (lf.
energy from one part of the energy spectrum
to another, He considers the CHergY. g4,
lost by the Fourier components of wave-
numbers of magnitude  smaller  tha Kp
(=ee Fig, 4), Of this elergy, a part i.~xli.~.-'1',nm-|l
by molecular viscosity whereas the remainder
1= transferred to the Fourier components of
wave-numbers larger than x,. Weizsiicker's
main idea is that the energy that is handed over
by inertia across xpto larger wave-numbers
may be taken tohave been completely lost
by viscous dissipation in the wave-number
range, x, to ww. The action of these com-
ponents with wave-numbers larger than «,
may, therefore, be taken into account by
mtroducing the concept of a coefficient of
eddy  transfer or eddy
which Weizsiicker gave the form

viscosity, N, to

7 1

Ny=c J [E(x")/«"] dic" (73)
Kp

on dimensional grounds, where ¢ is a constant,

atd £(«x) is the spectral density (with respect

to wave-nunthber magnitude) of energy.

On Weizsiicker’s hypothesis, the equation
for the variation of the S}'N_‘(_'t[':l[ <|~'-l':.\if_\'n|'

cuergy may be written

i
¢ e ' )
B(k,)— T J ; B (k) de'= 2 (N o)

K

1]

(7 1)
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where B (x;) is the rate of supply of energy
to Fourier components with wave-numbers
magnitudes smaller than «, from the bound-

aries or any external source,

Or, substituting the value of N, from (73),
the equation (74) becomes
8 e,

- E (k') de’
7t . (") di

B("‘r)

a0

=9 { e f"pIE (x")frc"a}(?x”} X

K
f P kE (') dx'
0

Eq. (75) now contains £ alone as a function of
« and ¢, and can be solved if B(x,) is known.

For values of k, so large that

K
»
f E («') d«’
J o

approximates to the total energy, and Bl«;)

(75)

approximates to the total rate of supply
of energy, we can write the left-hand side of
Eq. (75) as the rate of dissipatione and the

corresponding solution is

. 8e\¢ 8% B

A result of great interest is derived from
Eq. (73) if the expression for E(«) for the
inertial subrange, viz., Bq. (67), is substi-
The

substitution gives the relation

(76)

tuted in this equation. result of this

P
Nyoc e s??

(17)

which may now bhe compared with the re-
lation (51) found by Richardson, end also
with Eq. (72) assumed to hold good for the
similarity range. TFurther, the integral in
Eq. (73) may be called the mixing-length,
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no longer a constant in a given position but
increasing with increase in scale of the

transfer processes concerned.

9. Conclusion

In concluding this bhriel survey of the
development of the subject of turbulence
from early times to the present day, we
have toadmit in all humility the fact that
notwithstanding considerable progress in
our study of the true nature of turbulent
motion and its cffect on phyveical pheno-
mena, perhaps, along correct lines, much
We have vet to find
the detailed structure of turbulence in the
the lergth-

very wide one. From the

remains to be done,

atmosphere  where range of

scale is a size

of a big vortex in the general circulation of

the atmosphere, viz., a eyelone or & Berard

cell, to a size which will extend far into

the similarity range of turbulence we have
-

I'o date

we have devoted attention to the study of

an immensely wide length-scale,

the structure of turbulence at the two ex-
tremes of the spectrum only ; vast regions
Of the

we have as

m between lie unexplored. inter-

mediate scales of turbulence
vet little or

we do in a speetrum of turbulence and the

no lknowledge. Believing as

presence of a vast range of intermediate sizes
of eddies, we have to admit that we have vet
to g6 a long way before we can say thauall
that is to be known about turbulent motion
that

interest in the subject gives

has heen known, There is no doubt
the present
great hope for the future and we may hope
to see further progress along right lines not
only behind the closed walls of the laho-
retory but also in the realm of the actual
atmosphere where nature unfurls the whole
the

challenge to man’s power of perception and

range of turbulence spectrum as a

understanding.
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MEMOIRS OF THE INDIA METEOROLOGICAL DEPARTMENT
Vor. XXX Parr IT
Hydrometeorology of Mayurakshi (‘atchment

hy
S. K. Pramanil: and K.N. Rao

(pp- 99, diagrams 3)

The above mentioned memoir has recently heen issued and is priced st Rs, 3-14-0 or 6 sh. 3d. Copies are
available for sale with the Manager of Publieations, Civil Lines, Dolhi.

In view of the large river valley projects undertaken by the Government of India, the need for detailed
hydrometerological studies in the various river catchments has assumed considerable importance, The authors
have recently carried out hydrometeorological studies of the Mahanadi (1951), Koyna (1952) and Damodar
(1952) catchments. In this paper a similar detailed study of the hydrometeorology of the Mayurakshi Catchment
has been carried out. The catchment is just above that of the Damodar and has an area of about 720 sq. miles
up to the Massenjor Dam site.

The main resulta of the analysis which are based on data for the period 1801 to 1950 are given below:—

The mean rainfall of the catchment for June to October is 467 and for the vear 52", On an average, about 87
per cent of the annual rainfall of the catchment occurs during the period June to October. The variability of
rainfall for the monsoon period as a whole is 19 per cent.  The distribution of June to October rainfall is normal.
There has been no significant change in the June to October rainfall of catchment since 1891 and there is no
trend or periodicity in the rainfall. Frequency distributions of daily rainfall and of two to seven consecutive days
have been prepared. The highest recorded rainfall is 87 in one day, 12%in 3 days and 15" in 5 days. The maxi-
mum rainfall which may oceur in the catchment is 11-5" in one day. 19" in three days and 22” in five daya.

Daily, monthly, seasonal and annual rainfull in the Domodar and Mayurakshi catehments are significantly
and highly correlated. 1t is also found that the monthly value of discharge of the river at Massenjor is aigni[i(-nntl-\‘
correlated with the rainfall in the catchment, :




