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सार — इस शोध पत्र मɅ हमने उƣरी और मÚय टीएन-शान के ऊपर ऊपरी क्षोभ मंडल/िनàन समताप मंडल 
(UTLS) मɅ उपग्रह िरमोट सɅिसगं से प्राƯ िकए गए èथािनक-कािलक तापमान मɅ हुए पिरवतर्नɉ का िवƲेषण िकया है 
िजनकी तुलना (1992 से 2015 तक) भूकंपीय गितिविध से की गई है। तापमान समय Įृंखला मɅ इन असंगत पिरवतर्नɉ 
को पूवर्-भूकंपीय संकेतकɉ के Ǿप मɅ उपयोग िकया गया था। असंगत िभÛनता मापदंडɉ की गणना क्षोभमंडलीय सीमा द्वारा 
अलग िकए गए UTLS समदाबी èतरɉ पर आयाम और कम समय के तापमान िविवधताओं के चरणɉ के िलए की जाती 
है। पिरणाम बताते हɇ िक UTLS के के्षत्र मɅ èथािनक संरचना और तापमान िवसंगितयɉ की गितशीलता का भूकंपीय 
गितिविध के साथ पयार्Ư èथाई संबंध होता है। हमने Mï5.0 के पिरमाण के 12 शिक्तशाली भूकंपɉ के आधार पर èथािनक 
और समय पिरवतर्नशीलता मɅ हुई तापमान िवसंगित का आकलन िकया है। मुख्य भूकंपीय घटना के लगभग 3 से 72 
घंटे पहले के सभी मामलɉ मɅ तापमान िवसंगितयां देखी गई हɇ। 

 
ABSTRACT. In this paper we analyzed spatial-temporal temperature changes in the upper troposphere/lower 

stratosphere (UTLS) above the Northern and Central Tien-Shan detected by satellite remote sensing which have been 
compared against seismic activity in (1992-2015). These anomalous changes in temperature time series were used as pre-
seismic indicators. Anomalous variation parameters were calculated accounting for amplitude and phase of short-time 
temperature variations at UTLS isobaric levels separated by the tropopause. The results show that the spatial structure 
and dynamics of temperature anomalies in the area of UTLS have a sufficiently stable relation to seismic activity. We 
estimated the spatial and time variability of anomalous temperature perturbations on the basis of 12 strongest earthquakes 
with magnitudes Mï5.0. The temperature anomalies were observed in all considered cases from ~3 to 72 hours before the 
main seismic event. 

 

Key words  –  Earthquake, Satellite data, Upper troposphere, Lower stratosphere, Temperature anomalies, 
Tropopause. 

 
1.  Introduction 
 

Study of strong earthquakes impacting the 
atmospheric parameters have a long history with active 
period during the last decades due to substantial progress 
in the development and improvement of satellite 
technologies, as well as accessibility of a great number of 
dedicated services and databases (Tronin, 2010; Pulinets 
et al., 2014; Prakash and Srivastava, 2015; Yadav and 
Pathak, 2018; Jiao et al., 2018; Ouzounov et al., 2019). 
 

Temperature measurements are of great importance 
for studying the atmospheric effects of earthquakes. It is 
the key parameter, which defines dynamic processes and 
structural changes of atmosphere. The atmospheric 
thermal stratification has a strongly pronounced layered 
(by the rate of temperature change or gradient )             
nature. The tropopause inversion layer (TIL) separating 

the convectively mixed troposphere (0) from the more 
stable and stratified stratosphere (usually >0) is 
characterized by great dynamic variability and sensitivity 
to various perturbations and atmospheric wave activity 
(Pilch et al., 2017). Circulation processes of planetary and 
synoptic scale, primarily related to cyclone and 
anticyclone passing (Randel et al., 2007), change in the 
solar activity and stratospheric ozone content (Morozova 
et al., 2017), radiation processes and mass exchange 
between the troposphere and the stratosphere (Birner, 
2006; Manney et al., 2017) play an important role in 
UTLS temperature variations modulations. In addition, 
retrospective analysis of satellite during the catastrophic 
earthquake in Fukushima, Japan, in 2011 showed that the 
strongest negative correlation between temperature 
changes at isobaric levels separated by the tropopause 
coincided with a period of high seismic activity (Kashkin 
et al., 2012; Kashkin, 2013). 
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TABLE 1 
 

Earthquakes parameters (M≥ 5.0) 
 

No. Date Time Latitude (°N) Longitude (°E) Depth (km) M N 

EQ01 19 Aug 1992 02:04:36 42.07 73.63 20.0 7.4 89 

EQ02 16 Jan 2004 09:06:18 42.55 75.30 14.0 6.0 14 

EQ03 25 Dec 2006 20:00:58 42.11 76.03 0.8 6.7 20 

EQ04 08 Jan 2007 17:21:49 39.80 70.31 16.0 6.0 2 

EQ05 05 Oct 2008 15:52:42 39.53 73.82 27.4 6.7 11 

EQ06 19 Jan 2010 17:35:45 42.09 72.09 0.6 5.0 3 

EQ07 18 Mar 2011 09:36:27 43.02 74.95 17.1 5.0 2 

EQ08 05 Feb 2012 07:10:15 41.40 74.76 10.0 5.6 5 

EQ09 11 Mar 2013 03:01:37 40.12 77.47 10.0 5.4 2 

EQ10 14 Nov 2014 01:24:16 42.19 77.23 10.1 5.2 1 

EQ11 17 Nov 2015 17:29:37 40.43 73.19 3.1 5.6 7 

EQ12 07 Dec 2015 08:30:57 41.73 74.61 15.9 5.5 3 

 M - magnitude;  N - number of seismic events (M>2.0) during the specified 24 hours 

 
 
However, complex interaction of different-scale 

processes in UTLS makes it difficult to study the 
atmospheric response to seismic activity and requires new 
methods for the processing of experimental data. RST 
(Robust Satellite Techniques) method was widely applied 
to detect and localize deviations of parameters from their 
typical behavior (Tramutoli et al., 2001; Pergola et al., 
2010; Zhang and Meng, 2019; Tramutoli et al., 2019). 
Basic principles of RST method combined with spectral 
and correlation analysis provide the basis of our 
algorithm, which, in contrast to conventional methods, is 
supplemented by a special module for the detection of 
short-time anomalies in temperature time series. The 
retrospective analysis of satellite data using the algorithm 
shows correlation between seismic activity and anomalous 
temperature variations in UTLS preceding strong seismic 
events of M>6.0 in the territory of European countries 
(Sverdlik and Imashev, 2018) and in various Asian 
regions (Sverdlik et al., 2019; Kashkin et al., 2020). This 
can indicate a probable relation between strong 
earthquakes and the observed temperature variations in 
UTLS. 

 
In this paper we present a modified version of the 

previously developed (Sverdlik and Imashev, 2019) 
algorithm, which allows the detection of short-time 
anomalous variations in the spatial-temporal distribution 
of temperature. To evaluate our algorithm, we applied it to 
the analysis of atmospheric effects of earthquakes with 
magnitude of M≥5.0, registered in the territory of 
Kyrgyzstan and near its boundaries. 

2. Initial seismic and satellite data 
 
To study temperature variability in pre-seismic, co-

seismic and post-seismic periods we chose 12 earthquakes 
with magnitudes from 5.0 to 7.4, which took place in 
Kyrgyzstan and nearby territories in 1992-2015. The main 
characteristics of seismic events in the Northern and 
Central Tien-Shan presented in the Table 1. We used data 
from Institute Seismology of Kyrgyzstan and KNET 
seismology network of Research Station of the Russian 
Academy of Sciences in Bishkek. Magnitude estimation 
for the earthquakes is performed according to the 
following formula : M= [lg(E)4.8] /1.5 (E  seismic 
wave energy in joules). To obtain data for the seismic 
events outside of KNET network we used online version 
of the USGS global catalog (https://earthquake.usgs.gov/ 
earthquakes/search/). Locations of the earthquake 
epicenters are presented in Fig. 1. To assess the sensitivity 
of the developed algorithm we also analyzed seismic 
events with magnitudes 4.0<M<5.0. The epicenters of 
these 58 events are also presented in the map. 
 

To study pre-seismic atmospheric perturbations we 
used temperature data from the MERRA-2 reanalysis 
system [https://disc.gsfc.nasa.gov/datasets]. Comparison 
of reanalysis satellite data of MERRA-2 with remote 
sensing data demonstrated good consistency and quality in 
spatial structure and UTLS dynamics reconstruction 
(Manney et al., 2017). This interactive service provides 
open access to M2I3NPASM Version V5.12.4 data files in 
the net CDF format. The data represent arrays of
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Fig. 1. Earthquake epicenters with magnitudes M ≥ 5.0 (presented in the Table) and 4.0< M < 5.0 

 
 
 
synthesized temperature values for each atmospheric level 
(ASM data type). As an input data for the algorithms, we 
used atmospheric temperature values at standard isobaric 
levels from 450 to 70 hPa. The area of interest was            
37 - 46° N and 65 - 85° E with the size of the grid               
0.5° × 0.625°. Resolution of temperature time series T(t) 
was t = 3h, providing a sufficiently good detailing of the 
anomaly formation process. 
 
3. Description of satellite data processing algorithm 

 
Establishing the relation between dynamics of 

processes in the atmosphere and the lithosphere was based 
on the assumption that variations of parameters caused by 
seismic activity differ significantly from background 
fluctuations that occur during the periods without strong 
earthquakes. This implies the necessity to identify pre-
seismic indicators of abnormal behavior in time series of 
temperature data. For this purpose, we used integral 
indexes, which were calculated with regard to variations 
in temperature amplitude and phase at UTLS levels 
separated by the tropopause (Sverdlik et al., 2019). The 
new algorithm make it possible to determine not only 
temporal, but also spatial distribution of short-time 
anomalies in temperature; it includes the following stages: 
 

3.1. Preprocessing satellite data 
 
At the first stage, we performed a preliminary 

processing of satellite data fragments. We prepared time 
series of T(t) with resolution of t = 3h, containing 
temperature values for atmospheric levels (pk) from 450 to 
70 hPa for each seismic event. Length of the analyzed 

series was 90 days (45 days before and after the 
earthquake date). 

 
3.2. Spectral analysis of atmospheric temperature 

time series 
 
Temperature variations observed in UTLS have 

components with varying periodicity and amplitude. We 
used continuous wavelet transform to identify the 
stationary and non-stationary components in our data. The 
linear trend and low frequency periodic (seasonal) 
constituents were excluded from the initial time series. 

 
3.3.  Filtration of short-time temperature variations 

 
 To retrieve short-time variations we applied 
nonlinear filtering based on discrete wavelet transform, 
which has several advantages comparing to moving 
average or high-order polynomials (Donoho and 
Johnstone, 1994; Gadre et al., 2014). We consider 
anomalous changein quasiperiodic components with the 
period of 4-6 days as the main features characterizing 
atmospheric temperature prior to strong earthquakes 
(Sanchez-Dulcet et al., 2015; Sverdlik et al., 2019). 
 

3.4.  Calculation of atmospheric temperature 
anomalies 

 
We converted short-time temperature variations at 

each isobaric level to dimensionless quantity. For this 
purpose, we retrieve dynamics of temperature anomalies 
(ΘТ) as deviation of the current temperature value from the 
average  monthly level, normalized to standard deviation :
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