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Energetic consistency of truncated models
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ABSTRACT. Eaergetic consistency of truncated NWP models is oxamined. Itisshownthatintheso-called ‘ener—
gotically consistent’ models, there are fictitious cancellations of vertical divergences of energy fluxes at each level and
hence the vertical coupling of energy in these models ie rather defective.

1. After the classical work of Lorenz (1960),
it is well-established in the field of meteorology + 08+ Dy + LD, + 7 ( Wy 33—’;: )+
that certain terms or groups of terms in the vor-
ticity and divergence equations should either be U e _ 0 3)
retained or dropped together to achieve “‘ener- ) ap

getic consistency”’. This has led to an hierarchy j

of models beginning with complete vorticity and Following Lorenz (1960), we have used subsoript 1
divergence equation model and ending with quasi- to md"_’at"? a physical property and subscripts 2 and
geostrophic model. By integration over closed 3 to indicate quantities derived from stream-
horizontal surface, we show that the energetic function ¢, and velocity potential y, respectively.
consistency of the various truncated models is of ; o

more restricted type than would appear from the  We multiply each term of the vorticity equa-
form which it takes for the atmospheric mass as tion by — ¢, and each term of divergence equation
a whole. In general, these truncated models create DY — X;and integrate over the earth’s closed hori-
fictitious cancellations of vertical divergences of zontal "P_hﬁ‘f“""l ) mrface.' We do not perform
energy fluxes at each level and hence vertical vertical integration and in this respect deviate
coupling of energy in these truncated models is from the analysis of Lorenz (1960). We freely use

somewhat defective. the property that divergence of a horizontal vector
and horizontal Jacobian of two scalers vanish

2. Equation of quasi-static frictionless hori- when integrated over closed horizontal surface.

zontal motion is— The terms which result after some simple mani-
dv ulations are shown in Table 1. We use the
- XV V=0 3 BE-bve g
By performing /. and k .\/y operations on this - WV = .
equation, we get the well-known divergence and ky= ’2 i h= 82 5 V=YV,
vorticity equations —
D. D 3. We now have from vorticity and divergence
35‘_3 + Vo VD; + V3. VD, + oy ae,—;‘i"pa"i‘ equations respectively,
aky
+ 27 (V) + 27 (v) + 27 (o) + ﬁ gt TV +
v, aky v, o
2oyl 1B+ B+ Vg T2 + ..,,( v, o ) Lds =0
+ Vs £2 + V3, = 0 @) §' | Vi Vet an (o + W )+
?'zf—i+v,,.vq:ﬁ-‘va.v;:._.h.,3 %H»H +v-v(v,.v,+k,+ka+¢;)}ds=0
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TABLE 1
-ix}rmvtncame EGds - fsy) tVORTICITY EGYds SERIAL TOTAL CONTRIBUTION ©F GROUP
DIVERGENCE EGUATION VORTICITY EQUATION NUMBER|  aFTER WTEGRATION CvER
TEEM OF CCIMTRWRJTIQN TEAM OF CONTRIBUTION GROUP ["CLOSED WORIZONTAL| ENTIRE Mass |
DIVERGENCE EQ To X VORTICITY EO 7o & SURFACE loF_aTMOSPwERE
30, K X3 ak wk 1
e e % I i [ESdurhaits || Gk,
LV Ve, o = * 5
wp o
up o 3 o o
V; 9D, Xy08-2vuk, ,uuk,-..,,!%;uas
Di B D’l .
EJW";.“]) :;;.Uk, & s o
R )
¥, 70, S LKA o $lvvivvy
210w, upeadivg 40| 2V. 9 1% ¥y ru.;,.i%’) v 20 s |7 tednvgle &
2¥ | A
ey :—:." w5 éi {300, varhde
i WWVE, Y‘EJOS‘i!Fiva i“.\)k"‘-’l%“ ds
€.0 - E.D
2y [vOks BRI [ e, ; el 6 oR o
T3p T 2733
_'J'r:,vg—;' ﬂ“"’%’?‘j’:;—; ‘}s-giw,k,;ds
u %y, P v -hyp A
tE, Wy B-f U0, | F0, TP f VY, 0%, 3 g
o, s 8 |gvosds %w. 1)
‘7.|_- \',FV‘__( 717 _VIF ﬂ,.f T é.vl-':_f fv F dm
From combination of these two energy equa- he P . 2 dM
tions, we get— WERES 1= ¢ 9
. M
[ 42 @t 3
( F“ ("z+ 3+v2.V3)— ”_E (vz-va)‘i‘
J 2 L= §C M
8
M
+v. wl} ds= 0
V,?
K, = § = dM
i -
NOW: § Vﬂ. v:] ds — (J’) J (¢2’ 3(3) ds == 0 o
8 8
x . v32
3 f il T Y am
. _"T vg. vs ds = 0
at M
8
: : kytky 4V, Vo) V.V Lds—0 Ve
.. rﬁ(a 371 V. V3 VP = K = —‘)--rtM
8 M

(B

This is the dynamically consistent energy equ-
ation which we should expect straight from the
equation of motion (1) after its dot-muliplica-
tion by V. It can be shown that if we further in-
tegrate Eq. (4) with respect to p in the vertical
and use thermodynamic equation, we shall get
for adiabatic frictionless flow :

; i v
e, (I ('}E —2" + VV&I) ds =0

]

_:'t(Pl‘FI:"}‘Ka"“Ka) =0 (5)

M being the mass of total atmosphere as a
whole.

If energy equation (4) is satisfied in each plane,
then it can be shown that energy equation (5)
18 necessarily satisfied over the atmospheric mass
as a whole. But the converse is not true. What
the truncated models do is to satisfy (5) with omi-
ssion of K;, while they satisfy (4) in more res-
tricted forms. For.example, (3,3) terms in diver-

gence equation yield 8%(&3 ky): (2,3) terms of
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divergence equation and (3,3) terms of vorticity

L
} j‘ 2
(2,2) terms in divergence equation and (2,3) terms
in vorticity equation together yield 9/ép (w, k,).
Now the vertical divergence of these vertical energy
flux terms need not vanish at each horizontal level
although on wertical integration w.r.t. pressure,
these terms make zero contribution on assump-
tion of wy = 0 at top and bottom of the atoms-
phere. As such, these truncated models create
fictitious cancellations of vertical divergence of
energy fluxes at each level and hence vertical
coupling of energy in these truncated models is
defective. The result of integration over entire
mass of the atmosphere is also shown in Table 1.

equation cumulatively yield f—p { wy(V,. Vy

4. We shall now examine the energetics of the
various truncated models in respect of the four
energy equations :

(i) from vorticity equation in a plane,
(ii) from divergence equation in a plane,
(iif) from their combination in a plane. and

(iv) from their combination over the entire
mass of the atmosphere.

4.1. Truncated Model I — Omit 3D,/at from di-
vergence equation, retaining all the terms of the
vorticity equation.

Then, we have,

(i) M%"?—Jr 2V Vx5 -+

8

k. V.
+ wy (g;+v2 %];3) }JS =90

(ii) i’; S_Uv% Vx.;+wa(3ka +V 3 gp—)'{—

8

+ V.V (Vo Yty + by o+ p)bds =

(i) J;{(jt ‘: e \7.;&1) 3?}::!3:0

8

(iv)—;;E'(P1+I1+K2) =0

4.2, Truncated Model II — Further, omit
u,f and (3,3) terms from divergence equation,
still retaining all the terms of the vorticity equa-
tion. Then,

y k,
0 | {52+ 27 Tn+

L]

9k,
+ g (%‘) + V,

Q_‘G)},zs 0
P

)

Q) %

{ —7?“7‘;’3\7}(3 + w3 ( Va-

G L-'P_a

4V, V (Vo Vo + By 4+ 61) }ds — 0
o J{( 2 +rva)-
{ak,, L

) 5 P+ 1+ K) =0

8

(wa 3)}]Js =0

4-3. Truncated Model IIT — Further, omit (2,3)
terms from divergence equation and J(w;, 3xs/ap)
terms from vorticity equation. Then the diver-
gence equation becomes the balance equation.
Now the divergence and vorticity equations are —

2 J(0g, ) + (upf —fl) + V2 =0

B (vg.vcz+fu2ﬁ) +

2t

(va.vcgﬂsgba +

als

Cf

s +(v8+fDy) =0

Ty 2B )

The four energy equations become :
alky ) de = 0
ap

(i) } (=Y Yo V Yo V. Tk, + V. V) ds=0

(m)§ [(dt ‘2’2+v.v¢1) - {;ﬂ: Al

-|~;;( wylky + wy V,. Vy )}] ds =0

0 § (52 +n7hato,

8

(v) —-—(P + I, —i—Ka) =0,

44, Truncated Model IV — Further, omit
2 J(vy,u,) terms from the divergence equation and
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(2,3) terms from vorticity equation. Then the

divergence and vorticity equations become —
wa— fla + V%, = 0

a

L VUL + 0+ 0f + 1D, = 0

The four energy equations become:

J;(gh + Ty Vx:;) ds = 0

i

-

@) § (—/Vo 28, +V.78) s — 0
[

(i) 5;; (%;+v.v¢1)—{ e

8

N
= 8_::? (wgkytay Vo Vi + @yks) j ]‘[3': 0

(iv) ?:’t(.lf’1 41, + Ky) =0

4.5. Truncated Model V — Further, neglect
variation of fin dealing with expression (1,2 — ft;q
in divergence equation and (vy8 4 fDj) in vorticity
equation. Now the divergence and vorticity equa-
tions are :

—fils + V2 =0
% ;. Vi + o+ 1Dy = 0

The four energy equations are the same as for
Truncated Model IV above.

5. It is pertinent to ask in what way these de-
fects in energetics can manifest themselves and
what their cumulative effect can be; whether
these are second order effects and can safely be
ignored. In this respect, the following results of
Sreeramamurthy (1967) suggest that the cumula-
tive effect cannot always be ignored. He analysed
linearised primitive equation model and linearis-
ed quasi-geostrophic model, using vorticity and
divergence equations, in respect of baroclinic
growth of unstable waves in a uniform zonal cur-
rent and compared the analytical results and de-
rived the following conclusion —

At latitude 45°N, with vertical wind shear less
than 12msec® per 100 mb, neither the wave-
length of the most unstable wave nor the magni-
tude of doubling time differs in the two models.
At latitude 15°N, the wavelength of the most
unstable wave agrees in the two models, but the
doubling times are significantly different, the
doubling time for the primitive equation model
being about 20 to 35 per cent higher than for the
quasi-geostrophic model for wind shears ranging
from 2 m sec? per 100 mb to 12 m sec? per
100 mb.
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