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ABSTRACT. A linear hydrostatic model of a stably stratifidd-stream flow over a two-dimensional orographic
barrier is considered assuming wind increases finedth height and stability is constant. Analylcexpressions for
mountain drags and momentum fluxes are obtainedAsam-Burma hills as well as Western Ghats ofadndihe
general expression for mountain drag also obtdioedoth the ridges of Assam-Burma hills.
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1. Introduction wavelength spectrum of 8 to 18 km over Indian sub-
continents. Dutta (2001) obtained analytical exgigasfor

When stably stratified flow across an orographic mountain drag, momentum flux and energy flux across

barrier, gravity waves are generated and propagat€2-D profile of Western Ghats. Very recently Duttada

upwards, transferring horizontal momentum verticall Naresh (2005) studied fluxes of momentum and energy

Because of the orographic waves the pressure iggenerated by mountain waves across Assam-Burma hill

systematically higher on the upwind slopes than theof India. They showed the impact of valley betwéba

downward slopes and thus exerting a net force @n th ridges of Assam “- Burma hills of India for genératof

ground. This force is known as mountain drag. Tdneg mountain drag and energy flux. But all studies teslao

is an important part of the atmospheric momentum mountain drag and energy flux across Indian ordgcap

balance various theoretical studies are made dflysta barriers based on fact that wind is constant wtig/ht.

stratified airflow across orographic barrier rethtéo

mountain drag like Queney (1947 & 1948), Blumen Aim of the present study is to develop a

(1965), Bretherton (1969), Lilly (1972), Smith (BB 7tc. mathematical model to obtain the analytical expoess

for mountain drag and momentum flux for wind, which

Mountain wave problem addressing properties of increases linearly with height over Western Ghatsvall

mountain waves over Indian region was studied bpyma as Assam- Burma hills of India.

authors like Das (1964), Sarker (1965, 1966 & 1967)

Sarkeret al. (1978), Kumaret al. (1998), Kumar (2000), 2. The mathematical model

Dutta (2001), Duttet al. (2002) etc. Kumaet al. (1998)

developed a 2-D analytical model for real time prton We consider a steady, frictionless, adiabatic flafw

of mountain wave due to Pirpanjal mountains over a vertically unbounded stratified, inviscid and Bsimesq

Kashmir valley. He presented the solution for waiti  fluid across a two-dimensional orography. It isuased

velocity and displacement for all values of wavenbers. that basic wind flow linearly increasing with heigh

Kumar (2000) prepared the climatology of mountain U =U,(L+cz), whereC is the shear parameter abg is

waves over Indian region based on the NOAA satellit he syrface wind speed. The horizontal dimensiothef

imageries. He showed that Lee waves occur in thepjjs a5 well as the disturbance is taken to bellsanaugh
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so that the effect of Coriolis force may be negdctWe
further assume that flow is independentyofoordinate.
Under the above assumption, the linearised govgrnin
equations may be written as :

ou odp
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where U, W, p and p' are respectively the
perturbation zonal wind, vertical wind, pressuredan
density. The mean density,, gravitational acceleration

g and density gradient(cjj—p are taken as constant. The
2

Brunt-Vaisala frequencyN? =

—QZ—p is assumed to be

Po
constant.

Near the ground the vertical velocity must satiigy
boundary condition

wW(x,z=0) =UO?
X

(5)

where h(x) is the profile of orographic barrier.

Now, if f(k,z) be the Fourier transform of function
f (x, z), then they are related by

f(k2) = 2_111 T £ (x, 2)expl~ ikx)dx (6A)
f(x,2) = ]of (k, z)explikx)dk (6B)

Now performing Fourier transforms to Egns. (1) to
(4), we obtained

kpui+ikp+ o = 0 @
Z
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iprUv?/+@+ﬁg =0 (8)
0z
iki+ 2% = o )
0z
ikup+ 2. = o 10§
dz
where, G4, W,p are respectively the Fourier

transform ofu’,w ,p’.

The above system of equations from (7) to (10)afte
simplification reduces to

W [ 5
——| k"= 11
- ( (12)
Now assuming hydrostatic approximation, which is

equivalent to assuming thie® term is negligibly small in
Eqgn. (11), hence

oW (N2 1d%U ).

— W= 12

0z° (UZ U dz? (12)

Substituting U =U0(1+ cz) and Z=1+cz into
Eqgn. (12) and simplifying, we get

W, R &0 (13)

0z% z2

where, R? is the Richardson number and defined by

Re= N

> and considered as a constant.
(U oC)

The solution of Egn. (13) is

Mk,z) = AZY2ghINZ | g7 1/2gikInZ (14)

where, A = [{R —%

As energy is propagated upward, so B should be

equal to zero in Eqgn. (14)

Wk, z) = AZ 202 (15)
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Now by Fourier transform of Eqgn. (5) and usingint
Eqgn. (15), we get

ik, 2) = ikUoh(k)z 26" (16)
here, \R/(k,z) is the Fourier form of perturbation vertical
velocity.

3. Mountain drag

As the total drag of the air on the mountain is
obtained by integrating the momentum transport glie
X - axis. For steady state wave drag is certainbpaated
with the downstream pressure drop across the tapbgr
and thus a force on the earth. This force, perlanith of
topography is just equal to

DZ:O = _po J.U'\N'dX

—00

where D,_, is the drag at the mountain which is just

negative of the Reynolds stress evaluated on thacsu
z=0

Now the Mountain drag by Gill (1982) at any lev&l i
17)

here, perturbation are assumed to be zeroato or
X =—c0and n'(x, z) is the height of the streamline above
undisturbed level.

Using Paraseval’s theorem for Fourier integral, The

Mountain drag becomes

F = —2ni J-kf)ﬁ'jdk (18)
where, p” is complex conjugates ob .
As,w =u I

0x
therefore, by its Fourier transform, we get
w=ikUn (29)
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Fig. 1. 2- D profile of Assam- Burma hills

Now, using Eqns. (7), (9) and (19) into Eqn. (18,
have

= o) [1 L[ _g1dU)g
F= ZRpOD{ J' Ik(az W ]wak} (20)

—00

Finally, substitute Eqn. (16) into Eqn. (21), we ge
F= —2nCp0U02D{ J’ i{—%ﬂx}kﬁ(k)ﬁm(k)dk} (21)

As momentum flux is equal to negative of mountain

drag (Dutta, 2001), therefore

Momentum flux is written as

M = 2ncpoU OZD{ T i{—% + ix}kﬁ(k)ﬁm(k)dk} (22)

—00

4. Mountain drag along Assam-Burma hills

Now a 2-D profile of Assam-Burma hills as shown
in Fig. 1 has been considered to solve Eqn. (2Rpse

analytical expression considered by De (1973) is

o) = 2B,

a?+x? a?+(x-D)?

(23)

where,

a=20.0km, b, =09km, b, = 0.7km and

D =55.0km
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By Fourier transform of Eqn. (23), we get
h(k) = ae (bl + bze‘ka) (24)
Put Eqgn. (24) into Eqgn. (22) for real solution, get
Fp=—2ncpU,°0

H—% ¥ ix} Tk(bf +b,2 +2bb, cosDk)e"zakdk}

—00

b
= 2np0a2Nu0(1—ij

4R
-1

[(bf +b,2)- L+ 20b,

"4a (4a2 +D2f
(25)
So, momentum flux becomes
2 1 %2
M 5 =—2npa“NUg| 1-——
A Po o[ 43}
2 2
2+b2i+2 4a“-D
[(bl ’ )4""2 b 422 +D2f
(26)
The mountain drag due to first ridge
2
: a’t ..
i.e, ——=—=)is
( a2+X2)
Fuy ==L p,aNU b,2 -1 & (27)
1A 2 Po 0 4R
and mountain drag due to second ridge
2
(i.e.,za—bzz)is
a +(x—D)
Fyp === poaNU b2l 1-— & (28)
2A 2 Po 0 4R

From Eqgns. (25), (27) and (28), it is clear that

FaZFatFoa

which shows that mountain drag due to entire
Assam-Burma hills is not equal to the sum of the

mountain drags due to two ridges, this indicate talley
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Fig. 2. 2- D profile of Western Ghats

between the two ridges of Assam-Burma hills also
contribute for generation of mountain drag.
5. Mountain drag along Western Ghats

Now a 2-D profile of Western Ghats as shown in

Fig. 2 has been considered to find mountain drdmse
analytical expression considered by Sarker (196€5) i

H 1 X

h(x) = 5 +btan™— (29)

X a

1+—

a

where,a=180km, H = 52km, b =Ex 35m.
T

By Fourier transform of Eqn. (29) is
" . b —ak
h(k) =| aH _IE e (30)

Substitute Eqgn. (30) into Eqn. (22) for real salati
we get

R, =S rpNUHZ 1-—L & (31)
w5 pPoNUo 4R

Similarly momentum flux for
becomes

Western Ghats

My, =< mpgNU Hzl—iy2 (32)
w 2Po 0 4R
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6. Results and discussions

In the course of analysis of this paper, we sunueari
the results as follows :

Using the profile of Western Ghats due to Sarker
(1965) and Assam- Burma hill of India due to De73p
we have derived the analytical expressions for rteon
drags and momentum fluxes for entire Assam-Burriia hi
(Eqn. 25) and both the ridges (Eqns. 27 & 28)h& t
Assam-Burma hills with wind increasing linearly it
height. Analytical expression for mountain drag and
momentum flux for Western Ghat (Eqns. 31 & 32) has
been also derived.

If the wind variation is very slow with heighte.,
c<<l= R >>1. So the Eqn. (25) gives us the following

result

(FA)R>>1 = Fag = 21ppa’NU,,

2
2 2
2+ 2'1+2b 4a-D
[(bl ” 4a* blz4a2+D22

Which agree with the mountain drag obtains by
Dutta and Naresh (2005).

Similarly forR >>1 Eqn. (31) becomes

1
(FW)R>>1 = Fwo =5 mpoNUoH 2

This result agrees with the result due to Duttd®d(30
Now substitute F,, andF,, into Egn. (25) and
Eqgn. (31) respectively, we have

1

) (1'4_Rj%

that is, to say that above normalized mountain dsabe
function of 1/Rand is independent on the orographic

barrier. Its variation witil/ R is shown in Fig. 3.

Fa

F A0

_ Fw
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Above Fig. 3. shows that ad/R increases,
normalized mountain drag decrease and approaches ze

when%iﬁ/lﬁ.
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Fig. 3. Variation of mountain drag

In Egns. (31) and (32), a factdy for plateau part is
does not appear, so we may say that plateau pahteof
western ghat does not contribute towards the géopraf
the mountain drag and momentum flux, which
conformity with the earlier findings of Dutta (2001

is

As factor @’ is absent in Egns. (31) and (32), which
show that drag and flux are independent on the viialth
of the bell shaped portion of Western Ghats. Wischot
true in case of Assam-Burma hills, this may be tuthe
valley between the two ridges of hills.
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