Trends in the characteristics of seasonal variation of temperature in the arid and semi-arid regions

P. JAGANNATHAN

Meteorological Office, Poona

(Received 7 March 1962)

1. Introduction

The realisation that the earth as a whole is experiencing a minor climatic fluctuation coupled with the fact that the precise modern science of climatology provides objective means of indicating the extent and intensity of such changes, has in the recent years given considerable impetus to the study of climatic changes. In India this problem has been engaging the attention of professional meteorologists for the last four decades and a number of studies have been made largely to answer the public enquiry "Is the climate changing ?"

Willet (1950) found that a pronounced upward trend has been in progress since 1885 of about 2.2° F in the winter mean temperature and 1.0°F in the annual mean temperature; this rising trend has been most pronounced in the higher middle and polar latitudes of the northern hemisphere with no counterpart in the southern hemisphere. Pramanik and Jagannathan (1954) studied the climatic changes in India, in regard to rainfall, maximum and minimum temperatures and pressure for a network of stations in India and neighbourhood for which sufficiently long and unbroken homogenous records are available. The statistical analysis carried out for the detection of long term trends in the temperature series did not reveal any systematic increase or decrease in the maximum and minimum temperatures. However, at some

of the stations variations of an oscillatory character with a period of 30-40 years have been noticed.

The relationship between sunspot and air temperature has been the subject of several investigations. Walker (1915) correlated the sunspot numbers with the mean annual temperature of the stations and found a C.C. of -0.2 to -0.5 in respect of Indian stations. Announcing this, he remarked "the marked fall in temperature in the tropical regions calls loudly for an explanation". Willet (1951) studied the relation between the sunspot numbers and air temperatures in the mean latitudes of the northern hemisphere during the last two centuries. He found that after four periods of high solar activity there followed 3 periods of low solar activity and that the mean temperature during the four periods of high solar activity is slightly higher than the mean temperature of the following three periods of low solar activity. Xauthakis (1953, 1955) developed a "new relationship" to represent the annual course of air temperature.

$$\frac{1}{2} (T_i + T_{13-i}) = A + C \sin(L_i - V)$$
(1)

and
$$\frac{T_{13\cdot i}}{T_i} = \frac{P}{1 - e \cos(L_i - w)}$$
 (2)

$$i = 1, 2, \ldots, 6$$

where T_i and T_{13i} represent the mean monthly air temperature in $^{\circ}A$ during the i^{th} and $(13-i)^{\text{th}}$ month, L_i is the longitude of the Sun during the middle of the ith month and A, C, V, P. e. w are constants. These relationships were verified approximately for many stations in the temperate zones. He studied the variation of the characteristic constants during the successive sunspot cycles-each cycle beginning in the year following that in which the minimum of the annual sunspot number occurs and ending at the year of the next minimum-and found that e and P and hence the range variation of the differences $T_{13i} - T_i$, which is related to them, present a correlation with mean annual sunspot numbers one whole period earlier in the case of stations in Europe and near East while in the case of United States stations the relationship was contemporaneous.

2. Annual march of temperature

The annual march of air temperature is primarily dependant upon the variation in the amount of heat received from the Sun. The daily rate of solar radiation received at any point on the earth's surface depends upon the quantity of solar radiation that emanates from the Sun, the duration of the Sun's presence above the horizon and the meridional altitude of the Sun. However, the distribution of land and water in the neighbourhood of the station, its elevation, and the atmospheric and oceanic circulations modify this picture determined by the Sun to a marked extent. Thus the seasonal course of air temperature is a major factor in defining the climate as 'temperate' or 'severe', 'maritime' or 'continental' etc.

This march of temperature of the air at any particular station is to a large extent a systematic oscillation repeating practically in a similar manner year after year. The author (1957) resolved the annual variation in the normal average temperature at a number of stations in India into two harmonic components, the annual and the biannual waves, and studied the regression of the different harmonic constants on the latitude. longitude and elevation of the station. It was pointed out that elevation has no effect on the amplitude as well as the date of maximum in the annual oscillation while the amplitude increases northwards and away from the coast.

3. Scope of the study

The foregoing study has been undertaken essentially for providing answers to the following questions—

- (i) Are there any long term changes in the characteristic parameters representing the seasonal variation of air temperature particularly over the arid and semi-arid regions ?
- (*ii*) Are the characteristic parameters representing the seasonal variation of air temperature dependent upon the sunspottedness ?

With this view the parameters representing the seasonal variations of mean air temperature of representative stations in the arid and semi-arid regions of northwest India as also the semi-arid regions of the Deccan plateau have been calculated separately for each of the 3-year periods of sunspot maxima and sunspot minima, during the entire period for which data are available. The changes in the characteristic parameters from period to period of solar activity have been examined.

The analysis was extended to one or two representative stations in each of the arid or semi-arid regions in the other parts of the world and where sufficient data are available. The stations selected for the purpose are Bikaner, Jaipur, Ajmer, Mount Abu, Rajkot Aurangabad, Poona and Bellary in India; Quetta in Pakistan, Minusinsk and Tashkent in U. S. S. R., Baghdad in Iraq, Helwan in Egypt, Khartom in Sudan, Phoenix in U.S.A., Cardoba and Buenos Aires* in Argentina, O'okiep in South Africa and Alice Springs in Australia.

4. Material for study

The stations selected for the study, the countries in which they are located, their positional co-ordinates and remarks as to the homogeneity of the temperature data as also the availability of the data are given in Table 1.

The sunspot numbers utilised in the analysis are the maximum and minimum value of the 3-year moving averages of mean annual

sunspot numbers. The 3-year periods, the values of the mean annual sunspot numbers as well as the mean number of sunspots during the periods are given in Table 2. The variations of sunspot are shown in Fig. 1.

In col. 7 of Table 1 are indicated as to what is meant by the term "mean monthly air temperature" hereafter referred to as "the temperature". In respect of the Indian stations they are uniformly the mean of the mean daily maximum and mean daily minimum temperatures of the month. For the study of the seasonal variation of temperature during the sunspot maxima and minima, the averages of the temperature during the three consecutive years in which sunspot activity as indicated by the 3-year moving average of sunspot numbers was maximum or minimum have been taken.

The data of the Indian stations have been extracted from the Annual Parts maintained by the India Meteorological Department and "corrections"† applied, where necessary to render the series of temperature homogeneous. The data of the other stations have been taken from the World Weather Records by Clayton and Clayton (1927, 1934 and 1947) and U. S. Weather Bureau (1959) publications entitled World Weather Records and the Monthly Climatic Data of the World.

5. Graduation of the seasonal variation of temperature

The seasonal variation of temperature is assumed to be composed of two⁺, simple harmonic oscillations one with a period of a year and the other of six months. The

^{*}Buenos Aires is not actually in the arid or semi-arid region; in fact according to Koppen's classification the station is classified as Cfa. However, as the station has a long series of data and owing to its proximity to the semi-arid tracks of Argentina, this station has also been included in the study.

⁺Corrections for changes of site and method of exposure (e.g., prior to 1927 or so the thermometers at the Indian observatories were exposed in thatched sheds and later Stevenson Screens were introduced) were evolved from comparative observations for about two years. These corrections were applied so that series of temperature data relate to the old site or procedure.

[‡]In the study by the author (1957 *loc. cit.*) it has been shown that the annual and biannual harmonic variation account for 90-95 per cent of the annual variation represented by the 12-monthly values.

temperature at any time t of the year is there is no systematic tendency for increase given by the relationship

$$T_{t} = \overline{T} + a_{2} \sin\left(\frac{2\pi t}{P} + \phi_{1}\right) + a_{2} \sin\left(\frac{2\pi t}{P/2} + \phi_{2}\right)$$
(3)

where $\overline{T} = \sum_{i=1}^{12} T$ is the mean annual tempera-

ture, a_1 and a_2 are the amplitudes of the annual and the half yearly waves and ϕ_1 and ϕ_2 are the respective phase angles. \tilde{P} is the periodic time — here the year.

The different parameters entering in the above relationship have been calculated in the usual manner* by assuming that the mean monthly temperature refer to the midday in each of the months and that the months are all of equal lengths.

The values of the various parameters for the different periods of solar activity are given in the following tables station by station-

Table 3—Mean annual air temperature Tand the annual range of air temperature, Rdefined as the difference between the temperature of the hottest month and the coldest month $(T_h - T_c)$.

Table 4-Amplitudes and phase angles of the annual and biannual waves.

6. Discussion of the results

(i) Mean annual temperature-The departures of the average annual temperature during the different periods from the mean annual temperature are given in Table 3 and the variation of T from period to period of solar activity at the various stations are shown graphically in Fig. 2. A look at these graphs indicate that at the Indian stations as also the extra-Indian stations

or decrease.

In the following table are shown the difference between the average annual temperature during the period of maximum sunspot activity over those of periods of minimum sunspot activity.

$$\Delta T = \overline{T}_{\max} - \overline{T}_{\min}$$

The important feature that is brought out is the decrease of temperature, though small, at practically all stations, during periods of maximum solar activity. The mean decrease is $0 \cdot 2^{\circ}C$.

Station	riangle T (°C)
Bikaner	
Jaipur	
Ajmer	2
Mount Abu	
Rajkot	
Aurangabad	· 1
Poona	
Bellary	
Quetta	
Minusinsk	1.6
Tashkent	·1
Baghdad	
Helwan	1
Khartom	$+ \cdot 2$
Phoenix	2
Cardoba	1
Buenos Aires	2
O'okiep	
Alice Springs	0
Mean	

(ii) Annual range of temperature-The variation of R from period to period of solar activity is shown in Fig. 2. An oscillatory tendency with a period of about 2 sunspot cycle is clearly noticeable at most of the Indian stations.

^{*}For details of the method of evaluation of the different parameters the reader may refer to the author's paper 1957 loc. cit.) or any text book dealing with harmonic analysis

Fig. 2. Fluctuations of temperature and annual range of temperature — Annual temperatureAnnual range of temperature

The annual ranges of temperature during periods of maximum sunspot activity and those during periods of minimum sunspot activity were separated and their means worked out separately. The difference between the mean ranges are given below:

$$\triangle R = R_{\max} - R_{\min}$$

Station	riangle R (°C)	Station	$\triangle R$ (°C)
Bikaner	1	Tashkent	· 6
Jaipur	3	Baghdad	0
Ajmer	-·1	Helwan	$+\cdot 2$
Mount Abu	$+\cdot 2$	Khartom	
Rajkot		Phoenix	
Aurangabad	·4	Cardoba	
Poona	$+\cdot 3$	Buenos Aires	$+ \cdot 2$
Bellary	0	O'okiep	$+1\cdot 2$
Quetta	· 4	Alice Springs	· 8
Minusinsk	$+ \cdot 6$	Mean	

The positive and negative departures are practically evenly distributed and the general mean works out to $-\cdot 1^{\circ}$ C.

(iii) Annual oscillation—The amplitudes of the annual wave increases generally polewards. The maximum in the wave occurs about late May at the South Indian stations but are progressively delayed with increase of latitude to about mid July in Minusinsk; Khartom (15°37'N) is an exception, where it is delayed by about one and half month for its latitude. In the southern stations the maximum occurs in the month of January.

The variation of the amplitude and the date of maximum in the annual oscillation during the different periods of solar activity are shown in Fig. 3. It is clear that during the past century there is no systematic increase or decrease in the two components of the vectors. However, fluctuations harmonic have occurred though not in exact sympathy with the fluctuations in the solar activity as represented by the sunspot numbers. At least as far as the Indian stations are concerned in as much as the fluctuations show similar characteristics at a number of stations in the region-and in fact at practically all stations except Bellary, in regard to certain significant fluctuations-we cannot treat them as random fluctuations. For example the amplitude of the annual oscillation which was a maximum at the beginning of the century declined during

the next two decades and attained a minimum round about 1918. The maximum of the annual oscillation was very much delayed by about 1906 and advanced by about 15-20 days at most of the stations by about 1923. It may be remarked that in 1906, the maximum sunspot activity was the smallest on record. Again during the late thirties or early forties Poona, Aurangabad, Rajkot and Mount Abu showed a significant advance in the date of maximum in the annual wave.

To see if the amplitude and the phase angles during the years of maximum sunspot activity differed significantly from the years of minimum sunspot activity the average amplitude and the dates of maximum in the annual oscillations were calculated separately for the period of maximum solar activity as well as periods of minimum solar activity and

were calculated for all the stations and they are given below :

Station	$\triangle a_1(^{\circ}C)$	$\triangle D_1$ (days)
Bikaner	$+ \cdot 07$	+2.0
Jaipur	$+\cdot 31$	+3.0
Ajmer		+4.0
Mount Abu	$+ \cdot 34$	+2.7
Rajkot	+.05	+2.8
Aurangabad		
Poona	•04	$+5\cdot3$
Bellary	$+ \cdot 03$	0.8
Quetta	$+\cdot 27$	+1.6
Minusinsk	$+\cdot 54$	0.8
Tashkent	·03	+0.7
Baghdad	$+\cdot 37$	+0.7
Helwan	$\pm \cdot 09$	-0.2
Khartom	$+ \cdot 23$	$+3 \cdot 2$
Phoenix	·10	-0.5
Cardoba		+0.4
Buenos Aires	·13	-1·0
O'okiep		-0.4
Alice Springs		+0.3
Mean	+.06	+1.5

The differences in the amplitudes between of sunspot maxima and minima were also the years of maximum and minimum solar activity though very small, there is a distinct tendency for the northern hemisphere stations under study here, to be positive with an average of $+ \cdot 12^{\circ}$ C (10 positive and 5 negative) and the southern stations to be negative with an average of-15°C (all negative). For all the stations the average works to +0.06°C.

As far as the date of occurrence of maximum $\triangle D_1$, there is a distinct tendency for practically all the Indian stations except Bellary to attain the maximum delayed by about 3.5 days during years of maximum sunspot activity. Khartom in Sudan and to some extent Quetta in Pakistan also reflect this characteristic. At the other stations the mean differences are small.

(iv) Biannual oscillation-The amplitudes of biannual wave are of the order of 2-3°C at the Indian stations as also Khartom, while at the rest of the stations they are 1°C or less. The maxima in the wave occur in the months of April and October at all the Indian stations as also Helwan in Egypt and Khartom in Sudan. At the Russian stations the variation is considerable but on the average the maxima in the wave occur in April and October. At the other stations they occur mainly in the months of March and September.

Fig. 3 shows the period to period variations of the components of the biannual harmonic vectors. It is remarkable that at practically all the Indian stations there is an oscillatory tendency with a period of about 2 sunspot cycles with the amplitude and date of maximum increasing in alternate period of high solar activity. Thus in 1906, 1928 and 1948 both the amplitude and the date of maximum wave were practically the same at all the Indian stations; a similar tendency repeating in 1962 is also seen.

The mean difference between the amplitudes and phase angles between the years

calculated.

$$igtriangleup \Delta a_2 = ar{a}_{2 ext{ max}} - ar{a}_{2 ext{ min}}$$

 $igtriangleup D_2 = \overline{D}_{2 ext{ max}} - \overline{D}_{2 ext{ min}}$

Station	$ extstyle a_2(^{\circ}\text{C})$	$\bigtriangleup D_2 ({\rm days})$
Bikaner	+.06	+2.1
Jaipur	$+ \cdot 20$	+0.2
Ajmer	$+ \cdot 29$	+1.0
Mount Abu	+.08	0.7
Rajkot	-·02	-0.3
Aurangabad	$+ \cdot 01$	$+1 \cdot 3$
Poona		+1.4
Bellary	+.03	+1.5
Quetta	·14	+28.6*
Minusinsk	$+\cdot 38$	+16.4
Tashkent	$+ \cdot 03$	+7.0
Baghdad		-2.6
Helwan	$+\cdot 13$	+3.0
Khartom	07	+2.3
Phoenix	·13	$-1 \cdot 2$
Cardoba		+2.0
Buenos Aires	$+ \cdot 07$	+3.9
O'okiep		-4.7
Alice Springs		-10.01
Mean	$+ \cdot 01$	+1.6

*If the two outlying values in periods XIII and XI are ignored the value of $\triangle D_2$ works to $+7\cdot 3$

†If the outlying value in period XII is omitted the value of $\triangle D_2$ is +6.0

Out of the 8 Indian stations, 6 show a slight increase of amplitude as also a delaying of the date of maximum with increase of sunspot activity. The average for the Indian stations works out to + 0.08 °C in amplitude and + 0.9 days in the date of maximum in the oscillation, but these however are not statistically significant.

7. Summary and conclusions

The study of the available long series of temperature data of representative stations in the arid and semi-arid regions of India as also one or two stations each in the arid

Fig. 3. Harmonic Components

or semi-arid regions of the different continents has revealed the following--

(i) The mean annual temperatures do not show any systematic increase or decrease but there is a slight decrease of temperature though small, at practically all stations during periods of maximum solar activity over those of minimum solar activity.

(ii) The annual ranges of temperature exhibit oscillatory tendency with a period of about two sunspot cycles and consequently the aggregation of periods of maximum and minimum solar activity does not show any significant difference between themselves. The variations at different stations in the same region, e.g. the north Indian stations show considerable agreement in phase while they get out of phase when different regions are considered. Thus it indicates that the solar fluctuations observed should be associated with the fluctuations in the subtropical high pressure centres and on the general circulation patterns.

(iii) The components of the harmonic vectors of the annual oscillation do exhibit significant fluctuations though not in exact sympathy with the fluctuations in the sunspots. The date of maximum in the annual wave had the largest lag in 1906 and again in 1938. There is a distinct tendency, though small, for the amplitude of the annual oscillation to increase with maximum solar activity in the northern hemisphere stations while in the southern hemisphere the reverse is true. Another interesting finding is that the peak in the annual wave, at least at the Indian stations, get delayed by about 3.5 days during years of maximum sunspot activity. It is known that the lag in the date of maxima is least in the most continental locations and increase at more maritime ones. If we extend this idea, it can be concluded that in years of maximum solar activity, the soil humidity is slightly increased due probably to slight increase of precipitation or at least to increased relative humidity. This, however, needs further study.

(iv) The biannual wave is significant at stations, in particular with the Indian amplitudes of the order of 2-3°C and the maxima occurring in April and October. At the other stations the amplitude is less than 1°C but the maxima systematically occur in March or April (and September or October) in most cases; at Phoenix (U.S.A.) they occur in February and August. The occurrence of the significant biannual wave over the globe in general, should in all probability be associated with the change in the atmospheric general circulation. The amplitude of the biannual wave exhibit oscillatory tendency with a period of about 2 sunspot cycles with the amplitude and date of maxima increasing in alternate periods of high solar activity.

It is well known that the variations in the solar constant occur primarily in the ultra violet increasing with increase of solar phenomena. Much evidence exists of highly erratic fluctuations in the ultra violet roughly paralleling the sunspot cycle. The marked variations in the ultra violet radiation cause large variations in temperature in the higher atmosphere. The temperature increase in the higher atmosphere is propagated downward with marked lag (Haurwitz 1946). The increase in the amplitude of the annual wave observed here is in consonance with this.

Hanzlik (1930, 1931) found important pressure changes of world wide distribution particularly during the winter. In high latitudes these pressure changes give decreasing zonal index as a major sunspot maximum commences and an increasing zonal index as a minor sunspot maximum commences. Willet (1949) further found that these alternating high and low index patterns at successive sunspot maxima, are reflected in the anomaly patterns of temperature and precipitation also.

It is known that the polarity of sunspot changes over each sunspot period and in fact the sunspot cycle has to be regarded as one with a period of about 22 years, during which the number of sunspot and their polarity are restored. The findings here point to the possibility of the biannual wave of temperature oscillations linked up with the pattern of general circulation which get differentially affected during periods of different polarity. These appear to deserve further research.

8. Acknowledgement

The facilities afforded by the Director General of Observatories, New Delhi, and the Deputy Director General of Observatories (Climatology and Geophysics), Poona, were very valuable and are gratefully acknowledged. Thanks are also due to Sarvashri M. L. Khandekar and B. H. Godbole for help in the computational work.

REFERENCES

Clayton, H. H. and Clayton, F. L.

Hanzlik, S.

Haurwitz, B.

Jagannathan, P.

Pramanik, S. K. and Jagannathan, P.

U. S. Weather Bureau

Willet, H. C.

Xauthakis, J.

- 1927 World Weather Records—Smithsonian Met. Collections, 79.
- 1934 Ibid., 90.
- 1947 Ibid., 105.
- 1930 Beitr. Geophys., 28, pp. 114-125.
- 1931 Ibid., 29, pp. 138-155.
- 1946 Trans. Amer. geophys. Un., 27-II, pp. 161-163.
- 1957 Indian J. Met. Geophys, 8, 2, p. 155.
- 1954 Climatic Changes in India—IUGG 10th General Assembly, Sci. Proc. Int., Ass. Met., Rome.
- 1959 World Weather Records and Monthly Climatic Data of the World.
- 1950 Temperature trends of the past century—Cent · Proc. Roy. Met. Soc., London, pp. 195-206.
- 1951 J. Met., 8, 1, pp. 1-6.
- 1949 Final Report of Weather Bureau—MIT extended forecasting project in the fiscal year July 1, 1948 to June 30, 1949, Cimb. Mass.
- 1953 New relations between the mean monthly the temperatures—Publ. Univ. Thessaloniki.
- 1955 Study of mean monthly air temperature during the successive sunspot cycles—*Ihid.*

TABLE 1

Patirculars of stations selected for study

Country Station	Lati- tude	Longi- tude	Height	Year from which data available	Mean Temp. obtained from	Remarks
India						
Bikaner	28°00'N	73°18′E	734 ft	1877	$\frac{1}{2}(Max + Min)$	Shed 1-10-1877 to 27-3-1929; S.S. from 1-1-1926; changed in the same compound on 20-8-1937 and 1-3-1942
Jaipur	26°55′	75°50'	1431 ft	1879	Do.	Shed 1-1-1879 to 7-12-1929; and S.S. from 8-11-1925
Ajmer	26°27′	74°37′	1593 ft	1866	Do.	In jail compound 1-4-1866 to 31-12-1879; in court compound 1-1-1880 to 29-7-1927; S.S. 30-7-1927 to 10-3-1930; Commi- ssioner's office in the same compound from 11-3-1930
Mount Abu	$24^{\circ}36'$	72°43′	3945 ft	1876	Do.	1-5-1876 to April 1929; changed in the same premises and S.S. from May 1929
Rajkot	22°18′	$70^{\circ}50'$	$432 \; {\rm ft}$	1877	Do,	Shed 18-6-1877 to 27-7-1929 and S.S. from 28-7-1929
Aurangabad	19°53′	$75^{\circ}20'$	$1905~{ m ft}$	1891	Do.	Shed 6-10-1891 to 1-2-1928; S.S. from 2-2-1928
Poona	18°32′	73°51′	1834 ft	1856	Do.	1856 to 19-6-1879 compound of European hospital; 20-6-1879 to 12-7-1905 Yeravada Jail; in the same premises 13-7-1905 to 5-1-1927; S.S. from 6-1-1927 to 31-10-1930; 1-11-1930 onwards in Meteorological Office, Poona
Bellary	15°09′	76°51′	$1473\mathrm{ft}$	1867	Do.	Changed in April 1885; S.S. from 4-11-1925
Pakistan						
Quetta	30°12′	67°00'	$5502~{ m ft}$	1878	Do.	S.S. from 26-9-1928; correction applied
U.S.S.R.						
Minusinsk	53°42′	91°42′	$250 \cdot 7m$	1886	$\frac{1}{3}(7h+13h+21h)$ + e_{24}	Upto 1931 station at 53°43′, 91°41′E, 248 m
Tashkent	41°20′	68°18′	478 · 3m	1881	Do.	*

*No mention in World Weather Records as to changes in observations

Country Station	Lati- tude	Longi- tude	Height	Year from whiel data availab	Mean Temp- obtained a from	Remarks
Iraq						
Baghdad	$33^{\circ}20^{\circ}N$	44°22'E	125 ft	1887	$\tfrac{1}{2}(\mathrm{Max}\!+\!\mathrm{Min})$	*
Egypt						
Helwan	29°52'	31°20'	115-6m	1904	$1(8h-14h-20h-+e_{24})$ 1906-1920 actual mean of 24 hrs	-X) *
Sudan						
Khartom	15°37′	32°33′	390 ni	1901	De.	1901 to 1909 Military hospital 1910 to 16-1-1933 Gordon Col- lege; 17-1-1933 Stack Labora- tory and new type screen insta- lled; correction 0.0 : 19-1-1941 to 19-5-1941 at site 15°36'N.
						1944 at site 15°33'N, 32°29'E
U.S.A.						
Phoenix	33°28′N	112°00′W	1108 ft	1877	$\frac{1}{2}(Max - Min)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Argentina						
Cardoba	31°25′S	$64^{\circ}12'W$	424 m	1873	24-hr mean	At Astronomical Observatory upto 1885 and later Meteorolo- gical Observatory
Buenos Aires	34°36′S	58°22'W	25 m	1856	Do.	1st series 1856-75; 2nd: 1873-97 3rd: 1893-1902; 4th: 1901-06 and 5th: 1906 onwards, The different series were compared and reduced to uniform series
South Africa						
O'okiep	$29^{\circ}36'S$	$17^\circ 52^\circ E$	3035 ft	1900	$\frac{1}{2}(Max + Min)$	*
Australia						
Alice Springs	23°38′S	133°37′E	1926 ft	1879	Do,	S.S. position changed on 2-2-1932 to a position 2 miles distant and 25 ft lower

TABLE 1 (contd)

*No mention in World Weather Records as to changes in observations

TABLE 2

Mean sunspot numbers

Period	Middle year	Yearly s	unspot numbe	Mean number of sunspot				
	in the 3-year period	Previous year	Middle year	Next year	Minimum	Maximum		
xx	1855	20.6	6.7	4.3	10.5			
XIX	1860	93.8	95.7	77.2		88.9		
xvIII	1866	30.5	16.3	7.3	. 18.0			
XVII	1871	139.1	111.2	101.7		117.3		
xvi	1878	12.3	3.4	6.0	7.2			
xv	1883	59.7	63·7	63 . 5		$62 \cdot 3$		
XIV	1889	6.8	6.3 .	7.1	6.7			
XIII	1893	73 0	84.9	78.0		78.6		
XII	1901	9.5	2.7	5.0	5.7			
XI	1906	63.5	53.8	62.0		59.9		
x	1912	5.7	3.6	1.4	3.6			
IX	1918	103 · 9	80.6	63.6		82.7		
vm ~	1923	14.2	5.8	16.7	$12 \cdot 2$			
VII	1928	69.0	77.8	65.0		70-6		
VI	1933	11.1	5.7	8.7	8.5			
v	1938	114-4	109.6	88.8		104.3		
IV	1943	30.6	16.3	9.6	18.8			
111	1948	151-6	136-3	134.7		140.9		
П	1953	31.5	13.9	4.4	16.6			
1	1958	189.8	184.6	158.7		177.7		

15

.

TABLE Mean annual temperature and Means are given at the bottom

	Rile		T.			MOW.1	mealls are given at the bottom				
	A			Lour Contraction	Ajn	ner	Mount	Abu			
	T	R	T	R	T	R	T	R			
XX											
XIX											
XVIII											
XVII											
XVI	$+\cdot 3$	7			$+\cdot 3$	$+ \cdot 1$	$+ \cdot 4$	4			
XV	$+\cdot 3$	$-2 \cdot 1$		$-2 \cdot 0$		-1.5	0	-1.3			
XIV	$+\cdot 4$	-1.7	$-1 \cdot 0$	-· 7	$+\cdot 1$		0	7			
XIII	$+\cdot 4$	-1.7		$-1 \cdot 3$	2	-1.0					
XII	$+ \cdot 4$	+.8	$+ \cdot 8$	+1.4	+.9	$+ \cdot 9$	+ 7	0			
XI	$+ \cdot 1$	$+\cdot 3$	$+ \cdot 3$	$+ \cdot 6$	$+ \cdot 8$	+.6	:5	-1.3			
X	$+ \cdot 4$	·7	$+ \cdot 4$	-1.3	$+ \cdot 6$	6	4.2	- 6			
IX		0				_·7		1.7			
VIII	$+ \cdot 2$	$+\cdot 4$	0	$+ \cdot 8$	3	4-2	0	-1 1			
VII	·2	-· 1	$+ \cdot 1$	+1.2	2	4.8	. 2	1.0			
VI		0	2		4	-1.1		+ .0			
V	· 5	$+\cdot 3$	$+\cdot 4$	$+\cdot 6$		4.4					
IV		+1.5	0	$+ \cdot 9$		+ 5					
III	·2	+1.8	+.5	9	4.9	1.8		+1.0			
II	2	$+ \cdot 9$	$+\cdot 3$	+ • 7	4.3	1.8	+	+1.0			
I	6	+1.0	2	7		6	+·3 4	+.6 +1.0			
Mean	26.6	$20 \cdot 9$	$25 \cdot 5$	$17 \cdot 9$	$24 \cdot 8$	18.4	20.6	12.0			
	Minus	insk	Tash	kent	Bagh	dad	Helv	zan			
	T	R	\overline{T}	R		R		R			
XX							-				
XIX											
VVIII											
XVII											
VVI											
XV				0							
VIV		0	1.2	11.1	~	- L					
VIII	- 0	-14.7		+1.1	9	-1.5					
VII	+ 1	.0	1	+3.7		+ -8					
VI	- · ·	5.7	1	+.3	+1.2	+1.0					
XI V	0	2.0		-1.2	0	+1.8	-·- 3	$+ \cdot 9$			
A				-3.0	2	+1.4	6	·8			
IA	+.5	+2.9	+.0	-1.8	$+ \cdot 4$	$-1 \cdot 3$	7	·8			
VIII	+1.0	-1.0	+.9	-2.5	$+\cdot 2$	-· 6	$+\cdot 2$	-· 1			
VII	+.5			+2.7		$+\cdot 3$	$+\cdot 5$	$+\cdot 4$			
VI	-· 5			+-2+9			+.5	$+\cdot 2$			
V	•0	0	+*2	-2.0	3	-·2	$+ \cdot 4$	$+\cdot 4$			
IV	0	+3.0	+•4	•5	$+\cdot 2$	2	$+\cdot 2$	$+\cdot 2$			
111	·2	+.3	0	-2.5	·2	-1.4	0				
П			•6	+3.8	·2						
1	_		$+\cdot 3$	-1.5			·1	$+\cdot 1$			
Mean	$0\cdot 2$	$41 \cdot 8$	$13 \cdot 2$	$28 \cdot 8$	22.7	$25 \cdot 3$	$21 \cdot 4$	15.2			

3 annual range of temperature and departures against the periods

Raj	kot	Au	irangabad	l	Poon	a	Be	llary		Quetta			
	R	(' I'		\overline{R}		R	T		R	T	R		
							in p			dia ana			
19 C - 19									-				
0	+1.2				+ • 4		+ 2	Ē	5	+ • 4	+1.3		
·5						+1.1	+.1	+	1.2	0	-2.3		
+-1	-1.3				+.2	+.0	4	+	1.1	0	0		
	9		1 +	3		-+ • 4		-	.9		1		
+.2	+.8	+ -	3 +1		+.3	11.1	+ 1	_		+.0			
1			* +			+1.1	+-0		0		+ .5		
1		+.		9	+ 2	1.1	0		. 2		1.6		
	-1.2		0	2.0		1.6	1.9				0		
+.2	+ 2		0 1	1		-1.0	+-2	-					
+.1	+1.3		o 7					_	.9	1.2	71.0		
+.5	0	<u> </u>	0 7	.9		+-2	- 4			+-4	+.0		
0	+ 1		1 -			4.7	9			-1.0	+-2		
+ • 2	+1.1		1 T		+1			- 17	0	-1.0	. 2		
+.9	+ 0	+.	<u>.</u> . T	0	1.2		9		.5	4.1			
+.3	+-5		a .		+.5	5	4	_	1.5	+.6			
+·1		Τ.			+ 0	_ 0				10			
26.5	$12 \cdot 9$	25.	8 1.	1-1	$25 \cdot 1$	8.8	27.7		9.1	14.9	22.4		
Khar	tom	Pho	enix	Ca	rdoba	Buen	os Aires	0	okiep	Alice	e Springs		
T	R	' T	R	' T	R	T	R	' T	R	T	R		
						7	$-2 \cdot 0$						
						$+\cdot 1$	8						
						4	$-\cdot 2$						
		1	+1.7	3	-·9	$-\cdot 3$	-·8			3	+1.4		
		-·3	+1.2	0	$+ \cdot 6$	3	$+\cdot 9$			+•4	+.5		
		$-\cdot 2$	$+2\cdot 1$	3	+1.0	5	+1.0			+.8	$+ \cdot 9$		
		·6	9	9	$+\cdot 4$	-·	+2.5			+.5	-·6		
+.7	+1.0	$+ \cdot 1$	$-1 \cdot 1$	+.8	-· 6	$+\cdot 3$	0	$+\cdot 2$	-1.6	+.4	+.8		
$+\cdot 1$	$+\cdot 8$	4	-1.3	-·5	0	3	1	7	7	+.1	-1.5		
1	+.5	-1.1	-1.1	0		2	+.3	3	7	1	+.1		
$+\cdot 1$	-·4	7	7	1	+1.2	1	+.9	1	+2.2	3	2		
3	-·2	4	-1.0	4	7		-1.0		7		+.1		
+.7	-· 5	3	7	+.4	+.7	+.3	+.3	+.7	+.2	+.2	+.2		
$+ \cdot 3$	-1.3	+1.0	+1.8	+.2	+.6	+.5	3	+.3	-1.7		+1.0		
$+ \cdot 6$	0	+.5	+.0	+.0	9	+-2	-1.0	+.1	+.4	9			
8	$+ \cdot 2$	+.4	-1.1	+.3		+.8	1	2	+.8		-1.2		
7	+.3	+.4	+1.0	+.0	+1.3	+4	3	+.3	+1.1	7	-1.4		
	+.1	+.6	+.0	+.3	+.0	+.4	4.9	1	+.4	1.0			
1	8	+1.0	0	0	-2.0	+.0	0	_	1.1-1	4.9	+.4		
29.2	10.8	$21 \cdot 1$	$22 \cdot 4$	17.1	13.8	16-4	13.8	17.6	11.9	20.9	17.7		

TABLE 4

Harmonic parameters of seasonal variation of temperature

Period	a1	k	ϕ_1		D_1	a_2^*	ϕ	2		D_2^{\dagger}	a1	¢	5 1		D_1	a_2		ϕ_2		D.,
xx					BIKA	NER										JAIP(TR			
XIX																				
XVIII																				
XVII																				
WWT	0.00	800	0.004			-														
AVI VV	9-02	280	32	D D	JUL	2.46	268	° 30′	17	APR										
VIV	0.02	253	21	3	32	2.59	252	42	25	**	7.66	287°	35'	28	JUN	2.34	261	07'	21	APR
VIII	0.00	202	14	4	· · ·	2.87	263	26	20	••	7.69	289	19	27	**	$2 \cdot 57$	256	06	23	79
VII	0.00	284	60	2	32	3-07	265	21	18	**	7.55	288	45	27	**	2.79	255	33	25	,,
VI	9+90	279	54	0	**	2.65	260	26	21	••	8.16	286	34	29	***	$2 \cdot 48$	250	33	26	**
AI V	10+40	212	07	13	,,	2.99	234	24	4	MAY	8+77	275	57	10	JUL	2.82	231	08	6	JUL
A IV	9-83	279	23	0		2.18	257	16	23	APR	7-96	284	23	2	57	$1 \cdot 93$	248	18	27	APR
VIII	9-40	212	- 01	13	*,	1.75	257	34	23	24	7.73	284	44	1	**	$1 \cdot 86$	253	30	25	"
VIII	9.02	281	48	4	**	2.38	262	39	20	**	8.01	290	05	26	JUN	$2 \cdot 25$	255	32	24	,, .
VII	9.39	280	43	D	??	3 • 20	257	25	23	,,	$8 \cdot 24$	285	39	30	.,	$2 \cdot 96$	250	40	26	37
VI V	8.10	218	30	1	"	2.70	253	36	25	**	7 - 42	286	36	29	,,	$2 \cdot 19$	251	27	26	,,
V	10.03	211	48	8	"	2.21	263	33	20	"	8.09	282	11	4	JUL	$2 \cdot 56$	254	21	24	,,
TY	9.91	281	33	4	,,	2.66	254	45	24	**	7-58	290	33	25	JUN	$2 \cdot 99$	247	17	28	7.9
111 TT	10.89	283	02	3	"	2.68	259	20	22	**	8.36	290	22	25	"	2.76	247	03	28	2.
11 T	10.72	284	18	2	**	2.19	260	56	21	**	7.86	290	13	25	,,	$2 \cdot 41$	251	11	26	
1	9.91	280	06	7	**	2.31	257	35	23	13	7.54	286	00	30	,,	$2 \cdot 73$	252	33	25	23
vv				A	JMER									M	OUNT	ABU				
AA VIV																				
VUIIT																				
XVIII																				
AVII																				
XVI	8.42	281°	54'	4	JUL	$2 \cdot 08$	259°	35'	22	APR	$4 \cdot 31$	293°	26'	22	JUN	$2 \cdot 61$	252°	17'	25	APR
XV	8.12	289	26	26	JUN	$2 \cdot 20$	257	47	23		$4 \cdot 11$	301	55	14	.,	$2 \cdot 48$	250	11	26	
XIV	8.08	292	34	23	**	$2 \cdot 74$	260	54	21	55	$3 \cdot 76$	301	41	14	**	2.84	249	40	27	"
XIII	7.84	293	43	22	"	$2 \cdot 87$	263	25	20		$4 \cdot 07$	304	41	11	.,	2.87	253	37	25	"
XII	8.35	288	20	28	,,	$2 \cdot 62$	251	25	26		$4 \cdot 26$	297	19	18		2.98	245	33	90	"
XI	8.59	277	59	8	JUL	3.24	234	45	4	MAY	$4 \cdot 51$	282	39	3	JUL	$3 \cdot 50$	228	59	7	MAV.
х	8.08	286	24	30	JUN	$2 \cdot 60$	249	13	27	APL	$4 \cdot 06$	296	14	19	JUN	2.64	237	41	2	MAL
IX	$7 \cdot 97$	285	09	1	JUL	$2 \cdot 13$	258	44	22		3.89	294	47	21		2.24	255	42	94	"
VIII	$8 \cdot 18$	290	56	25	JUN	$2 \cdot 35$	254	58	24	.,	$4 \cdot 40$	302	04	14		2.67	251	42	24	APK
VII	$8 \cdot 29$	288	23	28		$3 \cdot 11$	251	47	26		$4 \cdot 54$	297	01	19		3.20	253	57	20	**
VI	7-77	286	33	29	,,	$2 \cdot 18$	252	53	25	**	$3 \cdot 91$	295	09	21		2.57	247	97	24 90	**
V	$8 \cdot 42$	281	42	4	JUL	$2 \cdot 52$	257	08	23		4.17	291	29	24		2.79	245	51	20	••
EV.	7-95	290	23	25	JUN	$2 \cdot 87$	247	52	28	**	4.18	297	43	18		3.91	244	0.9	29	"
111	$7 \cdot 90$	291	29	24	,,	$2 \cdot 16$	241	51	1	MAY	$4 \cdot 64$	299	10	17		3.05	944	47	20	"
II	$8 \cdot 17$	294	00	22		$2 \cdot 37$	252	39	25	APR	$4 \cdot 24$	307	24	8	,	2.65	242	12	29	**
Ι	$7 \cdot 04$	300	20	15	.,	$3 \cdot 77$	249	33	27	.,	4.88	299	34	16	1	9.77	946	0.5	30	••

*Amplitudes are given in Centigrade degrees †The Second maximum occurs 183 days later

1.1	1.1.1					18	h.		IA	BLE 4	± (conta)	187			A.C.	1.1					
Period	<i>a</i> ₁		φ1		D_1	a_2		¢s		D_2	a1	¢	91		D_1	a_2	φ2		D) ₃	
				1	RAJKO	т			1					AUF	ANGAI	BAD		1			
XX																					
XIX												١.,									
XVIII															141						
XVII																					
XVI	5.37	289°	25'	26	JUN	$2 \cdot 42$	255°	28'	24	APR											
XV	5.45	292	36	23	"	2.09	255	08	24	"											
XIII	4.88	295	40	20	**	2.23	254	05	24	"	1.02	9170	0.01		MAN		0400			100	
XII	5.59	289	01	27	"	2.57	200	43	24 30	"	4.03	317-	95	28	MAY	2.13	262	40	20	APR	
XI	5.06	280	23	6	JUL	2.53	234	27	4	MAY	3-83	307	5	8	JUN	2.10	248	19	27	**	
X	4-81	285	38	30	JUN	2.32	241	50	1	.,	3.62	315	50	31	MAY	2.77	255	36	24	,,	
IX	$4 \cdot 23$	287	12	29	••	$2 \cdot 03$	254	50	24	APR	3.35	314	1	1	JUN	2.06	263	45	19		
VIII	$5 \cdot 42$	291	54	24	"	$2 \cdot 28$	250	58	26	,,	$4 \cdot 42$	323	37	23	MAY	$2 \cdot 15$	259	29	22	**	
V11	5.37	287	44	28	,,	$3 \cdot 08$	249	29	27	,,	4.01	321	6	25	,,	$2 \cdot 39$	260	45	21	,,	
V1	4.84	286	51	29	**	2.71	248	51	27	"	$4 \cdot 00$	318	3	28	"	$2 \cdot 40$	261	11	21	,,	
V	5.08	284	30	1	JUL	2.43	250	24	26	"	3.67	319	42	27	**	$2 \cdot 32$	266	3	18	"	
11	4.90	291	57	24	JUN	2.94	247	25	28	"	3.99	324	17	22	**	2.56	255	54	23	"	
11 DT	5.04	290	48	20	"	2.30	247	03	28	"	4.10	320	-00 -00	25	"	2.34	256	45	23	,,	
I	4.80	291	58	24		2.65	249	45	27	"	4.97	321	30	25	"	2.49	242	14	30	**	
															"	177		-		"	
					P001	NA							2	BEL	LARY						
XX												-									
XVIII																					
XVII																					
XVI	3.10	330	44	13	MAY	1.79	277	12'	12	APR	3 - 55	320°	11'	26	MAY	1.69	279°	50'	11	APR	
XV	$3 \cdot 63$	323	33	23	,,	$2 \cdot 12$	274	6	14	,,	$4 \cdot 06$	317	26	29	,,	$2 \cdot 11$	283	50	9	19	
XIV	3.42	323	24	23	"	$2 \cdot 35$	268	38	16	,,	$3 \cdot 95$	318	19	28	"	$2 \cdot 17$	282	47	9	**	
XIII	3.27	324	13	22	, "	$2 \cdot 10$	268	35	16	"	3.95	322	57	24	"	1.71	280	47	10	"	
XII	3.24	322	6	24		2.11	258	52	22	"	3.28	324	54	22	"	1.75	284	33	.8	"	
XI V	3.22	306	40	9	JUN	2.30	248	-08 -00	21	"	3.18	321	10	25	"	1.00	271	32	15	"	
15	9.73	305	38	10	**	1.80	204	29	24	"	3.93	317	98	20	"	1.30	211	45	12	"	
VIII	3-53	320	32	26	MAY	1.91	262	18	20	",	3.62	311	44	29	**	1.82	275	13	13	"	
VII	3.09	319	51	27		2.15	262	17	20		3.39	324	19	22		1.60	281	49	10		
VI	3.25	310	25	5	JUN	2.23	266	18	18	,,	3.32	319	58	27	,,	1.89	277	33	12	,,	
V	3-16	315	31	31	MAY	$2 \cdot 10$	270	41	15	,,	3.52	323	20	23	,,	1.70	281	57	10	,,	
1V	3.16	314	22	1	JUN	$2 \cdot 36$	263	43	19	.,	3.15	322	50	24		$1 \cdot 65$	277	15	12	"	
ш	3.18	315	15	31	MAY	$1 \cdot 93$	260	58	21	"	$3 \cdot 52$	323	4	23	"	$1 \cdot 63$	278	11	12	,,	
п	$2 \cdot 84$	332	53	13	.,	$2 \cdot 01$	265	26	18	"	$3 \cdot 50$	326	34	20	"	1.70	278	22	12	**	
Ι,	3.00	319	17	27	"	$2 \cdot 21$	248	4	27	"	2.82	326	13	20	"	$2 \cdot 52$	248	46	27	**	

TABLE 4 (anti)

TABLE 4 (contd)

Period	a_1		ϕ_1	2	D	$\cdot a_2$	φ	2		D_2	a_1	φ	1	1	D_1	a_2		ϕ_2		D_2
~~~~				Q	UETTA									MIN	USIN	SK				
77																				
XIX																				
XVIII																				
XVII																				
XVI	$11 \cdot 27$	$272^{\circ}$	10'	14	JUL	0.95	15°	17'	21	FEB										
XV	$10 \cdot 53$	271	29	15	••	$0 \cdot 43$	53	10	$\overline{2}$	**										
XIV	$9 \cdot 43$	277	10	9		0.81	52	7	3	**	19-68	$271^{\circ}$	4	15	JUL	0-87	3061	35'	28	MAR
XIII	10.52	274	24	12	••	0.36	244	30	29	APR	21.37	271	47	14	• •	2.05	275	15	13	APR
XII	10.32	270	14	16		0-73	335	40	14	MAR	20.56	271	53	14	"	1.81	314	42	24	MAR
XI	10.93	265	24	21	••	0.52	169	46	6	JUN	19.73	269	1	17	**	1.12	233	35	0	MAY
X	10.81	273	17	13	**	0.00	11	15	24	JAN	21.46	272	21	14	••	9,90	210	56	14	ADD
IX	10.87	273	91 91	12	••	1.99	10	45	94	FLD	21.40	241	-90 -90	18	**	1.48	209	57	19	MAY
VIII	11.52	271	51	10	,,	0.60	316	20	-+	MAR	21.38	268	36	18	"	2.38	241	-24	12	pace L
VII	11.01	274	25	14		0.84	89	50	-20	JAN	19+87	265	50	20	.,	2.36	198	14		"
vi	10.07	270	25	16	"	0.68	57	17	31	0.111	20.38	270	15	16		1+45	251	38	25	APR
TV	10.98	279	29	14	**	0.38	359	56	1	MAR	21-14	271	14	15		2.05	264	45	18	
п	10.60	274	58	11		0.69	0	28	1		20.31	275	0	11		$2 \cdot 24$	303	12	30	MAR
II	10.78	277	13	9		0.56	34	57	n	FEB										
I	11.08	269	53	16		0.67	340	18	14	MAR										
			T.	ASH	KENT										BAGI	IDAD				
XX																				
XIX																				
XVIII																				
XVII																				
XVI																				
VV	14.04	971°	38'	14	.1111	1.18	1882	31	98	MAV										
XIV	13.77	273	22	13		0.52	298	10	2	APR.	12.07	264?	12'	22.	IIIL	0.76	3470	16′	8	MAR
XIII	13-91	273	32	13		0.66	268	45	16		11.84	261	71	24		0.44	326	15	18	
XII	13.07	267	44	18		0.55	213	0	15	MAY	$12 \cdot 19$	265	34	21		1.53	333	19	15	
XI	$13 \cdot 48$	272	33	14	••	0.85	211	57	16	**	$13 \cdot 97$	261	50	24	,,	0.80	314	4	16	
х	$12 \cdot 55$	273	45	12		0.33	145	3	19	JUN	$13 \cdot 97$	263	11	23	**	$1 \cdot 28$	295	13	3	APR
IX	$13 \cdot 68$	265	30	21	,,	0.25	210	0	17	MAY	$12 \cdot 22$	259	44	27	.,	$1 \cdot 00$	334	24	14	MAR
VIII	$12 \cdot 96$	268	19	18	"	0.57	35	49	23	JUN	12.68	263	57	22	,,	0.44	305	53	29	
VII	14.75	267	18	19	**	$1 \cdot 22$	260	27	21	APR	$13 \cdot 30$	263	45	$\frac{22}{2}$	**	0.90	279	13	11	APR
VI	$13 \cdot 99$	275	55	10	••	$1 \cdot 05$	333	10	15	MAR			• •	• •			10			
v	$13 \cdot 27$	273	15	13	**	0.75	95	30	24	MAY	$13 \cdot 21$	262	2	24	JUL	0.27	314	10	24	MAR
IV	$13 \cdot 38$	274	31	12	,,	0.36	32	18	5	,,	$12 \cdot 05$	261	32	25	,,	0.64	282	18	10	APR
111	$13 \cdot 00$	273	48	12	,,	0.75	18	52	2	JUL	$12 \cdot 40$	265	15	21	$\mathbf{r}$	0.23	348	21	7	MAR
11	$15 \cdot 08$	271	41	14	.,	2.32	343	40	9	MAR	$11 \cdot 76$	261	18	25	,,	$1 \cdot 41$	342	10	10	
1	12.69	274	49	11	**	$1 \cdot 08$	23	41	17	FEB										

Period	a <b>1</b>	φ			$D_1$	$a_2$		Þ2	L	2		$a_1$		Þ	1	$D_1$	$a_2$	1.4	62	ŕ	$D_2$
					н	ELWAN									к	HARTO	м			1	- Sec.
XX																					
XIX																- â,					.9
xvIII																					
XVII																					
XVI																					
XV																					
XIV																					· .
XIII																					
XII												$5 \cdot 10$	281	° 1.	5	5 JUL	2.09	$275^{\circ}$	57'	13	APR
XI	$7 \cdot 94$	261°	12'	25	JUL	$1 \cdot 10$	245	• 13	29	AP	R,	4.97	275	2 5	8 1	3,,	1.85	244	08	28	**
X	7.39	260	51	26	"	$1 \cdot 02$	268	23	17	,,		$5 \cdot 53$	27	1 0	5 1	15 ,,	$2 \cdot 19$	252	79	25	,,
IX	6.71	258	38	28	• •	$1 \cdot 15$	286	6	8	,,,		4-79	27	2 4	5	13 "	1.69	258	41	24	"
vш	7.54	262	31	24	33	0.81	277	7	12	,		4-19	28	0 2	8	6 "	2.22	241	43	1	MAY
VII	$7 \cdot 92$	261	52	25	,,	$1 \cdot 29$	241	27	1	MAY	ć	$4 \cdot 28$	27	9 1	3	7 "	$2 \cdot 23$	252	43	25	APR
VI	7.31	260	36	26	••	$1 \cdot 01$	234	21	4			3-85	276	3 5	2	9 ,,	2.45	250	46	26	"
v	7.63	260	24	26	,,	$1 \cdot 05$	262	53	20	) API	R	3.91	27	7 5	1	8 ,,	2.54	241	53	1	MAY
IV	$7 \cdot 37$	258	29	28	,,	1.08	248	0	27	"		$4 \cdot 21$	273	3 2	9 1	3 ,,	$2 \cdot 21$	246	31	28	APR
III	$7 \cdot 48$	262	28	24		0.79	214	13	3 10	5 MA	Y	$5 \cdot 25$	27	1 1	2	14 ,,	2.02	253	50	25	**
II		• •				• • •	• • •		• •			4.12	28	6 1	5	30 JUN	2.28	242	56	30	
I	$7 \cdot 29$	259	07	27.	JUL	$1 \cdot 27$	263	4	5 20	) AP	R	· 5·17	27	3 3	34	12 JUL	2.70	234	32	4	MAY
					PHO	DENIX										CARDO	)BA				
27																					
VIX																					
XVIII																					
XVII																					
XVI	11-26	268	55'	17	JUL	$2 \cdot 33$	$17^{\circ}$	45'	19	FEB		6.68	97°	35'	7	JAN	0.83	326°	02'	18	MAR
XV	10.61	263	28	23	,,	0.73	39	24	8	79		6.68	98	21	6	,,	1.15	357	31	2	**
XIV	10-91	261	54	24	"	0.43	24	41	16	,,		$6 \cdot 72$	97	18	7	"	0.61	338	13	12	**
XIII	10.38	265	54	20		$1 \cdot 07$	24	50	17	,,		6-87	92	51	12	,.	0.37	14	15	22	FEB
XII	10.33	264	25	22	,,	$1 \cdot 16$	31	11	13	,,		6.48	91	52	13		0.44	375	36	13	APR
XI	10.10	263	39	23	,,,	1.98	22	33	18	**		6.78	92	48	12	,,	0.87	323	17	20	MAR
X	10.36	266	21	20	"	$1 \cdot 29$	8	04	25	"		6-68	89	31	15		0.30	313	0	25	,,
IX	10.83	264	53	21	,,	1.00	22	37	18	,,		$6 \cdot 95$	93	12	11	"	0.29	350	10	6	,,
VIII	10.93	263	47	22	,,	$1 \cdot 39$	44	52	7	••	÷.	7.03	92	25	12	"	0.57	338	41	12	,,
VII	10.76	265	16	21	••	1.12	18	50	20	"		7.04	93	35	11	"	0.73	332	15	15	
VI	11.31	264	47	21	,,	1.58	11	59	23	**		6.77	95	07	9	"	0.53	359	6	2	"
v	$11 \cdot 22$	263	58	22	"	1.19	.3	36	27	"		$6 \cdot 26$	92	31	12	"	0.62	31	20	13	FEB
IV	10.63	262	22	24		$1 \cdot 16$	14	21	22	"		6.85	98	23	6	"	0.51	328	22	17	MAR
ш	11-45	265	39	21	"	1.44	13	11	22	**		7.04	98	26	12		0.35	185	30	29	MAY
н	11.32	261	38	25	,,	1.57	10	21	24	.0		6.88	. 91	12	13	"	1.09	346	13	8	MAR
I	10.87	265	44	20	,,	$1 \cdot 29$	39	39	9	••		6.09	95	03	ę	• • •	0 21	281	35	10	APR

TABLE 4 (contd)

TABLE 4 (contd)

Period	$a_1$	$\phi_1$		$D_1$	$a_2$	φ	2	1	$D_2$	$a_1$		$\phi_1$		$D_1$		$a_3$		$\phi_2$		$D_2$
XX			1	BUENO	S AIRE	s								0*(	OKI	EP				
XIX	6 - 20	96° 4	9' 14	JAN	0.92	$28^{\circ}$	12'	15 F	EB											
XVIII	6.67	88 19	16	**	0.26	3	40	27	**											
XVII	6.90	90 10	14	75	0.44	41	18	s												
XVI	6-95	87 21	17	,,	0.55	346	49	81	MAR											
XV	7.23	93 30	, 11	**	0.01	34	4	12 1	EB											
XIV	7.29	87 14	10	**	0.47	20	28	- 10	**											
NII	2.51	80 DI	10	•	0.18	126	04	1	**	1.02			-						8	
XII	10.01	83 24 84 90	) 21. . ao	**	0.20	240	- 0	20	JUN	4.93	75		29	JAN		0.71	291	47	5	APR
XI X	1.19	04 01	20	**	0.45	20	29	÷.	PED	0.31	81	ə4 	23	**		0.97	353	25	. 4	MAR
A	7.91	00 1	20	**	0.40	30 a.i	12	11	FED	0.00	81	00	14	"		0.64	336	30	13	"
1A VIII	0.75	04 01	20	,,	0.20	04	40	27	JAA	6.68	81	16	23	**		1.09	316	27	23	"
VIII WIII	0.19	80 11	, 19	**	0.18	220	20	11	FEB .	5-03	81	41	23	"		$1 \cdot 28$	332	53	15	,,
VII	0.82	80 .	10	**	0.45	008	0	2	MAR	3.40	80	44	24	**		0.48	309	27	27	••
VI	0-49	89 30	10	••	0.98	20	20	14	I ED	0.00	11	59	27	"		0.88	281	35	10	APR
V TV	0.01	04 2	20	"	0.72	107	20	12	PED	5.14	84	18	20	**		0.19	337	14	13	MAR
11	6.70	90 00	17	**	0.99	150	-+	10	FED	0.44	83	15	21	"		0.63	300	0	1	APR
111	6.07	85 41	10	,,	1.10	100	6	10	FED	5.70	80	40	24	"		0.66	287	39	9	.13
11	6.95	01 23	1.2	**	0.22	35		24. Le	r ED	9.18	82	32	22	**		0.44	333	8	15	MAR
T	0.20	91 00	10		0.33	-0	3	10.	**											
			3	ALICE 8	PRING	S														
XX																				
XIX																				
XVIII																				
XVII																				
XVI	9.77	100 :	7' 1	3 JAN	0.9	8 9	13	1	t JUL											
XV	8.96	97	0 7	ī "	1 - 1	9 34	3 35	10	MAR											
XIV	9.07	101	9 2	2 ,,	1.0	3 28	7 36	7	APR											
XIII	8.66	102 :	2.2	2 **	1.1	6 31	7 59	2:	2 MAR											
XII	9.33	100 :	9 4	ŧ.	0.8	2 31	2 49	2;	5 ,,											
XI	8.03	95	0 9	) ,,	0.4	2 34	5 25	-	9											
X	8.51	102	15 3	2 ,,	1-2	3 32	1 23	2	ı					×.						
IX	$7 \cdot 94$	103	4	ı "	0.7	9 26	0 7	2	APR											
VIII	8.51	95	29 1		1-4	3 31	2 6	23	5 MAR											
VII	8-62	100	53 ;	3 "	1.1	5 31	9 59	21												
VI	8.62	94	0 10	) ,,	1.0	1 33	0 54	10	5											
V	8.24	97	15 1	7 ,,	1 - 1	3 24	7 48	28	8 APR											
IV	8.98	96 ;	3 8	· "	1.3	7 32	4 37	11	) MAR											
ш	8.46	100 :	9 4	,,	$0 \cdot 4$	1 31	51	22												
п																				
I	8.18	91	35	13 ,,	0.8	88 29	3 39	4	APR											