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Air pocket theory for large amplitude waves in stratified fluids

ABSTRACT. The general wave equation for steady-
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state two-dimensional flow in stratified fluids has been

re-written in an integral form. (This was first au%geshed by Long and Iater exploited by Yih). An Airy integral solution is
f obta

presented in this paper, and the possibility of
1. Notation

The important notation is set out below. Suffix 0
has been used to refer to Lagrangian quantities,
and all such will be constant along a streamline.

z,z : space co-ordinates in two-dimensional

system

8 : vertical displacement from the undisturbed
position

%y : height of streamline when undisturbed
U, : undisturbed stream velocity

Po H density
B, : static stabi]ity:—}o - 3P0/ 22

& : horizontal wave number
Ly*=@, : stability parameter = gg,/U 2

Ry pn} U,
%y

% ° J‘ %1! dz,
%

Any suffix other than zero refecs to the value of
this parameter at some particalar level,

H : depth of fluid
=

® : vorticity
D|Dt=v. grad 43/

2

et
()

ining the widest range of exact solutions examined.

il 2 \* 3 )2
e = [ (&) 4 (=)']
2. Introduction and survey of the general problem

The equations of hydrolynamies, although
highly complex, do nevertheless provide for simple
patterns of flow as stationary solutions to certain
chosen problems. These patterns greatly depend on
the various parameters governing them, but outside
certain ranges, these cannot be realised. It is not the
subject of this paper to consider the nature of
instability of a fluid, although it may be remarked
that, in general, a fluid does reflect unstable charag-
teristics.

Probably the finest example of a fluid portraying
stable characteristics in flows between paralle]
planes, is to be encountered when dealing with
problems on stratification.

Ilustrations of density variations having in-
fluence on fluid motion are provided by the passage
past an obstacle of a fluid stream whose density
varies continuously and stably.

The movement of stratified fluids with laminar
motion has been studied by several research workers
in the past. For example, Taylor, Goldstein and
Prandtl, all made pioneering contributions in this
field of study. The conception of Richardson’s
number helped in the understanding of the criterion
of stability in that it demonstrated how stable
stratification could be regarded as a mechanism
that opposed turbulence. The movement of fluids in
shear layers of uniform density is allied to this
field, and when there is stratification of this nature,
it is natural to regard the vorticity field as conser-

=
vative with regard tothe componentsw = ( £, 9, {)
(of which only one component survives in two
dimensional flow).
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Tnteresting fields of flow can be set up, depending
on the nature of the stratification as well as that of
the disturbance.

Tt has been remarked, for example by Taylor
that it is a relatively simple matter to write out
the equations which must be satisfied when we
are dealing with such effects as variations in density
and velocity of superposed. stratified (laminar)
streams of fluid. But it is the nature of the solutions
and their (realistic) interpretation that becomes a
matter of considerable difficulty. Recourse to
observation is much required to guide the search
along channels of practical reality.

Taylor (1931) has remarked that ‘the difficulty
of solving the equations of motion of a fiuid of
variable density and velocity in any but the simplest
cases leads one to consider problems of a more
artificial nature which might perhaps be (more)
completely soluble. while at the same time retaining
some of the dynamical characteristics of the pro-
blem’. :

Recourse to this approach was shown [for ex-
ample by Scorer (1949)] to be far more useful if
not entirely comprehensive. This line of thought
was further vindicated by Long (1953).

When the disturbing influence ecreates large
amplitude waves, there is greater nqcess?t.y for
adopting Taylor’s line of thought. which in this
instance precludes the necessity of working from
the general non-linear equation.

The atmosphere is a stratified medium with
major changes at the tropopause, and much re-
cearch along these lines has been inspired by meteo-
rologists.

The original researches on stratified media,
although of considerable theoretical interest,
had certain self-imposed limitations. Lyra (1943)
and Queney (1947) produced theoretical solutions
of wave patterns which died away with distance
down and upstream of the barrier. The solutions
were based on the linearised form of equations,
derived from perturbation theory, which assumed
that the amplitude of waves was small compared
with the wavelength. The mathematics was made
tractable by assuming the simplest possible physical
conditions, in which L was ma,d_e constant in-
dependent of height, and with this assumption,
the wave motion set up by a mountain was found to
consist not of one single harmonic wave as n the
case of a free surface, considered [as for example
by Rayleigh and Kelvin (1883) etc] hut._ a whole
spectrum of harmonic waves, 'whlch interacted
and cancelled each other some distance from the

mountain. The results were of theoretical interest
but certain inadequacies were at once apparent.
Observation shows that in the troposphere, there is
a wave motion, mainly composed of one harmonic
wave (known as a lee wave), and is often of large
amplitude. so as to make perturbation theory
inadequate. Scorer (1949) in his theoretical study
introduced a lee wave term of the type studied by
Rayleigh and Kelvin, and although his fundamental
equations were based on perturbation theory, he
approached the general problem more realistically
by considering a model of two layers instead of one,
and in which L2 was constant in each. But the
main valne of his contribution (Scorer 1949)
was to demonstrate the importance of the lee
wave term, showing that it is possible to have these
waves extending in theory to infinity dewnstream.

The eredit for developing a theory for waves of
large amplitude goes to Long (1953). In his paper
dealing with the flow of incompressible fluids, the
exact, steady-state equations of motion and conti-
nuity of a perfect fluid moving two-dimensionally,
with an arbitrary vertical distribution of density
and velocity, were integrated once to yield a second
order non-linear partial differential wave equation.
The equation was examined with regard to unique-
ness and stability of motion, and also this equation
was used for deriving a sufficient condition that a
given solution for motion in a channel is a unique
steady solution. A perturbation approach for
examining the stability of superposed streams of
fluid had already been made by Taylor (1931)
who also derived a general three-dimensional
perturbation wave equation for stratified fluids.

The work of Long and Yih has been discussed
in a later section, but we may remark here that
together with the eatlier work of Scorer, a definite
breakthrough was made in the understanding of
the theory of waves of large amplitude.

3. Air potret simulation

We should make a remark about the rotor
phenomenon. As stated previously. nearly all early
contributions on this subject were based on the
method of small perturbations and linearised -
differential equations, The hasic assumptions are in
contrast to the theor; of waves of large amplitude.
But when attempting to explain the phenomenon
of air pockets did theoreticians start adopting
the line of thought that further investigation was
needed. :

An air pocket is a 1egion in which there is
reversed flow. In his sheoretical study, Lyra
(1943) calculated the pressure disturbance
at the surface in the lee. and regarded the rotor
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Fig. 1
Diagram (i) b shows a typieal lee wave streamline.
The wave is stable for small amplitudes if the stratification
parameters of the fluid exceeds a certain value, which in the
simplest case is given by :

G, > =*[H?

When large amplitude Waves are set up (as in diagram
(i) b), there are regions in the fluid where

283z > or < + 1.

Inthis case rotors or air pockets are set up in the
appropriate regions. These air pockets are strong mixing
regions in a stably stratified fluid.

The dotted lines in the diagram represent streamlines
before Wave displacement has occurred-
as a flow consequent upon separation within a
viscous boundary layer (Fig. 1).

The pressure distribution is linked with the
vertical rate of change of streamline displacement
28/ 9z which one recognises intuitively as a highly
relevant quantity in the formation of rotors. We
see that the larger 28/2z is, the larger will be
the pressure disturbance p, and accordingly the
greater the likelihood of reversed flow near the
surface and the formation of air pockets. Queney
(1955) examined the development of a system
of stationary waves and vortices in a basic flow
having zero velocity at a particular level. The
phenomenon of a  pocket developing under
highly stable conditions in inviscid fluids was
finally explained by Long, who found that the
stratified fluid when developing waves of suffi-
cient amplitude, could be set in rotory motion.

Scorer (1958) examining the phenomenon of
rotors from the point of wave amplitude, arrived
at the following conditions —

289z > or < 1
according as & > or < 0.
Where, 98/ = x1,

the flow is vertical, and this eriterion is useful
when examining theoretical solutions.

From practical considerations, it should be
noted that the air pocket is a highly turbulent
region with great instability and that theoretical
solutions should be regarded as a guide to the
positioning and formation only.

4, Researches on the wave equation
(a) Derivation of equation for the steady state

In this paper, we shall be concerned with a
problem of fluid mechanies, in which the theoretical
aspects shall follow as far as possible a study of
ideal fluids, macroscopic and in continuum.

As in other branches in this subject, we
start by assuming the general equations of motion
of Navier-Stokes as the basis of theoretical con-
siderations.

The velocity vector v then satisfied :
1
Dv/Dt = &v[at + (v. grad) v = o grad p+-

g+ v V2v  (dal)

The first two terms on the right-hand side
express the rate of variation of v in consequence
of the external forces (in our case the gravity
field), and of the instantaneous pressure distribution.
The term »7/2 v gives an additional variation due
to viscosity, and is analogous to variations
due to temperature in thermal conduction or
to density in diffusion.

If we ignore viscous effects, then we may arrive
at the vorticity equation for an incompressible
fluid:

- —
Dw/Dt = (w. grad) v+ grad (log p) X
(g — (Dv/Dr) ]

Only one component survives in two-dimensional
flow :

(v. grad) w, = [grad (log p) X [&8 — (Dv/Dt))y
(4a-3)

By considering the continuity along a stream-
tube, such that

(4a-2)

wdz = U, dz, (da-4)

we may write the surviving vorticity component
in the form :

w, == (9u22) — (aw/ax)
= UV,*2 — U/(V1 %)
Writing

(4a-5)

grad log p=— B, gradz, (4a-6)

where 8, = — (3/a,) log p. is the static stability,
the vorticity equation may then be written afte
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a few steps of algebra as:

=1 r BD 9 . .BD
= — v, grad dey-—?.U—t-l———U- z}
' (4a-7)
Hence, w,— qﬁ '[’} v? — —-’L;Q z= constant
along a streamline in the x—z plane. (4a-8)
Noting ghat = v;* = Ug? (V, 2,) (4a-9)

after dropping the suffix, and omitting the vector
notation, we have :

U, & 9B,
V2, LU 0 ) (Vzg)? — 9
% ( U, z ) (V) Uz #
= constant along a streamline. (4a-10)

Defining two Lagrangian quantities ¢, and
R, that are constant along a streamline, Eq.
(4a-10) can be written as

'

R
Vi, + Ro (V%) — Gy 2
)

= constant along a streamline (4a-11)

For upstream, if the streamlines are horizontal
and undisturbed, then Eq. (4a-11) is given by :

R'
V% + E:L-(Vzo)g — Go zZ =

R)/R,—G, z, (4a-12)
This is the required wave equation, and is

also often written in an alternative form :
R ’

-.—,o,,
‘723 - R

: {(v3)2—2-£} L GE =0

(4a-13)
Equation (4a-13) follows from the fact that

'=2—2 (4a-14)

The wave equation was first derived by Long
(1953).

(b) Analysis in terms of simple modes

It” was discovered by Long that the general
wave equation could be rendered linear for a
very important, but special, case where we could
write it in the form :

V28 4 G8 =0 (4b-1)

where @, would be constant throughout the
fluid. Generalised solutions have invariably pro-
duced most unsatisfactory results near the dis-
turbing influence itself. But the natural lee
wave terms may be drown out for investigation.

For plane parallel flows, in a fluid of depth
H, it may be shown that :

sin vH = 0 (4b-2)
where,
v =/ Go—I* (4b-3)
The wave number £ is thus given hy
B =Gy — (nrfH?), 0 =12,...  (4bd)

Thus for waves of this nature to occur, we
must have G >4? throughout. Such a model
can be readily investigated by experiment.

Anaysis of this nature indicates that we may
consider waves of the form :

8 = 8 (2) cos kx (4b-5)

When we have systems that are non-linear,
relationships involving the variables become far
more complex. A non-linear system does not
allow for superposition of solutions, and each
problem has, therefore, to be treated on its own.
There are, moreover, so many types of non-
linearity, that to give general methods for attempt-
ing to solve them is very difficult, and nor is it
possible to make any general remark concerning the
form and nature of the solution even if available.

1t is possible in this instance to consider certain
simple cases of non-linearity by means of relatively
unsophisticated techniques.

It may be suggested that any periodic function
can be expressed as a Fourier series, and if the
the non-linearity is small, the ‘fundamental’
would tend to dominate the series. A process of
successive approximations could be expected to
converge rapidly.

We would thus consider a series of the form:
8 = 8y(2) + 8, (z) cos kx 4 §, (2) cos 2kz L

83(2)cos iz} ........ (4h-6)

which would satisfy the wave equation. and

throw out the unimportant terms, rather in the
same manner as in perturbation techniques.

In problems such as those under study here,
it may be possible to choose initial values near
to the linearised case, and then proceed to an
approximate solution.
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(e) Exnct solutions

We have Long’s wave equation in the form:

’ \ 2 ’
Vi +g( Va) — G =1 — G (o)
R, R, :

We wish to transform equation (4c-1) to a new
variable 7, = 7(z,) such that the second degree
terms such as (7/z,)® are absent in the mnew
equation. This would greatly simplify the non-
linear equation.

If o = Mo (%) (4c-2)
then
2 2
- f Ny d2y = f o dz, (4c-3)
24 2z

where f; (z,) is to be found. From Eq. (4¢-3),

Ve = fo V2 (4c-4)
T V= V. (V"?u)
= V (fa vzu)

= fo V% + fy (VZ)? (c-5)

or V%, = (l) VZ’Io_('f—OI) (Vz)?  (4e-6)

Jo Jo
Equation (4c-1) may be re-written :
(7) 7= (2 ) wmr+ (2 v

L R L
RO

For the terms in (7/2,)* to vanish from Eq. (4c-7)
we must have :

fo'lfo = B[Ry (40-8)
82, fo=0oR, (4c-9)
where ¢ is a constant.

Hence the only transformation through which
(V%)? can be made to vanish from Eq. (4c-1)
is given by, i

%y
o wio

%

where f, =cR,.

z, is a reference level, chosen as datum. Without
loss of generality, we make ¢ = R,~1 (the value
of Ry~! at z,=z,) and write the above trans-
formation as :

Z
R
T =f }T: dzy (4c-11)
zl : f

L)
3 ’
The wave equation (4c¢-1) then heco e’s

‘R ;. i
Viny — %—“—z + Gofe By _ G (o)

R, R,
which is linear in 7, if GyR, and YéoRDZO@iare

linear in p,. To satisfy these requirements, the
following two conditions aye/specified : /

GoRy = (L 2mPn, +1) 4R,
GoRozy— Ry = (L 2nPyy +-2,) G,R
N,

where I? = Gand L2, m?, n?
sions [ L 2], are appropriate
whose numerical values can
to obtain the desired strea
is linear in z, only w
m3=0. Whereas condigifis (4c-13) and (4c-14)
provide a much wider s of stream profiles by
which equation (4c-12)féan be made linear in 7,

To satisfy oqustibus {4c-13) and (dc-14), we
must choose appropriate stream profiles.

Ay (e1s)
Ry (1c14)

have dimen-
al constants,

=

ofiles. Eq. (4e-1)
R, is constant and

From Eq. (4c¢-13), we have :

(GoBy)' = mPR, (4c-15)
and
(GoRo)” = 3By (4¢-16)

If we now differentiate equation (4c-14) twice
with respect to z,, we have:

(GoRo)2y + GoRy — Ry = nR, (4c-17)
and q
(GR)% + UGoRy) — By"” =n’Ry'  (4c-18)

From equations (4¢-16), (4¢-16) and (4¢-18) we
derive an equation for R, independent of @, :

Ry + (n* — miz) R —zmd Ry=0 (40+19)

A suitable choice of a? and m?® for a realistic
physical case with triple boundary conditions of
R, are required for the solution of equation (4c-19)
which can be obtained numerically. From equation
(4¢-11), we have a relation for n5—z,
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An equation for 7,-z can be obtained from the
equations (4c-12), (4¢-13) and (4e-14). Re-writ-
ting (4¢-12), we have :

Vin, — Gy (L %mdyy + 1)z + G (2 -+ L 2n?y)
—R,/)R, =0 (4c-20)

Putting z,=0, Eq. (4¢-20) can be written,

Vi + (n? — md2) 9y = Gz +— B[R, (4¢-21)
This equation is not homogencous, and so we
cannot write myoccos kz. Instead, we write :

No = A (2) -+~ W (:r, 2) f~10°22)

where w is a solution of the homogeneous equation,

(V2 4 02— m¥2) 5= 0 (4c-23)

and 4 is a particular integral. Then wcx cos kr, and

A7 t(mE—w) A = Gz, + RR, (1c-24)

w" - (n2—mPz — B = 0 (4¢-25)
with suitable boundary conditions. The function w
represents the lee waves, and A is the stream
function of the undisturbed flow, that is 9,(z,). This
can be seen from equations (4e-13) and (de-14)
by simply eliminating GoR, from them and using
(4¢-11); this leads to

?’0 + (n® — mPze)mg = Gy% + By'[Ry  (4c-26)
Zo>

We thus have a relation between 7, and z,
and also between gy and z. Hence we have a relation
between z and zy, and so streamlines can be drawn
for a particular flow.

Solutions to equabions (4c-24), (4c-25) and
(4¢-26) involve Airy and associated functions, or
less elegantly Bessel functions of order 1/3.

Cuusidering Eq. (4c-24), we have:
A = ag Ai(Z4) -+ ha B; (Z4)+

+ CamGi(Z4) —day (4e-27)
where,
n? 3
Zy=m|z— - (4¢-28)
R/ G yn? o
Ofy=— 17}2—1?"] - - (de ..9]
da = Gymd (4¢-30)

and a4, b, are constants depending on the boundary
conditions. The integral 7, is defined in real form as

e e}

— 1 : [
irg (Z[) = ;J. 1 (Zil' -+ 3) [[.t (1(.‘-31}

and is the complex part of an expression of which
AA(Z,) is the real part. Scorer (1950) has tabulated
this function over a suitable range. In the same
paper, defining the function H(Z,) as,

H; (Z4) = Bi (Z4) — G; (Z4) (4c-32)
Scorer tabulated equation (4¢-32) for ranges Z4>0
rather than /,(Z,) because (7; (Z,) diverges like
B (Z,), while H; (Z,) decreases monotonically as
Z 4 increases.

Considering Eq. (4¢-25), we have,

w =a, 44. (Zw) '{_ bw Bl (Zu:) (40'33)

where,

ne_f2
Z,=m ( —_ —
m

and a, b, are constants determined by the
boundary conditions, and & is the wave number.

(4c-34)

Eq. (4c-26) has a solution as follows:
Mg = A1 A,‘ (ZB) —I— b’?ﬂ B,‘ (ZD) + Cny ™ (I’f (Zo)—-
dn, (4e-35)

where ay,, by, are arbitrary constants depending
on the boundary conditions, and

n?
Z, =m (zo— ma) (4¢-35)

r (] a9
opg = — R | Gn?
miR,

dny = G,/m?

(4¢-37)

w
(40-38)

The boundary conditions for the problem under
study are

g (% =0) =0
M (% = H) = my (z = H)

frg)m which a final solution for 5, may he obtain-
ed.

(4c-39)
(4¢-40)

Reference slould be made to the work of Yih
(1960) who made use of modified Bessel functions
for a solution to a similar problem.




5. Conelusions

The work in this paper has been based primarily
on the researches carried out by Scorer, Long and

Yih.

In Yil’s papers, much generalising was adopted
and it may be remarked that from a formal point
of view, the linearised problem was adequately
tied up. But the nature of these waves could be
investigated further by actual calculations, and
there exists much scope for such work, preferably
with the aid of an electronic computer.

It may also be remarked that Long generalised
the entire problem in his 1953 paper, and certainly
his 1958 note to the Quarterly Journal of the Royal
Meteorological Society contained most of the
material which Yih in his later work developed
independently.

The non-linear equation deserves to be investigat-
ed in conjunction with a suitable apparatus model
that may be available for generating such waves.
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Tt should, however, be remarked that Long’s
original discovery of the special case, whereby
linear solutions could be investigated, was a very
important discovery in this research, and fulfils
the original remarks of Taylor (1931) mentioned
in the introduction. In fact, a remark made by
Scorer in his 1949 paper to the effect that a more
general equation would not serve a necessarily
better purpose, carried much deep foresight into
this problem of waves in stratified media.
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