551.521 : 614.898

Effect of radiation on human comfort

N. M. PHILIP* and S. JEEVANANDA REDDY

Meteorological Office, Poona (Received 12 May 1972)

ABSTRACT. An attempt has been made to study the influence of radiation on hum in comfort in India. It is known that the major weather elements which control human comfort are temperature of air, relative humidity and air movement. In a broad sense, temperature and humidity are related to radiation intensity. Discomfort indices for various cities in India have been worked out using a new formula as a function of radiation intensity. The results obtained by this method are found to be in good agreement with those obtained by other workers except for monsoon months, where they deviate much from the reality due to the inherent defect these methods suffer.

Using the discomfort index formula suggested, 'discomfort indices' maps are prepared employing uniform data of 70 stations widely distributed throughout India, for the different months, seasons and the annual.

1. Introduction

Climate plays an important role in every sphere of human activity. The tourist is interested in the degree of comfort he expects to experience at various resorts over the seasons. The human body reacts to various ranges of temperature and humidity and diseases like plague, bronchial asthma, filiaria, tuberculosis etc show variations in incidence associated with the variations of weather elements. The essence of human comfort (or discomfort) can be understood fully only by the reaction of the human body and in terms of sensation. This has led Lee (1953) to put forward a strain formulation for the study of human comfort. From the point of view of meteorological elements (ASHRAE 1967) have presented a nomogram as functions of thermal discomfort index for (or effective temperature) dry and wet bulb temperatures As Thom (1959) and U. S. and wind speed. Weather Bureau (1959) suggested empirical formulae which are derived from the nomogram by correlative study under the assumption of low wind speed. On this assumption these two formulae are not giving satisfactory results in monsoon months (vide infra). Hendrick (1959) has added the effects of wind and total solar radiation to produce a more complete comfort index. As Hendrick himself notes, however, in reality there can be no precise numerical measure of as subjective a concept as comfort. But his method is too complicated compared to the above two methods. Malhotra (1967) defined the environmental comfort scale in warm and humid atmosphere based on chamber experiments.

In the present study the authors have made an attempt to give a new method of estimation of discomfort index using radiation intensity (*i.e.*, both total solar and net radiation), an important factor having major influence over human comfort. It is known that net radiation intensity (R_N) is a fairly good indicator of 'night' climate and the total solar radiation (R_t) and net radiation (R_N) intensities together represent the 'day' climate over a region. Using this formula 'discomfort indices' maps are prepared using 70 stations data over India for 12 months, 3 seasons and the annual.

2. Data and Analysis

In the present study mean daily meteorological data for the period 1959-68 were considered for 70 stations evenly distributed over the country for each of 12 calendar months, three seasons and annual. Table 1 gives the stations with their location. As only a few stations are recording radiation elements R_t and R_N are estimated using the formulae of Reddy (1971) and Reddy and Rao (1973) which will give satisfactory estimates in the absence of observed data.

It is seen that 'day' and 'night' climates mainly depend upon total solar radiation and net radiation intensities $(R_t \text{ and } R_N)$ and net radiation intensity (R_N) respectively. These two are the main factors which could be taken as indicators of the heat and moisture content at earth's surface in any season. The net radiation intensity depends upon moisture content of the surface soil, temperature of the air, humidity and to

*Expired on 7 February 1974

TABLE 1

		Co	-ordin	ates		Ch.P.		Co-ordinates					
Station	Ht. (m)		Lat. (°N)		Long. (°E)	Station	Ht. (m)	Lat. (°N)		Long. (°E)			
		0		0				0	1	0	, ,		
Adhartal	411	23	09	79	58	Kayangulam	3	09	08	76	31		
Aduthursi	19	11	01	79	32	Kodaikanal	2443	10	14	77	28		
Age	169	27	10	78	05	Kovilpatti	92	09	12	77	53		
Ahmadahad	55	23	04	72	38	Kotah	257	25	11	75	30		
Akola	281	20	42	77	02	Labhandi	289	21	16	81	36		
Allahabad	98	25	27	81	44	Madras	16	13	00	80	11		
Amritsar	234	31	38	74	52	Mangalore	102	12	55	74	53		
Babbur		13	57	76	37	Nagpur	310	21	08	79	03		
Bangalore	897	12	58	77	35	Nagrikatta	229	26	54	88	55		
Baroda	34	22	18	73	15 .	Nagrifarm	1158	26	55	88	12		
Begumpet	545	17	27	78	28	New Delhi	216	$\overline{28}$	35	77	12		
Bellary	448	15	09	76	51	Niphad	550	20	03	74	07		
Bhopal	523	23	17	77	21	Okha	07	22	29	69	07		
Bhubaneswar	26	20	15	85	50	Ootacamond	2218	11	24	76	44		
Bombay	11	18	54	72	49	Parbhani	408	19	16	76	47		
Calcutta	06	22	32	88	20	Patna	52	25	30	85	15		
Chensurah	- 09	22	52	88	24	Pattambi	25	10	48	76	12		
Coimbatore	409	11	02	77	03	Phoolbhag	233	29	00	79	30		
Cuttack	24	20	29	85	52	Poona	559	18	32	73	51		
Dharwar	679	15	26	75	06	Pusa	52	25	59	85	40		
Dehra Dun (F.R.I.)	640	30	20	77	52	Raichur	389	16	12	77	21		
Gannavaram	24	16	32	80	48	Saharanpur	275	29	58	77	33		
Gauhati	54	26	06	91	35	Samalkot	09	17	03	82	13		
Gorakhpur	79	27	00	83	27	Shakkaranagar	1 50.0	18	39	- 77	45		
Gwalior	208	26	15	78	14	Shillong	1598	25	34	91	53		
Hagari		15	10	77	04	Sholapur	476	17	40	75	54		
Hebbal	899	13	00	77	38	Sileuri	40	24	50	92	52		
Jaipur	390	26	49	75	48	Srinagar	1587	34	05	74	50		
Jalgaon	201	21	03	75	34	Surat	11	21	12	72	52		
Jodhpur	217	26	18	73	01	Tiruchirapalli	88	10	40	18	43		
Jullundur	238	31	25	75	38	Titabar	99	26	35	94	10		
Kanke (Ranchi)	675	23	25	80	20	TOCKIAI	81	20	41	94	12		
Karimganj	16	24	40	92	30	1 Irvandrum	04	08	23	70	00		
Karjat	52	18	55	73	18	Virangam	27	23	19	12	09		
Kasrgod	11	12	30	74	99	visakhapatnam	03	17	45	83	18		

some extent on air movement and total solar radiation. Therefore, using radiation intensities $(Rt \text{ and } R_N)$ a method of estimation of 'discomfort indices' (DI) is suggested as follows :

$$DI = (DI_{\rm night} + DI_{\rm day})/2 \tag{1}$$

where,
$$DI_{night} = a R_N$$
 (2)

$$DI_{\rm day} = b \ R_N + c \ R_N / R_t \tag{3}$$

and a, b, c being constants to be determined. The results of discomfort indices are obtained using Thom's formula for solving a, b and c(The details of the correlative study are not presented). Hence, the above three equations can be written as :

$$DI_{\text{night}} = 34 \times 10^{-4} R_N \tag{4}$$

$$DI_{day} = R_N \left(26 \times 10^{-4} + 1/R_t \right) \tag{5}$$

$$DI = R_N (30 \times 10^{-4} + 0.5/R_t) \tag{6}$$

Using the Eq. (6) discomfort indices are obtained at few stations (for the above mentioned data) and compared with the results of Venkiteswaran *et al.* (1967) and Parthasarthy *et al.* (1972) and also results of nomogram (1967), which are shown in Table 3. For the comparison of these results (obtained by the authors) with others the criterion followed is as follows: If 60 per cent of calculated hourly values in a month lie in the limit Discomfort Index ≤ 75 , that particular month is considered as comfortable (cold side uncomfortable is possible).

EFFECT OF RADIATION ON HUMAN COMFORT

Fig. 1(a). Variation of R_{ID} , P_{I} , T_{W} and H_{W} with months

TABLE 2

Radiation discomfort index zones

DI	Type of comfort	Effect of population				
< 0.30	Most uncomfortable	All people feel uncom- fortable, cold waves				
9•3C•3•60	Un eomfortable	Cold 60 per cent of population feels vn- comfortable.				
0.60-0.95	Comfortable	90 per cert of popula- tion feels comfortable				
0 • 95-1 • 05	Un comfortable	Hot, 60 per cent of population feels un- comfortable.				
>1.02	Most uncomfortable	All people feel uncom- fortable, heat strokes are possible.				

4

A table is presented for the ranges of comfort and discomfort (Table 2) for the understanding of the 'Discomfort Index' values obtained by Eq. (6).

This is drawn on the basis of tentative ranges presented by other workers.

The stations considered in Table 3 represent the different climatological types in India. Radiation discomfort indices are obtained using above mentioned data for 70 stations for 12 months, 3 seasons (*i.e.*, Winter — Nov to Feb, Summer—Mar to Jun and Monsoon —Jul to Oct), and annual. These are shown in Fig. 1.

3 Discussion

Table 3 gives the discomfort indices of 0-24 hours (whole day) obtained by using (i) present formula suggested by authors, (ii) Thom's formula by Venkiteswaran *et al.* (*iii*) U. S.

435

N. M. PHILIP AND S. JEEVANANDA REDDY

TABLE 3

Discomfort indices for 0-24 hours at 12 staticrs over Irdia

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
				-									
BANGALORE	C	0.67	0.80	0.94	1.03	$1 \cdot 02$	0.82	0.70	0.74	0.74	0.77	0.66	0.63
	Р	100	99	75	57	54	79	93	96	. 94	97	98	100
MADRAS	ç	0.82	0.95	$1 \cdot 02$	$1 \cdot 23$	$1 \cdot 24$	$1 \cdot 09$	$1 \cdot 00$	$1 \cdot 05$	1.05	1.02	0.85	0.80
	Р	69	45	09	00	00	00	00	00	00	00	29	60
	V	74	57	25	00	00	00	04	02	04	16	65	82
	Ν	100	92	53	00	00	13	17	25	33	25	100	100
HYDERABAD	С	0.63	0.74	0.84	0.98	1.09	0.95	0.81	0.85	0.87	0.83	0.68	0.59
	\mathbf{P}	100	95	60	24	04	17	46	50	55	68	95	100
VICARD ADATINAM	C	0.74	0.92	1.05	1.14	1.10	0.08	0.01	0.00	1.01	1.01	0.00	
VISARHALAT NAM	P	80	57	20	00	00	00	0.00	0.98	1.01	1.01	0.86	0.70
	T	00.	.01	20	00	00	00	00	00	00	01	58	92
Вомвач	\mathbf{C}	0.80	0.89	0.99	1.08	$1 \cdot 13$	0.96	0.82	0.83	0.93	1.04	0.96	0.85
	Р	84	69	31	00	00	00	00	00	00	00	97	57
- 11										00	00	-1	57
NAGPUR	\mathbf{C}	0.56	0.68	0.76	0.91	$-1 \cdot 04$	$1 \cdot 02$	0.86	0.82	0.91	0.81	0.63	0.52
	Р	100	91	65	38	07	02	00	06	21	61	92	100
CALCUTTA	С	0.53	0.73	0.90	$1 \cdot 03$	$1 \cdot 06$	0.92	0.89	0.91	0.91	0.90	0.72	0.55
	Р	100	92	43	00	00	00	04	00	00	20	85	100
ATTACEDADAD	C	0.54	0.65	0.75	0.03	1.19	1.14	0.04	0.00	0.00	0.01		
AHMEDABAD	P	00	01	67	38	02	1.14	0.94	0.89	0.99	0.91	0.72	0.57
	Ľ	33	51	07	90	05	00	00	00	00	48	72	99
JODHPUR	С	0.43	0.56	0.68	0.83	0.99	$1 \cdot 12$	$1 \cdot 03$	0.98	1.03	0.85	0.62	0.46
	Р	100	100	100	64	29	08	00	42	17	62	100	100
NEW DELHI	c	0.21	0.39	0.59	0.77	0.90	0.95	0.97	0.07	0.00	0.55	0.15	12.122
	P	100	100	99	54	25	00	00	00	0.90	0.11	0.48	0.23
	v	100	100	90	61	10	02	00	00	12	62 77	100	100 100
			0.00	0.50	0.04	1							2.5.5
POONA	C	0.58	0.69	0.79	0.94	1.06	0.94	0.76	0.75	0.82	0.83	0.67	0.58
	P	98	84	65	43	29	39	66	72	69	63	81	86
	V	96	87	65	50	43	57	90	85	75	73	88	96
	N	96	83	79	58	58	91	100	100	100	87	. 96	96
TRIVANDRUM	С	0.95	$1 \cdot 02$	$1 \cdot 10$	1.11	$1 \cdot 02$	0.91	0.88	0.96	0.95	0.95	0.92	0.01
	\mathbf{P}	31	24	01	00	00	02	19	14	11	11	17	97
	V	39	38	11	07	11	31 ,	52	33	32	36	37	44

C=Discomfort indices calculated using formula (6).

P.V.N.=Total percentage hours in a month lie in the limit of discomfort index <75, calculated using formula of U.S. Weather Bureau, Thom and from nomogram (ASHRAE 1967) respectively.

.

P=Calculated using monthly mean hourly values of temperature and humidity.

V=Calculated using daily hourly values of dry bulb and wet bulb temperatures.

N=Calculated using monthly mean hourly values of dry and wet bulb temperatures and wind speed,

EFFECT OF RADIATION ON HUMAN COMFORT

Fig. 1 (b). Variation of R_{ID} , P_{I} , T_{W} and H_{W} with months

Weather Bureau formula by Parthasarathy et al. and (iv) nomogram (ASHRAE 1967) by present authors. The results of (i) and (iv) are fairly agreeing. The results of (ii) and (iii) are also fairly agreeing with the results of (i), except in most cases of monsoon months. This is due to high humidity values contributing high DI values in (i) and (iii) which otherwise would have been reduced, by taking actual wind condition into consideration (seen in iv). Moreover, the results obtained by the present method and nomogram are more or less in line with the practical experience. But the estimation of discomfort indices from nomogram is a tedious job. Therefore, using the Eq. (6), mean discomfort indices can be obtained for each month or season with the same accuracy as otherwise would have been obtained using nomogram.

Fig. 1 shows the isolines of discomfort indices obtained using Eq. (6), with the aid of Table 2. It can be easily seen that the comfort or discomfort zones in different months and seasons over India, will help the tourist and air conditioners in different parts of the country quite satisfactorily. Some of the salient features observed in Fig. 1 are presented below :

- (i) Precautionary measures to protect the body from cold should be taken in winter months (*i.e.*, from round about November and to first few days in March) beyond 25°N in India.
- (ii) Precautionary measures like air conditioning etc should be taken :
 - (a) Along west coast—end of March to May last;

N. M. PHILIP AND S. JEEVANANDA REDDY

Fig . 2 (a). R_{ID} for each month

e

.

EFFECT OF RADIATION ON HUMAN COMFORT

Fig. 2 (b). R_{ID} for winter, monsoon, summer seasons and annual

- (b) Along east coast—round about second week of March to July end and in addition September and October along coastal Andhra Pradesh and Madras,
- (c) South inland region end of March to June end,
- (d) Gujarat region-end of April to July end,
- (e) Rajasthan region-May end to July end,
- and (f) Other parts of northwest India (except Jammu and Kashmir region) and central parts of India end of May to first week of July.

4. Conclusion

1. The results obtained using the Eq. (6) are generally in good agreement with the results of nomogram, and Thom and U. S. Weather Bureau formulae, except for monsoon months with the latter two formulae. It is due to inherent defect that these two formulae are suffering (as explained earlier). The results of the Eq. (6) is also generally agreeing with the experience of the people living in those areas (obtained information from few people regarding their experience in respective regions). Therefore, the mean zones of discomfort or comfort can be made by using the Eq. (6) which will enable the tourist to take precautions and also help the air conditioners.

2. From the annual discomfort map (Fig. 1) it may be seen that the east coast of the country, south of Masulipatnam and the extreme northern parts over Kashmir and adjoining Himachal Pradesh have the maximum discomfort over the year, the former in relation to higher temperatures and the latter in relation to low temperatures. This is only a very general assessment spread over the year. Seasonwise, the area north of Lat. 25°N is uncomfortable in winter, the Peninsular area south of about Lat. 20°N, parts of Gujarat and parts of West Bengal has maximum discomfort for the summer period taken as a whole and the east coast south of Visakhapatnam, parts of Gujarat, Bihar, Orissa and West Bengal is uncomfortable in the monsoon period also.

439

	REFERENC	ZES .
ASHRAE	1967	Handbook of Fundamentals., Am. Soc. Heating, Refri- geration and Airconditioning Engrs., New York.
Hendrick, R. L.	1959	Bull. Am. Met. Soc., 10, p. 620.
Jeevananda Reddy, 3	1971	Solar Engery, 13, 4, p. 289, p, 291.
Jeevananda Reddy, S. and Rama Rao, K.	1973	Indian J. Met. Geophys., 24, 2, pp. 137-152
Lee, D. H. K.	1953	Arid zone res. X, Clim. rev. res., UNESCO, 102.
Malhotra, M. S.	1967	Proc. All India Symp. Refri., Air. Cond. and Sno. Cont- rol, Indian Inst. of Tech., Kanpur, pp. III, 25-III, 30.
Mann, R. E.	1970	Biometeorological methods, New York.
Padmanabhamurty, B. and Parthasarathy, B.	1970	Env. Health, 12, pp. 173-175.
Parthasarathy, B. and Rakhocha, P.	1972	Proc. All India Symp. on the Role of Refri. and Air Cond. in National D v., CMERI, Durgapur,
Thom, E.C.	1959	Weatherwise, 12, p. 57.
U.S. Weather Bur., Wash. D.C.	1959	Notes on temp., humidity index, L3 5922.
Venkiteshwaran, S. P. and Swaminathan, M. S.	1967	Indian J. Met. Geophys., 18, 1, p. 27.