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ABSTRACT. The basic element in the phenomenon of the “humidity dip” observed and analyzed by the U.S.
Thunderstorm Projeet is an unsaturated downdraught. As observed, the phenomenon is rather paradoxical since
it is at the epoch of the heaviest thunderstorm rainfall that the surface relative humidity at a station decreases from
near saturation to values as low as 60 or 70 per cent. Physically, since the surface rainfall is determined hy the rate of
downward transport of water, the factors contributory to an intense rainfall will be (i) a strong downdraught, (i) high
liquid-water content in the downflowing air, (ii7) low evaporation in the downdraught, and (i) high termmal velocity
of drops, the last factors needing large drops. The first of these factors leads to a high rate of adiabatic compression of
the downcoming air and allows less time for the drops to evaporate into it. On the other hand, the large drops, only a
small number of which can lead to a high liquid-water content, arc comparatively inefficient in providing water
vapour to the downflowing air, the net result being that the downdraught reaching ground is unsaturated.

The physical picture envisaged above necessitates a radical departure from the pseudo-adiabatic form of the
thermodynamic equation, The difference between the resulting new equation and the olassical pscudoadiabatic form
is examined by assuming a steady state and eomputing the resulting distribution of temperature and humidity in the
downdraught for different raindrop sizes. It is found that the larger the sizes of the drops into which the liguid water
is dispersed and the stronger the downdraughts, the less is the humidity and higher the temperature lapse in the
downdraught, the limit being set by dry-adiabatic conditions.

1. Introduetion

One of the most important of contributions of
the U.S. Thunderstorm Project is a thorough
observational analysis of the downdraught which
develops in the mature stage of the thunderstorm
and, on reaching ground, gives rise to the surface
phenomena named by Byers and Braham (1949)
as the “pressure nose and dome,” the “tempe-
rature break,” and the “humidity dip”. These
authors have given plausible explanations
of the formation of the downdraught as well
as the accompanying surface phenomena. However,
10 quantitative formulation embodying all the
observed phenomena has yet been achieved
althongh Das (1963, 1964) has roughly modelled
the formation and progress of the downdraught
resulting from the drag of the raindrops. The
numerical computations made by Das strongly
pointed towards the mechanism of the “tempera-
ture break” by revealing a large negative buoyancy

in the downdraught all of which was not explained
away by the suspended water. However, his model
based on the classical form of the thermodynamie
equation, ruled out the humidity dip. It is this
last phenomenon to which this paper is addressed.

As observed by the Thunderstorm Project the
phenomenon of the humidity dip is rather para-
doxical since it is at the epoch of the heaviest
rainfall that the surface relative humidity
decreases from near saturation to values as low as
60 or 70 per cent. In other words, the “downward
flowing air becomes unsaturated as it descends,
even in the presence of large concentrations of
liquid water” indicated by the accompanying
heavy rain (Byersand Braham, 1949). According
to Byers and Braham i{wo processes ma
account for the apparent anomaly of the
unsaturated downdraught. The first suggested
process is that the downdraught air is desiccated

#Present afliliation — Department of Meteorology, Texas A. & M. University, College Station, Texas 77843, U.S.A.
TClu‘ud Physies Group, Canadian Meteorological Service, Toronto 181, Canada,




136 P. DAS axp M. (. SUBBA RAO

by the cold precipitation particles. If the precipi-
tation particles, such as rain or hail, are sufficiently
colder than the ambient air, the water vapour
pressure near the surface of these particles will he
lower than that of the surroundings. thus resulting
in a water-vapour flux directed toward the particles.
These will grow at the expense of the water vapour
in the ambient air and thereby reduce its relative
humidity. The second process suggested to explain
the lack of saturation is that the downdraught i<
unable to remain saturated because the rate of
evaporation of the water dropsis too slow to pro-
vide for the increase in the saturation mixing ratio
as the air descends to lower levels. In that ease the
air of the thunderstorm downdraught wonld be
heated at a rate between that of the moist and the
dry-adiabatic and would reach the ground in an
unsaturated state.

It may be noted that both processes mentioned
above envisage rain temperatures lower than air
temperatures — the first as the cause of the humidity
dip and the second as its effect. but the former sees
a much lower rain temperature than the latter.
The measurements of Byers et al. (1949) have
shown that the rain-water temperature is generally
lower than the air temperature, but in only a few
instances is it low enough to initiate the first
process. Thus while the first process cannot be
ruled out, being in fact operative in some cases, the
second process seems to provide a more general
physical basis for the explanation of both the
humidity dip and the rain and air-temperature
anomaly.

The physical mechanism envisaged in the present
study centres around a downdraught which, being
fairly strong, causes a high rate of adiabatic com-
pression of the downcoming air and allows only a
ghort time to its liquid-water confent to evaporate
in it. On the other hand, a given liquid-water

content composed of a small number of large

drops evaporates much less than when the same
consists of a large number of small drops. Conse-
quently a strong downdraught carrying its liquid-
water content in the form of large drops will tend
to remain unsaturated not only when the liquid
water itself is small, thereby causing a shower of
low intensity, but also when a large liquid-water
content transported by an intense downdraught
results in an intense thunderstorm rainfall. The
purpose of this paper is to demonstrate the
validity of these conclusions by a numerical in-
tegration of the thermodynamic equation of Das
(1969).

It may be pointed out that the study reported
here was started by one of us as early as 1964 but
was postponed. The work was resumed in 1966 and

after it was completed in 1967 we found that
Kamburova and Tudlam (1966) had alreadv
published the results of a similar investigation,
These authors used the same physical picture as
ours but did not formulate the thermodyvnamies of
the problem as systematically as we have attemp-
ted. Further, in computing the evaporation from
drops they were restricted by a formula valid for the
spherical drops only and by that they identified
the drop-surface temperature with the wetbulb
temperature of the ambient air.

The ecarly version of this work has already been
reported briefly at the International Conferenee
on Cloud Physies (1968) at Toronto, Canada
(Das and Subba Rao 1968). The study presented
here has improved numerical aceuracy.

2. The Basie Equations

The basic equations of the study result from a
new thermodynamical system in which the phase
changes between the water substances are des-
cribed by the microphysical processes rather than
being specified « priori as 18 done in the classical
moist-adiabatic approach. The important ingre-
dients of this system have been disecussed by Das
(1963, 1969). It has been shown that the distribu-
tion of water in its different phases is an essential
part of this system, and since the liquid water is
distributed in the form of droplets and drops,
which generally do not move with the cloudy air,
equations of continuity for the water substances
and for the concentrations of the hydrometeors are
required for a complete quantitative deseription
of the system.

The present study is divected toward the limited
objective of understanding the unsaturated down-
draught in relation to its strength and to the sizes
of drops contained in it. Consequently, it is not
necessary to write the governing equations for the
general case of cumulus draughts. However, little
additional work is involved if one starts from a
three-dimensional frame and speeializes to the
one-dimensional draughts with one-dimensional
motions of drops. This approach has the advantage
of indicating how the special problem diseussed
in the present study is related to the more general
aspects of the dynamics of the cumulus clouds.

(a) The equation of continuity of the water subs-
tances — Considering the cloud to be a mixture of
dry air, water vapour, and liquid water (dispersed
in the form of droplets and drops), we let pg. p., o1
respectively, be their masses per unit volume of the
cloudy air. In addition, let V be the velocity of
the gaseous phase and V; be that of the liquid
phase relative to the gaseous phase, Then, applying
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the principle of conservation of mass to the cloudy
air, we can write,

-:-’7 (pa-+potp)-+V Jlpat+p)V+pr (V+Va)]=0 (1)

In the above, p; is implicitly considered as com-
posed of drops of a single size which, of course, is
a function of space and time. However, since p
is dispersed in the cloud in the form of drops of
different sizes, one really should write a more
general form of (1) as,

a1 \Pd + pu o) +V . [(pa + pe-+p1) V +

o
J J.m, n, V, dr] =0 (1a)

where, m, and n, dr are, respectively, the mass and
the number concentrations of drops of radii lying
between r and r - dr and V, is the velocity of the
drops of radius r relative to the gaseous phase.
However, in the present study we shall be concern-
ed only with (1).

Since the mass of the dry air is conserved in-
dependently of the water substances, equation (1)
can be split into two parts. Thus for the dry-air
component we can write,

2 .
o TV (=0 (2)
In writing (2) in the customary form,
l
PV V=0, (3)
dt
we define the substantial time derivative,
d 3
B ar N (4)

which is the basic substantial derivative of the
system and denotes changes observed by an ob-
server moving with the gaseous phase.

On account of the possibility of phase changes bet-
ween water vapour and liquid water, the two have
always been treated together. The equation for the
change of water substances is obtained by subtract-
ing (2) from (1), so that we have,

—;— (po+p)+V . Lpo + o0V +pVi] =0
Together with (4) this becomes,

T?E' (po +p) +(pe +p) V. V4 V. (mVi)) =0 (5)
Using (3), we can write (5) as,
1
%’—(fu = 'fl)Z—E V(e Vi), (6)

where, & (=pips) and & (= pilps) are, res-
pectively, the mixing ratios of water vapour
and liquid water in the cloud.

(b) The thermodynamic equalion — Following
Das (1963) we write the thermodynamic equa tion
as a conservation of entropy principle :

d ;
& (paba + pede -+ prdi) + (paba + podo +
+p )V V4 V. (g Vi) =0 (7)

where, ¢g ¢o. and ¢ are, respectively the
entropy of a unit mass of dry air, water vapour
and liquid water.

Referring the entropies to a suitable basic
state and stipulating that we restrict our consi-
deration to vapour-liquid transition alone, we
shall write the following expressions for entro-
pies :

‘#-‘i(T) = Cp In 8(1) [8)
$o(T) = $1(T) + LT, (9
(L) =cInl, (10)

where, 7' is the temperature of the mixture on
the Kelvin seale, 8, is the potential temperature
of the dry air, again on the Kelvin scale, ¢ and
¢p are, respectively, the specific heat of water
and the specific heat of dry air at constant
pressure, and L is the latent heat of vaporization
of water. Using (3), (6) and (9), we can write
(7) as —

da de, ddy L d¢,
ittt Fh g T op gt

+ &V .V =0 (11)

This would be the same as the basic equation
for the pseudoadiabatic process if we replaced
déJdt by dé,ldl, where &, is the saturation
mixing ratio corresponding to the tempera-
ture and pressure of the parcel. However,
the mixing ratio is determined by the micro-
physics of condensation on, and evaporation
from centres such as nuclei, water droplets, and
drops (and other hydrometeors). Hence, (11)
should give a better representation of the state
of affairs in a cloud than the traditional pseu-
doadiabatic equation, provided that dg [dt
is properly related to the physics of phase change
of the water substances. In our case the only
centres considered will be the drops.

In our search for an expression for d¢,/dt,
we rewrite (6) as —

g, €y

T g 7%

1
— — V.(aV) (12)
pd

and recall that this assumes the lignid water
at any particular level to be composed of drops
(or droplets) of the same mass. If the drops have
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a mass, m, at a concentration of » per unit volume,
we can write,

f; = J!m/pd,

or, if we want to treat the concentration of the
drops as the number mixed in a unit mass of
dry air,

& = Nm, (13)

where, N (= #/pg) is the number of drops
contained in a unit mass of dry air. Differentiating
(13) we have,

€, N . dm

'—(E— = m W_- + N & 3 (14)
which is to be supplemented by expressions for
dm/dt and dN/dt.

The derivative dm/dt does not represent all
the mass change of a drop due to condensation
or evaporation but only the part of the change
that will be observed by an observer moving
with the gaseous parcel. On the other hand, the
actual change of mass due to condensation or
evaporation, which is really the ‘“‘substantial
change’ of the mass of the centre, is the change
observed by an observer moving with the centre.
We denote this substantial derivative of m as
Dm/Dt, which is related to dm/dt through :

Dm dm

B e
It i8 to be noted that the physical formulae
for mass changes due to evaporation and conden-
sation apply directly to Dm/Dt, so that in actual
applications of (15) one should determine dm/dt
as Din/Dt — V.7 m.

To find an expression for JdN/df, we use a
continuity equation for n. A simple form of the
continnity equation results if we assume that
there is no coalescence or splitting of the drops.
This assumption obviously is unrealistic but is
consistent with our earlier assumption of m
being a function only of height and time. Under
these assumptions the continuity equation can
be written,

O V. [n(V4+V)] =0 16
TR AV V) ] = (16)
Substituting # = pg N in (16), we have,

N
N[$i+V4qu+m(%r+VwW)

+ V. V. (15)

= —V. (ﬂ' vl"

which with (2) and (4) becomes,

a1 V.(n V). (17)
Pa

dt

If in (14) we substitute for dm/dt fron (15)
and for dN/dt from (17), we get,

d& m ‘ Dm
‘dT _—— E V(HV}TN (—DT—V‘-V'M:)
1 . Dm
__E AV ('"mvl)‘rNW,
or, since p; — nm,
rl'f; e 1 A n .Dm
L,—IH-";;V-lPIVH-rN-ﬁ" (18)

If we go back to (12) with (18), we obtain,

dé, , Dm
il

(19)

Since, as already implied, Dm/Dt represents
the mass change of a drop due to condensation
alone, (19) becomes the central equation in our
thermodynamic system.

As is apparent, .the most unpleasant feature
of (19) is its mixing of two substantial deri-
vatives. But on a closer study one will be con-
vinced that this is unavoidable in a cloud where
the products of condensation, in general, move
with velocities different from that of the air.
Moreover, since Dim/Dt relates directly to micro-
physical changes in the mass of a drop, its presence
in the above equation offers considerable con-
venience in its practical manipulation when
precipitation hydrometeors take part in the
condensation-evaporation process. Indeed the data
on the evaporation of drops given by Kinzer
and Gunn (1951) can be applied directly oniy
to this form of the moisture equation.

(¢) The case of a steady one-dimensional drawght—
The thermodynamic system described by (11),
(15), (17) and (19) eliminates the necessity
that the air inside an adiabatic cloud should
always be treated as just saturated. However, the
system now has become more elaborate, in that
it involves a description not only of temperature
and humidity but also of the size and concentra=
tion of the hydrometeors. If the above equations
were solved with a set of initial and boundary
conditions, they would give a description of the
fields of ¢4, &, m, and N in both space and
time. However the idealizations adopted in the
development of these equations do not warrant
such as general study. All we intend to do is to
study the physical content of these equations
in so far as they apply to a steady one-dimensional
downdraught.
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For a steady one-dimensional convective draught
of vertical velocity, w (which is not necessarily
a constant), one can write d/di—wd/dz. Subs-
tituting the expression for ¢; from (8) into
(11), using the familiar expression for potential
temperature and assuming hydrostatic balance,
we have,

dT g

Hel 8 oy

L d§

where, g is the acceleration due to gravity.

In writing a steady-state form of (15), we
consider only the change in m that is due to
condensation (or evaporation) so that we can
treat Dm/Dt as a function of temperature,
pressure, &, and m, which, in turn, are func-
tions of z. In other words we can write —

Dm
D:

where,

— f(T, p, m, fv)’ (21}

T=T(2), p=p(2), m=m(2), and &= & (2).

A
In addition we shall approximate V; by — kVp,
where Vp is the terminal velocity of a freely

A
falling drop and £ is a unit vector in the positive
direction of the z axis. Thus (15) can be written
ARt
dm i
= S5
dz Ww— VT (_.Z)
The steady-state one-dimensional forms of
(17) and (19) can easily be seen to be —

dN 185 d ,
& " e & T (@3)
T
and - = — T'ﬂ (24)

respectively. In our study we shall solve (20),
and (22) through (24) with values of f obtained
from the experimental data of Kinzer and Gunn
(1951) and those of p; (rather ps, the air
density) and p determined from the hydrostatic
equation,

3. The Numerical Procedure

In the numerical integration of (22) through
(24) we assume w to be constant, w=—wp,
where, wp, is the (constant) strength of the down-
draught. This assumption obviously is not realistic
(nor are many other assumptions made earlier).
However. as already indicated, the aim of this
work is to understand the physical content
of the new thermodynamic system in the back-

ground of an idealized downdraught, rather than
simulate a natural downdraught which is certainly
more complicated. The assumption of a constant
downdraught keeps the physical framework at
its utmost simplicity and allows a transparent
view of the physics of our problem.

The finite-difference forms adopted for the work
are :

Tivy, =Tj—(9Azlcp) [o)y+1— Eo)il,  (25)
E)j+r = &)i + (NiAz/2w0) (fi + fi+a)s  (26)
["J' k1 VT)J' ¥ iy VT)j]

Nt === o (&)
AN e )

Mijpy = Mj — (Az[{ap (_f’ sz] 1 ) (28)

nj = pa)j Nj» p1)j = njm; (29)

where, the subscripts j and j41 refer to the
levels to which the subscripted quantities belong.
These equations are supplemented by a finite-
difference form of the standard hydrostatic
equation.

In computing with equations (25) through (29),
we specify a temperature, a pressure, a liquid-
water content, and a drop-size at the cloud base
where the air is assumed to be saturated. This
information is used to determine the air density,
drop concentration, mixing ratio of water vapour,
and the terminal velocity of the drops. Once the
quantities at the cloud base are known, the
quantities at the next lower level are determined
by a fairly straightforward routine which includes
an iterative procedure very similar to one
required to produce a moist adiabat, The pro-
cedure runs as follows —

At first the temperature and mixing ratio
are extrapolated dry-adiabatically. These quanti-
ties give the virtual temperature for determining
the pressure and the relative humidity, which
together with the drop-size information give f at
the new level. These are now used to determine
a new value of £ from (26) and of 7' from (25).
Obviously these new values would be different
from the old ones, so the outlined procedure is
repeated with the new values. The process is
continued until the latest value of the tempe-
rature differs from that obtained in the imme-
diately preceding iteration by less than a certain
limit of accuray (0°-01K in the present study).
The corresponding last value of &, is taken
as the mixing ratio at the new level. This iterative
procedure also includes a continuous updating
of the value of the pressure as more accurate
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TABLE 1

Vertieal distributions of thermodynamic and hydrometeoric quantities in constant downdraughts below cloud base
Cloud baes Jiquid-water contente, 1 gm m—*

Py n T i | T

-3

km) (gmmd) @3  (um) (Embh) K

Py » r 1 r A

(gm m™

) (@) (mm) (embr'!) (K) (9%)

(a) Strength of downdraught—5 m see-1)

Drop Radius of Cloud Base=0-2 mm

1+ 000 20,840 0-200
0-783 30,830 0-182
0-328 31,960 0135
0+ 000* " 2

Drop Radius at Cloud Base=1-0mm

1-000 238-7 1+ 000 4-136  290-0
1.002 243-0 0-995 4-142 204-8
0-973 247-4 0-979 4-023 299-5
0-914 251-9 0+953 3716 304-0

Drop Radius at Cloud Base=0+5mm

1-000 1,910 0-500 3-251 200-0 1
0-970 1,954 0-481 3-152 204-7
0-847 2,001 0-466 2-645 209-0
0:650 2,051 0-423 1-93¢ 3031

Drop Radius at Cloud Base=1-5mm

100-0 . 70-73 1-500 4-702 200-0
787 . 71-85 1-496 4-732 204-8
63- 4 s 72:99 1-482 4676 209-6
52-1 ‘065 74-13  1-460 4-497 304-2

(b) Strength of downdraught—10 m sec?

Drop Radius at Cloud Base=0-2 mm

1- 000 29,840 0-200 4-183  290-0
0:878 30,950 0-189 3673 2045
0552 32,150 0160 2-220 208-5
0-142 33,430 0+100 0-547 302-3

Radius at Cloud Base=1:0 mm

238-7 1= 000 <936 290-0
244-7 0996 <018 204-9
250+9 0-985 -965 299-6
2571 0-967 <703 304-3

Drop Radius at Cloud Base=0-5 mm

1-000 1:910 0-500 5-051 290-0 100-
0-994 1-967 0-494 5-020 204.8 78
0-919 2-026 0-477 4642 209-4 64
0-791 2-088 0-449 3-893 303-8 53

Drop Radius at Cloud Base=1:5mm

100-0 1-:000 70-73 1-500 6-502 290-0 100-
78-4 1-016  72-36 1-497 6-606 204.9 78-
62-5 1:018 74-00 1-487 6:622 299.7 62-
50-7 1-:007 75-67 1-470 6:502 304-5 50-

(e) Strength of downdraught=15 m sec—1

Radius at Cloud Base=0-2 mm

1+ 000 29,840 0-200 5-983  290-0
0-923 30,990 0-192 5-521 20446
0- 660 32,210 0-169 3-843 208-8
0:311 33,510 0-130 1-809 302-8

Drop Radius at Cloud Base=1+0mm

1000 238-7 1-000 773 290-0
1-020 2456 0-997 7-892 294-9
1-023 252-7 0+989 7-912  299-7
1- 006 2599 0-974 7-708  304-

Drop Radius at Cloud Base=0-5 mm

1-910 0-5 6:-851  200-0
1-973  0-496 6-893 204-8
2-038 0-483 6:576  209.5
2:106 0-462 5-833 304-1

Drop Radius at Cloud Base=1.5mm

1-000  70-73 1-500 8-302 290-0 100-0
1-022 72-64 1-497 8-480 9294-9 7g8-9
1-032 74-58 1-4890 8-571 299.7 2.0
1-031  76-55 1-476 3-563 304-5 49-8

*Drops evaporated before reaching ground

values of temperature and mixing ratio are ob-
tained.

Once the pressure, temperature, mixing
ratio, and f are determined in the iterative
procedure described above (27), (28) and (29)
are then used to obtain N, m and #» for the new

level.

When the quantities at the level next to the
cloud base are determined, they form the initial

1Cloud base

values from which the quantities at the next
lower level are computed. The process is continued
until the ground level is reached.

The numerical values used in the work are:
Cloud-base height=1500 m above ground.
Downdraught, speed,

wp =5, 10, and 15m see =1
Cloud-base liquid-water
content = 1, 3, and 5 gmm~3,
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CLOUD BASE ————an

5% 6 70 80 90 WO %0 €0 70 80 90

o o o g =
e (] ~
HEIGHT ABOVE GROUND (km]

e

100

RELATIVE HUMIDITY IN DOWNORAUGHT (%)

Fig. 1

Relative humidity in steady downdraughts of constant speeds, WD, starting at the cloud base with a
liquid water content of 3 gm m-? divided into drops of uniform size. Each curve is labelled in terms
of radii of drops

Radius of the raindrops
at clond base = 0°2,0°5,1°0, and 1:5 mm,

Temperature and pressure at
cloud base—= 290°K, 850 mb,
Az = 20 m.

Further, L, cp, Vg, and f were taken from the
Smithsonian Meteorological Tables with proper
interpolation - where necessary. The saturation
vapour pressure over water was determined
from the expression :

¢, = 6107 exp [a(T—b)/(T—c)]

where, €, is the saturation vapour pressure in
millibars at the temperature of 7° K, and
a —=17-2693882, b —273°-16 K, and ¢ = 35°-86 K.
This formula has been given by Murray (1967).

4. Results and Discussion

The results of the study are summarized in
Tables 1, 2, and 3. The values tabulated are those
of pi, the liquid-water content; n, the concen-
tration of drops (per unit volume):; », the radius
of the drops: 7', the temperature, and H, the
relative humidity, in the downdraught ; and
I, the intensity of rainfall. The last quantity is
computed from —

I=(wp+Vrp)pld

where & is the density of liquid water (assumed
1 gm em—3). The tabulated values are shown at
four levels, namely, at the ground, and at 500
1000, and 1500 m above ground, the last level
being the cloud base,

Some of the results also are presented graphically
in Figs. 1, 2, and 3. The figures provide more
detailed information on the nature of the vertical
distributions of humidity, temperature, and drop
size as functions of the strengths of the (constant)

downdraught. Fig. 1, showing the vertical dis-
tribution of relative humidity, has three sets
of curves, each set relating to one value of the
downdraught. In a set there are four curves,
each labelled in terms of the assumed drop radius
at the cloud base.

The solid curves in Fig. 2 showing the vertical
distributions of temperature in the .downdraught
correspond, label for label, to those in Fig. 1.
The dotted curves in the figure give temperature
distributions in the downdraught as would be
obtained if the parcels were lowered -either
wholly dry-adiabatically or wholly moist-adia-
batically.

The curves in Fig. 3 show the extent to which
the drops evaporate as they are carried down
wards in the unsaturated downdraught. This
information is useful in that it can lead to an
idea of what percentage of the water available

at the cloud base would reach ground as rain-
fall.

From a study of the tables and the figures one
immediately can see that even in the presence of
large quantities of water (which, under suitable
circumstances, are capable of giving rain in-
tensities as high as 400 mm hr—1), the down-
draught tends to remain unsaturated. The sub-
saturation is greater with smaller water content,
larger drop sizes, and stronger downdraughts.
The temperatures in the downdraught lie between
those to be obtained in the dry-adiabatic process
on the one hand and the moist-adiabatic process
on the other. The circumstances that cause greater
subsaturation tend to take the temperature
distribution closer to the dry-adiabatic.

The other important physical fact obvious
from this study is that a given liquid water
divided into a larger number of smaller drops is
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TABLE 2

Vertical distributions of thermodynamic and hydrometeoric quantities in constant downdraughts below cloud base
Cloud base liquid water content 3 gm m~3

Z Py n r I T H Py n r / T H
(km) (gm m'3) (m-‘;) (mm) (em br?) (°K) (%) (zgm m_aj (m'a] (mm) (em he ) LK) %)
(a) Strength of Downdraught=5 see !

Drop Radius at Cloud Base=0-2 mm Drop Radius at Cloud Base—0-5 mm
1:5% 3000 89,520 0-200 7-150 290-0 100-0 3-000 5,720 0-500 9-752  200-0 100-0
1-0 2-583 92,690 0-188 6-156 293-3 90-2 2-928 5,867 0-492 9-517 204-3 826
0-5 1-848 96,220 0- 166 4:106 295-8 87-1 2-640 6,016 0-472 R-268 207-8 73-6
0-0 0-945 100,000 0-131 2:099 2982 85-2 2:244 6,176 0-443 7-005 300-9 67-8
Drop Radius at Cloud Base=1-0mm Drop Radius at Cloud Base= 15 mm
1-5¢ 3+000 716+2 1- 000 12:41  290-0  100-0 3-000  212:2  1-500 14-10 2000 100.0
1-0 3-008 729-3 0-905 12-44  294-6 79-9 3:020 215-6 1496 14-20 204.7 79-3
0-5 2-935 742-9 0-981 12-14 298-9 66- 8 2-991 2191 1-843 14-06 299-2 65-1
0.0 2-792 7567-0 0-958 11-35 302-8 57-7 2-917 222-6 1-462 13-59 303-4 54-9
(b) Strenth of powndraught=10 m see-?*
Drop Radius at Cloud Base=0-2 mm Drop Radius at Cloud Base=0+5 mm
1-5¢ 3000 89,520 0200 12-556  200-0 100+0 3-000 5,720  0-500 15-15 200-0 100-0
1-0 2-728 93,000 0-191 11-41  293-9 85-8 2-989 5903 0-495 15°10 204-6 80-5
0-5 2-044 96,860 0-171 8-218 296-7 80-7 2-806 6,088 0-479 14-17 2086 68-5
0-0 1-256 101,000 0-144 6-049 299-6 76-0 2-500 6,283 0-456 12-30 302-3 60-1
Drop Radius at Cloud Base=1+*0mm Drop Radius at Cloud Base=1-5
1-5¢ 3+ 000 716-2 1:000 17-81  290-0 100-0 3-000 212-1 1-500 1950 290-7 100-0
1-0 3042 734-3 0-996 18-06 294-8 70-0 3-049 217-1 1-497 19-82 294-8 78-7
0-5 3-022 753-1 0-986 17-94 209-3 64+ 3 3-059 222-1 1-487 19-80 2905 @3-4
0-0 2-939 7723 0-968 17-24  303-6 53-8 3:030 227-2  1-471 19-57 304-0 522
(e) Strength of Downdraught=15 m sec !
Drop Radius at Cloud Base=0-2 mm Drop Radius at Cloud Base=0+5 mm
1-5% 3-000 89,520 0-200 17-95  200-0 1000 3-000 5,729  0-500  20-55  2090-0 100-0
10 2820 93,100 0:193 16-87 204-1 83-8 3-023 5920 0-496 20-71 204:7 79:7
05 2-222 97,060 0-176 13-30 2973 769 2:899 6,121 0484 19-91 298-9 66-4
0-0 1-552 101,200 0-154 9-032  300-4 70-7 2-674 6,332 0-465 17-97 302-90 57-0
Drop Radius at Cloud Base=1-0 mm Drop Radius at Cloud Base=1:5 mm
1- 5% 3-000 716-2 1+ 000 23-21  200-0  100-0 3-000 21-22 1-500 24:90 200-0 100-0
1-0 3-061 737-0 0-997 23-68 294-8 787 3-065 21-79 1-497 25-44 204-8 78-5
0-5 3:-073 758-5 0-989 23-77 299-5 63-5 3-100 22-38 1-489 25-73 2096 62-8
0-G 3-030 780+5 0-975 23-44  304-0 52-3 3-101 22-98 1-477 25:74 304-2 51-2

fCloud base

more efficient in supplying moisture to the
downdraught than the same liquid water divided
into (a smaller number of) larger drops. Now, in
reality, the liquid water in the downdraught is
divided into a population of drops of wvarying
sizes. It is easily conceivable, therefore, that the
smaller drops and droplets evaporating into the
downdraught which has just left the cloud base
will tend to keep it well near saturation so that
appreciable subsaturation will develop only
after the downdraught has descended considerably
below the cloud base .

Although the effect of a downdraught varying
with height is outside the :eope of this study one
can draw qualitativé inferences from the results
presented. Let us assume, for example, a down-
draught that increases in strength as it approaches
the ground. In this case the rate of increase

of subsaturation as the downdraught just descends
from the cloud base would be rather small but
as the downdraught strengthens this rate will
increase rapidly. Again, near the ground, the
rate of increase of subsaturation will slow down




THE UNSATURATED DOWNDRAUGHT

TABLE 3

Vertical distributions of thermodynamic and hydrometeorie quantities in constant downdraughts below cloud base
(floud base liguid-water content, 5 gm m-3.

Z P n r  { 2 H [} n r I T H
Hy oty -1 =8, =8 =1
(km) (gmm ") (m ") (mm) (emhr ) (°K) (%) (gmm ") (m ) (mm) (emhr ") (°K) (%)
(a) Strength of Dewndraught=5 m sec” !
Drop Radius at Cloud Base=0+:2 mm Drop Radius at Cloud Base=0+5 mm
1-5¢ 5:000 149,200 0200 11-92 290-0 100-0 65:000 9,549 0:500 16:25 290-0 100-0
1-0 4-534 154,600 0-191 10-81 292-9 93-4 4-905 9,784 0-493 15-95 294-0 84-8
05 3-760 160,500 0-178 8:960 295-0 93-3 4-548 10,040 0-476 14-78 296-9 79-2
0-0 2-948 166,800 0-162 6-549 207-4 91-0 4-076 10,310 0-466 1272 299-7 75-5
Drop Radius at Cloud Base=1'0mm Drop Radius at Cloud Base=1+5mm
1-5t 5-000 1,194 1-000 2068 200-0 100-0 5:000 353-7 1-500 23-51 290-0 100-0
1-0 5+018 1,216 0-995 20-76 2045 81-0 5-036  359-4 1-496 23-68 204-8 80-0
0-5 4-917 1,239 0-982 20-34 298-4 69-8 4-906 365-3 1-484 23-49 208-8 67-2
0:0 4-723 1,263 0-963 19-19 301:9 626 4-892 371-4 1-466 22-79 302-7 585
(b) Strength of Downdraught=10 m sec—?
Drop Radius at Cloud Base=0-2mm Drop Radius at Cloud Base=0+5mm
1:5% 5+ 000 149,200 0+200 20-92 290-0 100-0 5:000 9,049 0-500 256-25 290-0 100-0
1-0 4-658 155,200 0-193 19-49 203-5 89-0 4:994 9,843 0:4956 25-22 294-4 81-9
0-5 3-860 161,800 0-179 16-15 205-8 87-4 4-744 10,160 0-481 23-906 298-0 72-3
00 3-035 168,800 0-163 12-20 298-4 84-1 4.338 10,500 0-462 21.-35 301-2 6G6-1
Drop Radius at Cloud Base=1+0 mm Drop Radius at Cloud Base=1+5 mm
1- 5% 5000 1,194 1- 000 29-68 290-0 100-0 5:000 353-7 1.500 32:51 290-0 1000
1-0 5073 1,224 0+ 9964 30-11  204-7 796 5.082 361-9 1-497 33:04 294-8 79-1
05 5+048 1,256 0-9864 20-97 209-0 66-0 5-104 3703 1-487 33-18 299-3 64-6
0-0 4-931 1,289 0-9702 28-92 303-0 56-6 5-065 378-9 1-472 32-71 303-6 54-2
(e) Strength of powndraught=15 m see-?
Drop Radius at Cloud Base=0+2 mm Drop Radius at Cloud Base=0+5 mm
1- 5t 5:000 149,200 0+ 200 20-02  200-0 100-0 5:.000 9,649 0°500 34-26 200-0 100:0
1-0 4-765 155,300 0194 28-51 203-8 86-4 5:045 9,871 0-496 34-56 294-5 80-7
0-5 4-053 162,100 0-181 24.25 206-4 82-8 4-884 10210 0-485 33-46 298-5 69-2
0-0 3-250 169,300 0- 166 18-92 299-1 79-2 4-560 10,580 0-469 30-65 302-0 61-6
Drop Radius at Cloud Base=1+0 mm Drop Radius at Cloud Base=1-5 mm
1-5% 5- 000 1,194 1- 000 38-68 200-0 100-0 5-000 353-7 1-500 41-51 290-0 100-0
1-0 5103 1,229 0-997 30-48 204-8 79-1 5:109 363-3 1-497 42-41 294.8 78+8
05 5-129 1,265 0-989 39-68 209-6  64:6 5-169 373-1 1-490 42:91 2994 636
0-0 5071 1,302 0-976 39-23 303-6  53-4 5-177 383-2 1-477 42.08 303-9 52-6

on account of the slowing down of the down-
dranght.

The consequence of what has been said in the
last two paragraphs is the following :

Given the strength and horizontal distribution
of the surface gust resulting from a downdraught,
one can, with suitable assumptions, make inferences
on the strength of the downdraught somewhat,
above the ground. One also can make a measure-

tCloud base

ment of the drop-size distribution in the shower

that reaches ground. If, using these data, one

infers the subsaturation to be observed at the
ground, one is likely to come out with a value
considerably higher than that which is observed.
In other words direct application of the results
of the present study will give a much lower
humidity than that which is likely to be observed
in reality. It is no wonder, therefore, that relative

humidities observed in intense thunderstorm
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Temperature of steady downdraughts under conditions of Fig. 1. The dotted curves (ns marked) show the
relevant dry adiabatic and moist adiabatic distributions of temperature
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The decrease in the radii of the drops as they deseend from the eloud base to the ground under conditions
of Fig, 1

downdraughts (with intense precipitation) are
of the order of 70 per cent rather than 50 to 60
per cent as arrived at in the present computations.
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