Indian. J. M. Geophys. (1972), 23,2,145-152

551, 509.31

Fourier expansion techniques in objective analysis
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ABSTRACT. Cressman’s objective analysis procedure has boen intorpreted in the light of generalised Fourier
transforms and is shown as a practieal methol of local point Fourier analysis. A procedure to construct amplitudes of
the ficld ofanalysis from the grid point pseudo observations and actualstation loeationsis than discussed. The objective
analysisfield derived from thesa amplitudes compares favourahly with the subjective analysis. Possible modifieations
aresuggested for an attempt to decrease the strong bias of the psendo observations over the actual station data in the

analysis.

1. Introduetion

Objective analysis methods have gained im-
portance in Meteorology after the advent of num-
erical weather prediction in which we solve a set
of dynamic equations for tendency with respect
to time for a number of field parametors. The most
widely used method for objective analysis is by
Cressman (1959), though there are other methods
in operational use (Gandin 1963, Kruger 1967).
In this study we shall be concemed with Cress-
man’s technique.

2. Cressman’s analysis procedure and generalised Fourier

transforms

2.1. From the weighted average correction,
first reported by Bergthorssen and Doas (1955),
Cressman evolved an iterative scanning proce-
dure whereby the guess field on a regular grid point
was modified by reported observations in succes-
sive scans. The first guess value at each grid point
was adjusted by all observations lying witkin
a radins of influenc» D from the grid point. This ad-
jusred value becomes the initial guess for a succee-
ding scan of smaller radius. The number of scans
and radii are chosen to incorporate the finer details
of the analysis. The adjustment is done by giving
suitable weights to the departure of the current
observation from the interpolated value of the
guess field. Cressman used a weighting function
(D2 — R2)/(D® -+ R?) where, D is the radius of the
soan and R is the distance of the observation loca-
tion from the grid point.

2.2. The pertinent questions which arise in this
context are : y

(@) What is the role of the first guess field;
and

(b)) How does it influence the final results #

These problems were discussed by Petersen
{1967), who found theoretical support for using
the latest prognosis as the first guess. We note
that the prognosis at the time of analysis has al-
ready been incorporated in the usable information
of the previous observations. Consequently, it is
an useful parameter for the first guess. Petersen
(loe. cit) also demonstrated that for pure waves as
input, with a relatively sparse periodic array of
hypothetical observation points, the wave number
transfer funetion of Cressman’s procedure is app-
reciably broad. For a typical distribution of upper
air reporting stations this procedure transfers
aboat 409, of the input amplitude into other wave
number regions.

2:3. Cressman’s procedure may be intuitively
considered in the light of generalised Fourier trans-
forms. The following considerations are relevant.

Let the difference between the actual observation
and interpolated first guess value at the observa-
tion location, represented by S(z, ) be taken as a
correction factor in a finite domain (Z, B) around
the grid point. We represent L as the length in the
X-direction and B as the breadth in the Y-diree-

tion.

For the existance of a Fourier transform of
S (z, y) a sufficient condition is the convergence

of the integral,

+ o
f f |8 (, y)| dz dy (1

The idea motivating generalised Fourier analy-
sis is to make thiz convergence possible. To this
end we create a set of scaling functions Gy (z, y),
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Fig. 1. Actual wind field on 1 July 1965
(00Z) at 500 mb

where, R is a real number with the following pro-
perties &
(¥) Gr (2,y) >0 @)
R+ c

As R+ <, Gy approaches zero, and the pro-
duect S(z, y) Gg (z, y) becomes convergent and
mtegrable. It will thus have a Fourier transform.

(ii) The second property of the secaling functions
is that,
when ‘R— 0, Gy (z, y)>1 (3)

The sequence Gj(z, y) defines a generalised
function such that,

+ + ®
Rl_i;?)fJ.GR (2, 9) S (z,y) dz dy— ffS(w, y)dzdy (1)
—ar

—_—

In this respect it is different from another well
known generalised function, namely, the delta
function.

A function with these properties is,
—RD?

Gr (@ g)=c
where, R? = (2244%) and D is any real number.

Let us consider the scaling funetion in Cress-
man’s method from this point of view. If R (=
1/2244%) becomes large and approaches its maxi-
mum value D, the scaling function @y (z, y) app-
roaches zero. Secondly, as the distance decreases
and ultimately the station location coincides with

the grid point , Gz (%, y) becomes one. This im-
plies that the effect of station observations in
modifying a grid point value falls off rapidly, and
vanishes completely as the distance from the stat-
ion to the grid point approaches the scan distance
D. The scaling function of Cressman’s procedure
has the form exp. {—2R?/(R*+D?)} whose ex-
pansion upto the first two terms yields the cus-
tomary weighting function (D*—R?)/(D24-R2).

Let us consider a circular domain of scan radius
D around a grid poinf. The fundamental wave-
numbers in X and Y directions are k—27/D;
1 =27/D, and the correction factors in station loca-
tions are S(R.8), where, (R,0) represent the polar
coordinates of a station. The Fourier transform
H(m, n)=a(m, n) + ib (m, n) in the domain is,

D27
DR

X exp.[—iR (mcos@ | nsin )] RARdf  (5)

where, m and n are the indices of the mth and »th
harmonics of the fundamental wave numbers [
and ! respectively.

A k= £=2TTI_D, ]|) I“DSG“_—X:z.’(m;
R sin 0 =Y =1y

fm=n=0
D 2w

Dt —R2

An average of the weighted correction factors
from station location is,
D 2x

D2 __Re
S(R,0)——— RAR 16
.” ( )D‘HLR2 ) H(0.0)
D2 b | T Tape o)

J.J.R dR d8

In Cressman’s analysis the average weigh‘ed cor-
rection factors around a grid point is used to modify
the grid point value. Consequently, we infer that the
modifications are only with respect to H(0,0), and
the higher harmonics are not taken into aceount.
To compensate for this in a practical way, the
scan length was decreased in a sequential manner
and the process was repeated for a fixed number
of scans. The reporting stations in the circular
scan area around a grid point must be uniformly
scattered on all sides to get the best results. More-
over, if there are no common stations in the scan
circles around two contiguous grid points, this
method will not have continuity throughout the
field.
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TABLE 1
Number of Number of
Fourier terms for
Stage components Description least square
added analysis
I 1 m=0 1
n=>0
: i 2 m=1 0 3
n=0 1
111 4 m=2110 7
a=0 1-1 2
v 6 m=322110 13
a=0 1-12-2 3
A4 8 m=43322110 21
n=0 1-1 2-2 3-3 4
Y1 10 m=5443322110 31
n=01-12-23-34-4 5
VI 12 m=656443322110 43
n=( 1-1 2-2 3-3 4-4 5-5 6

3. Method of Fourier analysis in this study

3.1. Motion in the atmosphere occurs on sev-
eral scales, ranging from the smallest turbulent
eddies to very large planetary waves. The instan-
taneous field is an en semble of infinite Fourier
components. In meteorological processes our main
aim is to represent the scale of Rossby waves.
Thus we adopt a diserete Fourier analysis to de-
pict the synoptic scales of motion to the maxi-
mum extent possible. This study consists of two
parts :

(a) Obtaining the amplitude of the sealar
guess-field by finite Fourier analysis, and

(h) Meshing the station observations with the
first guess-field as in (@) with proper scal-
ing functions. The procedures have been
outlined in appendices I and II.

3.2. Case study 1

To find out how best the method detailed in
Appendix I may be applied in the analysis pro-
cedure, we first computed the amplitudes of a
subjectively analysed wind field at regular grid

points. From these amplitudes, the grid point
winds were reconstructed and the fit was examin-
ed by comparing the kinetic energy (K.E.) of the
reconstructed field, with the K.E. of the initial
field. These caleulations were made on several
500 mb winds during the south-west monsoon.
One case is discussed here.

The analysed wind data over a grid from 40° N to
the equator and 65° E to 110° E at 2-5° intervals
for 1 July 1965 at 500 mb (Fig. 1) was split
into scalar U and ¥V components, The fundamental
wave lengths selected were 90 degrees along
both X and Y (east-west and south-north) dir-
ections. The harmonics were added in seven stages
as in Table 1 upto a number of 43. The R.M.8.
error diminished at each stage with the addition
of more terms in the analysis of U and V fields
as shown in Fig. 2. The computed K.E. was 959,
of the K.E. in the actual grid point data input.
The actual and computed wind fields (Fig. 1 and
Fig. 4 respectively) show good agreement.

+3.3. To compute the amplitudes of the wave
components from irregularly spaced observations,
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Fig. 3 Fig. 5

Percentage of computed/actual kinetic energy

L i ot Subjective analysis of station observations on
ield in stages

1 July 1965 (12 Z) at 500 mb

Fig. 4 Fig. 6

Computed wind field on 1 July 1965 (00 Z) at 500 mb v Analysis by Fourier method of wind field on 1 July
1965 (12 Z) at 500 mb
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the first guess field at regular grid points may be
considered as pseudo-observation points. They
are in addition to the actual observations at re-
porting stations to provide a dense network. The
computations are simplified by taking the funda-
mental wavelengths in the X and Y directions
as the length and breadth of the domain. Details
are shown in Appendix II.

3-4. Case study 2

The first guess grid point values of wind data on
1 July 1966 (00Z) at 500 mb and the station observa-
tions (Fig. ) on 1 July 1965 (12 GMT) 500 mb were
used to construct the amplitudes of the field as
described in Appendix II. As the harmonies were
added in stages (Table 1) the small scale features
appeared progressively in stages. The total K.E.
at station locations computed from the amplitudes
of U and V of the reconstructed field was about
849, of the total K.E. contained in the initial data.
The objectively analysed winds for the situation
under study is shown in Fig. 5. There was general
agreement between the analysis shown in Fig. 5

(subjective) and Fig. 6 (objective) from synoptic
point of view.

There is little doubt that the pseudo-observa-
tions give a strong bias to the analysis. This is
probably because we have considered 323 pseudo-
points (17x19) compared to only 50 station ob-
servations. The weighting procedure for computing
the area integral may need revision to give more
weightage to station observations. In future ex-
periments, the number of pseudo points will be
reduced.

4, Coneclusion

The study shows that Fourier expansions may
be used in objective analysis. In this method the
properties of the field as a whole are considered
for computing the amplitudes once the grid point
first guess-field is suitably scaled by the station
observations,
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Appendix I

Me'hod of representing a scalar field by a finite double Fourier series in a rectangular domain

For numerical computations the domain is a lattice of grid points at grid intervals % and S(I, J) is
the analysed scalar value at a grid point (1, J). The coordinates are z; — (I — 1)k and yy — (J — 1)h
from the origin. Let H(m,n) be the amplitude of a harmonic wave component of the sealar field: wm and »
represent the mth and n'h harmonies of the fundamental wave numbers & and I along X and Y direetions
with their respective limits M and N. Let,

M

N
Z me. n)exp. (i e fly) Am An = F(LJ) (1)
—N

0

Theoretically the summation should he from —M to | M for m and —N to - N for n. But in
practice to save computation time only limited number of harmonics are taken in both the directions. The final
analysis of the field results from a best fit representation of all the included harmonies. Trial runs were
made with limits from 0 to M for » and 0 to N for n but the orientation of the ridges and troughs in the
initial field were not represented properly in the computed field. More harmonics were added by taking the
limits for # from —N to N. This brought the trough ridge orientation in the computed field to the correct
phase.

Since the grid point values S(I,7) are real we treat F(I,.J) as real. We have,

M N

-ZZ[M»&. n)ycos@ —b(m,n)sin® ] Am An=F(I,J)

0 —N

where, I (m, n ) = a(m,n) -+ ib(m,7) and
0 = mkx; + nlyy

H(myn) values are caleulated by the method of least squares. For this the total error is E, where,

Inlﬂl max

fzz[su..r)—ﬁ‘(!,-f)l“ (3

I=1Jal
is a minimnum. Ipx, J,0x tefer to the number of grid points along the X and Y directions respectively.

The necessary conditions for E to be a minimum are,

oF i ok

S o T — — =0
au (m, n ) ah (m, n )

This is put in the matrix form,
[T1[Q]=I[R]
where, [7'] is a square matrix, and [Q] and [R] are column matrices,
Construction of matriz [T1]

The first row contains the clements cos (mkz; + nlyy) and —sin (mkz; - nly;). For each set of values
of m and » the summations for all grid points ave obtained. Thus we have,
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Im:‘x Jmhl :

221 ZZCOS kxy chos(k:v:—{—ﬂlyJ) .0 ZZ—-Sinhm...
I=1 J=1

m =) m =1 m=1 m = m =1

W= =0 =1 n = () n=1{0

The subsequent rows of the matrix are formed by multiplying the first row of elements by the second, third,
‘ete elements. Then the summation at all grid points are obtained. Thus we have,

Imax Jm nx

S
2nd Row Z Z 1. cos kz; Z 31 cos kx; cos kx; Z Zcos (kxy + ly.s) cos kxy
o, sy oo

max J mix

I
3rd Row Z Z 1. cos (key + lys) Z Zi[ L R TR R et S TN S

I=1 J=i

and so on till the last row.

Clolumn matria [ Q |

[@Q) is a column matrix of @ (m,n) and b(m,n) as shown below :

[ rt(ﬂ,ﬂ)
a(1.0)
a(0,1)
for all m, n
Q1= 550,0) o<m M
b(1,0) —Ngng N
b(0,1)
L J

Column matriz [R)

This is another column matrix obtained by multiplying S(I,J) by cos (mkz; + nly;) and—sin (mkz,+nly,)
and summing up at all grid points for each pair of values (m,n) as below :

[ Ill‘iﬂ: Jnl‘x
ZS(I,J) m=0;n =0

I=1 J=1 |
I

Z Zb’{l, J ) cos ke,
m= ;=0

0
Z S —s(Laysinky | forallmn
< |

J 0=zm>M
L NSana2N

[B]=

-

The matrix Eq. (4) is then solved to obtain the solution vector Q and hence we evalnate the amplitudes
a(m,n) and b(m,n). Knowing the coefficients a and b we get the grid point values F (I,J) from (1),
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Appendix 11

The computations in Appendix I can be simplified if the fundamental wave numbers & and I are taken as
k = 2n/L and | = 2m/B, where L is the length and B is the breadth of the domain. Due to the orthogona-
lity of trigonometric functions, the matrix 7" in Eq. (4) becomes a column vector of elements,

(— IIHIII Jm-ix ]

T chsﬁ (mkxy - nlyy)

/
=1 J=1 For all m, »

. L0 mg M
I Im"l ']m.-.x — Q n ;g N (l)

5 Zsin'-’ imkz; - nlyy)

[

~

Hence.
ln- X 1 max

ZS( I, J) cos (mkz; + nlyy )
=1
1 (2)

I\

[T I

a(m,n) =

max

2.4(‘-052 (mbx; - nlyy)

I=1 J=

maXxX

(==

and Im.'.x Jmn:

I=1 J=1
= (3)

b(m,n) = —




