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ABSTRACT. A mathematical method is developed to calculate the value of any parameter at a grid-point frem
its average values over three squares symmetric around the point. The weighting functions are derived from the
dimensions of the scanning squares. This procedure takes into account all differentials below the sixth order
in a Taylor expansion. Truneation error due to neglect of higher order differentials is assessed. Certain refine ments
to the weighting functions due to wusing finite number of observations in scanning squares are intreduced.
Modifieation and suppression of small waves are diseussed in relation to scan-length, average distance between
observatories and their random distribution. The method was tried on long and short waves by a numerical
experiment.

1, Introduction to objective analysis

Weather data are available for irregularly spaced network of observing stations. Analysis of any weather
parameter on the chart is made by drawing a set of isopleths at chosen interval of the parameter values.
The run of the isopleths is fixed by visual inspection and interpolation and the isopleths are then smoothed.
Prior knowledge of the disposition of isopleths associated with known synoptic scales is also used. The above
processes are subjective and to that extent the analysis is bound to be subjective also. The process of smooth-
ing suppresses meso-scale features and allows a study of macro-scale synoptic features. The variation of the
meteorological parameters is generally nonlinear and therefore interpolation by inspection as described
above may not be very accurate and certainly not unique. Further, for numerical methods of prognosis
interpolated values of the parameters are required at fixed grid points. The grid point values of the para-
meter assessed by interpolation from the above isopleth analysis is likely to be more subjective and
uncertain,

Workers in the field of numerical weather prediction have been striving to work out an objective method
of analysing the weather chart. By objective method is meant using a specified scheme of interpolation to
obtain uniquely the values of the meteorological parameters over a rectangular matrix of locations from an
irregularly spaced network of data.

There are basically two distinct and broad approaches to the problem of objective analysis — (a) Sur-
face fitting techniques and (b) Weighted average correction techniques,

1.1, Suzface fitting techniques

(i) Ezact fitting — Panofsky (1949) used the exact surface fitting method for the analysis of synoptic
meteorological features, In this method a polynomial of n** degree in # and y,

P = X aziyi E+i<n)
which contains } (n + 1) (n 4 2) constants is fitted to a field of scalar variable at} (n <+ 1) (n 4 2)
observation points and the values of the parameter at fixed grid points in the field are evaluated from the

above polynomial. Objective analyses are carried out in France by the approximation of the field throughout
the area of the analysis with the help of spherical functions of geographical coordinates.

(i1) Least square fitting— As a variation of the above method, a polynomial can also be fitted approxi-
mately by the least square fitting technique. Usuallya quadratic surface is fitted over a region
having data from at least 12 observation points (Cressman 1957). For obtaining a better fit of the analysed
grid point value to the values at the stations nearby, squared differences are weighted
with a factor inversely proportional to the distance, The weighting factor used is I'/l, where, I

467




468 Y. P. RAO, K. 8. RAMAMURTI axp M. C. SINHA

is the distance of the observation point from the grid point and I’ that of the nearest observation. Therefore
instead of minimising £ E2, Z (I'/l) E* is minimised. E is the difference between the observed and
calculated values.

The methods of surface fitting are cumbersome and time consuming and are not generally favoured for
routine use.

1.2. Weighted average correction lechniques

Bergthorssen and Doos (1955) have evolved a met hod of weighted average correction technique, which
has been modified as a simplified iterative scheme by Cressman (1957), and forms the basis of the method
used by many for the routine operational numerical analysis. Cressman (1959) later modified the above
method as an iterative scheme.

1.3. An eptimal tnterpolation method
An optimal interpolation method has been developed by Gandin (1960, 1963) and the USSR School. In

this method interpolation weights are determined from data on the auto-correlation function of the
parameter being analysed, so that the mean square error of the analysis is minimal.

Though the above method of finding the grid point values is one of weighted average of neighbouring
observations, ease of application and rationale of the weighting factors is not satisfactory, except that nearer
observations are given a higher weightage. An appreciation of the accuracies of the various techniques is
given by Gandin and Lugina (1969). In the following pages the authors have attempted to develop a mathe-
matical model for assessing the grid point values of meteorological parameters.

2. Grid point values from average over an area

The problem is to find the grid point value from those at a number of points around. Let f (z, ) represent
the value of the parameter under consideration at any point x and y in the neighbourhood of a grid point,
coordinates assumed to be  — 0 and » — 0. Expanding f(, y) in the neighbourhood of the grid point,
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The average value of f (z, y) over a square symmetrical around the grid point and of side 2d is-—
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Working out a similar mean value of the functions in the right hand side,
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If averaging is done over three squares of sides 24, 2e and 2g respectively, neglecting the sixth and higher
order differentials we get,

fa=f+@P+dQ, fi=f+eP+eQ fi=f+@P+pQ (3)
The set of Eqns. (3) can be solved to give a unique value for 7 in terms of fur f. and I
f = wafa + wdf; + wof; (4)
R  PBR@—g) B (2
G A e T ¢ S e (5)
B = (d* — ) (*—¢?) (4* — d?) (6)

This would suggest that the value of the parameter at a grid point can be assessed to an accuracy of fifth
order differentials of the function representing the parameter in its neighbourhood by suitably weighting
the means of observations around the grid point. In the above scheme the average values of the function
within three squares sym1.etric around the origin, 7, f, and f,, are found and these are weighted by ‘weight-
ing factors’ ws, @, and w, (which are functions of d, e and ¢ only) respectively to find the values of the
parameter at the grid point. In practice the values of f; ete have to be taken as the mean of the values at
the available observatories within the appropriate squares. The difference between fa and the average
of finite number of points will be dealt with in a later section. At thisstage it may be mentioned that the
above method assumes Taylor expansion of the function to be valid in the neighbourhood, and that the
sum of terms beyond the fifth is comparatively negligible. It will however be clear that in the case of a
wave function the accuracy is dependent on the wave length with reference to the scan distance,

‘Scans’ within a circular field around the grid point also give similar results, but d, e and g now refer to
the radii of the scan circles. But in terms of computer time, it is preferable to use a square field.

It is interesting to note that the above method of assessing f (0, 0) as a weighted mean of three scan
averages is equivalent to fitting a fifth order polynomial for the field in the neighbourhood and assessing
J (0, 0) from this polynomial.

8. Truncation error

In the above method of caleulating f (0, 0), there will be a truncation error due to neglect of differential
higher than the fourth. To illustrate this point we shall expand the right hand side of fa, fo and f, (vide
Eq. 2) fully as—
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and two similar terms for £ and f.

The error £ in the value of f caleulated by (4) will be —
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In order to get a rough estimate of the order and nature of the truncation error, let us assume a simple sine
function to represent the spatial distribution of the parameter. We take,

/(2. 9) = sin (—;‘1;’— %+ rﬁ) ©)
for all y and substitute in (8). The value of E can then be compared with f(0,0) = f = sin 4.
§if_¢>°'-= -:(i;-)h 47-—![-— (wa 4% + we ® + wy 9°) — (3;—)8“9-:—— (wi d® + we €® + wgg®) +.... (10)
Setting 11;—’, =0, :-Z;TTE = B and %j\iq =y
e M (ar — T e e )+
s "E (_f:_ ﬁ_g‘:_ o 1‘8:: S5 e wime siee ey s )+
+- (—’.::—~ ;ﬁ' +1”]u B )
a5 e (B ) 4

+w9( — ;;1;,, +1— _:;:1 + —yj—) (11)

The ratio of the dimensions of the ‘scanning’ squares to the wavelength of the function determines the
truncation errors. Table 1 gives the values of E/sin ¢ for certain values of g/]A and d:e:g.

TABLE 1
Wave of E/sin ¢ (Truncation error)

g/A gle=2,¢/d =2 gle =38, e/d =3
1 4-0-08 —0- 016
0-5 40004 -0+ 0003

Either by making the largest dimensions of the scanning square half the wavelength or by taking a
greater ratio between the scanning squares, the error can be kept below two per cent. For short wave-
lengths, the truncation error increases very rapidly as the fourth power of the ratios of scan lengths tothe
wavelength.

*[n the special case of sin ¢=0 or heing some integral multiple of £ can be discussed by transferring sin ¢ to the
right hand side.
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4. Difference in mean due to the finite number of points in scanning squares

To take into account the positions of observatories in a scanning square, we may express their coordi-
nates as the sum of a regular spacing and a random variation. Considera lattice with separationa between
successive lines. The lines are also numbered starting from 0 'hrough the origin, positive on increasing sides
of  and y and negative on decreasing sides. If the observatories were regularly spaced they would be
located at the intersections of the lines. The observatory which should be at the intersection of the rth
(# =constant) and s* (y= constant) lines be regarded as displaced by €, in the z-direction and e,
in the y-direction. All the ¢’s are random numbers with zero mean and ¢, standard deviation. Thus the
coordinates of the (r, s) observatory will be —

 (r, 8) = ar + ) y(r; 8) = as + 4,

st} =1 (arts) 2o () 2s 3 (o)} 24

2 g2 )
4 -—-21’—( as+eg(r)) 1) +_')IT (a.r-l—e,{s) ) ( o + o ) £ +

3y 37 3y
y,;—l,( ar -+ ef,) )3 _:3?';-;- ?:%1( ar + er(s})2 (as + ) ) 52:—‘;] + —-;?—? (ar 4+ fAs)) X
X (ﬂs+ eam)z 33:'; P + ;! (as + %))s %4’ —é!— (ar + €9 )4 —3% +
+ :C;’ (ar + €4 )3 (as -+ ex{,.)) 32741;‘;'" Z?B (ar + €1 )2 (as + Fsm)z 5_:::_72 +
+ 8 (wtow) (s0ton) s2he s (wha) Loy

Each of the terms on the right hand side has to be averaged between  — —n to +nand s.= —n to +n. It may
be noted that na = d,

As 1,3,¢4,) and e,)are mutually uncorrelated, it can be shown that for integral values of N, product
moment of any two of them each raised to odd or even powers is as given below ;
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X represents oe a8 & funetion of the mean distance between stations. If we assume X<} and justifiably neg-
leet terms involving n—2, n~3 and n 4

f[a:{r,s),y('r,s)] :f+(1+%‘)dzp+(l+%-)de (15)

This equation differs from Eq.(2) in that the coefficients of P and Q (i.e., d® and d* of Eq. 2) are now multi -
plied by (141 [n) and (14-2/n) respeqtively. The three equations of Eq. (3) as modified by the factors (1-}-1 [n)

and (1-+2/n) now form the appropriate equations to solve for f. Depending upon the value of n which is
related to the number of observatories in the scanning squares, equations (14) and (15) may be used.

5. Medification and suppression of waves

Let us consider the effect of the method set out earlier, viz., the method of weighted averaging.
on modifying the actual values of the parameter at the grid points. For simplicity, let us consider
a one-dimensional field in which the parameter is distributed according to a sine-formula, say,
f =sin [(27[A)  + #]. The assessed mean grid point value at X —0is:

9
A-d 4+ d sin 2wd

> 9
J' i (_“Al o+ ¢.) dw/f dz = sin ¢ ﬁ‘f}z‘ (16)
A

il —d
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Table 2 shows the value of sin ( %) / ( @) for different values of d/A from 0-1 to 1+5, The value of

fais zero when d/A = N/2, where N is any integer. As ¢ and g are usually integral multiples of d, the values

of f, and f, will also be zero. Cases of fa=fi= Jo =0 in the system of equations (3) leads to the solution
of f=0. This is equivalent to such waves being suppressed. Hence all waves of wavelength A,;=2d/N whered
is the lowest scan length, will be suppressed.

The cases of other short wavelengths can also be considered. For a given ratio of d:e: g, the weigh-
ting factors wa, w. and w, are fixed. Hence once the ratio d/A is fixed, the value derived by Eq. (3) for the
grid point may be written as —

. 2wd .. 2xwe . 27mg
sn — 8in —-— fin ===
Joj= g ( el T i e )
g A A
As f is actually sin ¢ at the grid-point,
2wd 2me 2ng
s —A—- sin ) 81N ————
£ il 217_1_ Lot 2we R i g (19
g 7 ) A

where, f. is the caloulated and f the actual value of the parameter at the grid point.

For the ratio dfe = elg = 1/2, f,[ f is also tabulated in Table 2. The chief points to note are
that when the dimension of the shortest scan becomes comparable with or less than the wavelength of
the sine wave, the computed value at the grid-pointisonly asmall fraction of the actual value, that is a
partial ora more complete suppression of the wave occurs. In some cases, the sign of the caleulated value
may be systematically opposite of the actual. Waves, a few times shorter than the shortest scan distance are
completely suppressed.

We may now consider modification and suppression of waves by averaging the values at a finite number
of observing points. Considering again in one dimension and writing z = ar + e,

r=-1n
= 1 . {2dn :
fd!l: 2n+1 Blnl A (ar-{—e,)—f—:ﬁf
Fe==—

r=J4n
1 2 F . f 2w 2me, 2 . 2me,
e {sm(Tar-}-é)cos 3 +cos(Tar+¢)sm 3 }(18)
r=—n

£ et 27 e, o o 2m
As discussed earlier sin ( 2: ar + fﬁ), or Cos ( —2—;1 ar -+ 4’)) and cos ( ”; ) or sin (—;’ ) are

uncorrelated. Hence,
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TABLE 2

Ratio of caleulated values of parameter to actual value

for a sine wave

d/A sin (2nd’A) o f
T 2ndlA

-1 0-95 1-00
-2 077 098
+3 0-51 0-79
4 0-24 0-42
5 00 0.0
-6 ~0+16 —0-29
-7 —()- 22 —0- 34
-8 —0-10 —0- 24
-9 —0-10 0-10
1-0 0-0 0-0
1-1 L0-00 4010
1-2 4-0-13 10+ 16
1-3 0-12 +0-19
1-4 +0-07 0-13
1-5 0-0 0-0
d="The shortest scan length, A=Wavelength

er1de=gte=

a2
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TABLE 3

Ratio of the caleulated value of the parameter
to actual value

a'A Je'if
1/3 —0-04
1/4 —0-14
1/5 0+05
1/6 0-24
1/7 0-49
1/8 )77
1/9 0- 806
1/10 0-90
1/11 (- 094
1/12 0-98
1/13 0-99
1/14 0-99
1/15 1-00

a = Grid length=NMean spacing of observatories
Shortest sean length=2a=d g =a

A=Wavelength die 2

If ¢, is normally distributed, it can be shown that for an infinite sample,

2 9 72 g2 B)
cos - €, = exp (__ r{\;€ i ) and sin ——— €, = 0
We write,
r=-n
2 9l g2
77!— T cos | = T € & oxp _ e :"e )
2041 Ly A A2
r=—n
r=-1n
9
rﬁL T sin (=75 ) ~0.
20 +1 L, A
r=-—n
Hence,
— ) 2 w2 2 (qi“ y 1 ( 9 o M TG (n 4+ 1) =a - na 1 )
./"u = [0‘\]:] _Ae’ O \" b CRTNE ( 08 ; 1 — — s0C 5

provided a/) is not an integer.
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gin ¢, cos and sin ~ " cannot exceed 1. Except in a very narrow range of value of a/A

nwa (n+1)ra
A

(the neighbourhood of integral values of /A which is excluded) cosec s a/A caamot counteract the effect of

2 82 T 2 5.2
exp (— 2; = ) When A is equal to o or less, f,, ~ 0. We may define a A, as exp(—- 2 :cg 0‘_) =001
and regard all values of A << A, as suppressed. This gives,
- by e T
hfoe = Moo= 13 ™2 (20)

All wavelengths equal to twice o, or shorter are suppressed on account of the random distribution of tle
observatories, Eq. (20) is not valid when a/} is an integer. But a similar result can be derived for these cases
also. It appears that rando:r: distribution of observation roints is a powerful tool to suppress small waves. In
the ease of continuous integration, suppression of waves was dependent upon the relationship of scan dis-
tances to wave length. And discrete randomised observatories lea's to suppression of small waves when the
wavelength is less than 20.. The condition of 2 an/A = 2d/A being integer does not now lead to su,., ression
of such waves.

The retrieval of wave form for different values of A can also be studied in this case,

3 9 72 g2 . )
Ja=an :[exp(—Mr B )](sinqﬁ)—-l—{zcos ﬂ;:a sin (n—!-;mu cosec L):I—— 1 }

A2 2n 41
= 2 72 g2 . 1 _ Mmwa . (2n+41)ma e
= s il —.. . 5 8 T L
Je=2an [exp ( 3 )] (s ¢) rrE ) {., D=~y 3 cosee — 1 }
= - 2 gl . 1 i dnme . (40 4 1) ma e
Jymtan = [ exp (_—,\T_)] (sin ¢) el 2 cos 3 8in 3 cosec 3 1 }

(21)
Representing the calculated grid-point value as f',

fc' — wdfd <+ wefc + wgfy-
For different ratios of a/), values of f,’/f are tabulated in Table 3, taking ce = a

As the wavelength increases in proportion to the grid-length (equal to o ) the ratio of f, to the actual
value increases. Only when the wavelength is eight times the grid-distance, the calculated am plitude will be
about three quarters of the actual amplitude. When a single wave is present, the calculated amplitude of the
wave i no doubt less than its original value but as their ratio is the same .t all points the shape of the wave is
not distorted. When two waves of different wavelengths are present, their amplitudes are modified to
differeent extends so that the shape of the resulting wave based on calculated values is distorted from
the original.

6. Numerieal experiments

The above scheme of finding grid-point values was tried in a numerical experiment. A @, y grid of 31X 21
at equal spacing was used. On the average one observatory was alloted to each grid square. The positions
of the observatories were randomized by fixing them at distances of ¢, along the X-axis and of ¢, along
the Y-axis from the chosen grid point. e, and ¢, are random numbers with zero mean and standard devia-
tion (e ) equal to one grid length. Fig. 2 gives the actual distribution of observatories in the chosen field.
Values of the parameter at the observatories were derived according to an assumed function. From these
observatory values, the values at the grid-points were calculated by the above scheme and compared with
the values derived from the assumed distribution function.

The smallest scan distance was taken as two grid-lengths (d=2a) and efd = gfe= 2. With this scheme
and using Eq. (14), the weighting factors g, w, and w, are respectively 1-93, — 100 and 0°07. There is
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a slight approximation in arriving at these weighting factors. In equation (14), the coefficient of a'f/ax*ay?
is not: the same multiple of the coefficient of (a%f/aa) - ( 3%f/ay*) in the three scans. But as the differences are
not very large and as the influence of the largest scans is very small the error on account of this approxima-
tion is negligible. As the outermost scan was over a square of side 16 grid-lengths, grid-point values could
be calculated only for less number of points than the grid-points.

The parametric distribution functions tried were —

T

2
(1) [y = [1 —0°01 (y — 10)2] sin "{5

and (i1) f(z,y) = [l — 001 (y — 10)2] ( sin %}]r_:— -+ sin g—ﬂ:—) (23)

The distance z was measured in units of grid-length.

By the method of three scans and weighted average, the values at the grid-points were calculated and
compared with the grid-point values expected from the known functional formula. This was done both for
a single sine wave (Eq. 22) and for a sinewave with a superposed short wave (Eq. 23). Scan length sets of
2,4, 8as well as 3, 6, 8 were used. A pictorial comparison of the calculated and actual values along the
chosen X-axes are given in Figs. 3, 4, 5 and 6.

The relevant features noticed about the calculated values are —

(i) The mean deviation in the case of single wave of wavelength 15 grid is about 012 of the ampli-
tude.

(#) Computed amplitude of the wave is 10 to 20 per cent more than the actual value,
(i) Abrupt differences in errors are some times noticed between neighbouring points.

() When the short and long waves (both of equal amplitude) are introduced, the amplitude of the
short wave is reduced considerably (to less than 50 per cent) but the wave is not eliminated

completely.

(v) When nine-point smoothing is carried out, the short wave is completely suppressed and the cal-
culated values correspond well with the expected values of single long wave. Hence the method of
computation combined with nine-point smoothing seems to be quite successful in suppressing
waves of short wavelength and representing the long wave pattern truthfully,

The discrepancies between actual and computed values, particularly the partial suppression of short
waves, may be due to the rather small number of observations in the smallest scanning square as against
the infinite population assumed for the theoretical derivations.

7. Conclusions
1. Preliminary trials indicate that the mathematical method developed in the note could be used to
calculate grid-point values to a good degree of accuracy.

2. The method consists of simple averaging of values in three separate scans and hence takes less
computational time than the other methods. From the low weighting factors for the largest scan, it
would appear that even two scans are sufficient.

3. This method is capable of suppressing short waves,

4. The method is not empirical but based on mathematical formulation.




478 Y. P. RAO, K. 8. RAMAMURTI axp M. C. SINHA

REFERENCES

Bergthorssen, P. and Déos, B. 1955 Tellus. T, 3, pp. 329-340.
Cressman, G. P. 1957 ‘An objective analysis study’ Tech. Memo. No. 12,

Joint Numerical Weather Predietion Unit.
1950 Mon. Weath, Rev., 87, 10, pp. 367-374.

Gandin, L. 8. 1960 “The optimum interpolation and extrapolation of
meteorological fields,” Glavnaia Geofiz. Obs,,
I'rudy, 114, pp. 75-80.

1063 The Objective Analysis of Meteorological Fields',
Leningrad  Gidrometeoizdat.

Gandin, L. 8. and Lugina, K. M, 16969 A comprrison of the aceuracy of objective analyeis’,
MG Bull. 18, 2, pp. 86-90,

Panofsky. H. A. 1944 J. Mel., 6, pp. 386-392.




