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Effect of low velocity channel on SH wave
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ABSTRACT. The propagation of SH wave was investigated using the velocity distribution function compatible
with the actual distribution of shear wave velocity inside the earth. The constants involving the velocity distribution
function were calculated from Gutenberg-Birch model and the results disoussed.

1. Introduction

The distribution of velocity of seismie body waves inside the earth is known today with good
amount of certainty. In spite of some differences of opinion regarding some small zones of the earth,
specially the ‘mantle basement’ and ‘innercore’, this difference has not affected the interpretation of
teleseisma.

In this field Gutenberg and Jeffreys independently have done pioneering work and the travel
time curves have now arrived at a reliable velocity distribution of seismic waves inside the earth.
The results of these two authors, however, differ slightly with regard to tbe region that ranges from
a depth of about 40 km, i.e., immediately below the Mohorovicic discontinuity, to a depth of about
350 km in the upper mantle.

It has been observed that in the case of earthquakes of crustal origin, the observed amplitudes
of the body waves are markedly reduced at epicentral distances ranging between b to 156 degrees
(Gutenberg 1926, 1959b). In order to explain this, Gutenberg (1926) postulated a low velocity
channel in the upper mantle, known as the ‘asthenosphere’. This was also earlier pointed out
by Barrel (1914) from his work on isostasy.

The validity of this hypothesis was further supported by Gutenberg (1959 a) during the last 20
years. Many authors have supported the view that there is a decrease with depth in the velocity of P
and S8 waves immediately below the Mohorovicic discontinuity. The velocity reaches its minimum
at a depth of about 140 km for transverse waves and a bit less for the longitudinal waves. Caloi
(1967) supported this hypothesis on the basis of the existence of channel waves Pa and Sa propa-
gated in the asthenosphere, The mechanism of propagation of the waves in a channel and their
arrival on the earth’s surface is different from that of the normal body waves. Body waves appear
on seismograms as impulses and often consist of a single impulse only, whereas channel waves appear

to be of wave trains due to their propagation through different layers in which seismic wave
velocities vary.

Alterman, Jarosch and Pekeris (1962) while studying the observational data of the mantle for
the propagation of Rayleigh waves have supported the existence of a low velocity channel in the upper
mantle. Takeuchi, Press and Kabayashi (1959) also showed the validity of the above conclusion
from the studies of surface waves.

In the present study the authors have made an attempt to caleulate the displacement of SH
waves at various distances on the earth’s surface on the assumption of a velocity variation of shear
waves at different depths. The Gutenberg-Birch model (Anderson 1964) has been used in cal-
culating the values of the constants occurring in the velocity distribution function,
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2. Basic equation and solution of the problem

Let us consider a source on the free surface of a semi-infinite elastic medium producing a distur-
bance which is symmetrical about z-axis. The positive direction of z-axis is vertically downwards
into the medium and is perpendicular to the free surface. Using cylindrical eoordinates », 9, z and
applying the symmetry about the axis, the equation of motion for SH wave can be written as —
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Applying Hankel transformation to the equation (2) and using the well known relations
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Here pg, #y and p, are constants and depend on the velocity variation of shear wave. Substituting
(4) in (3) we get,
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Substituting Tzlh = 2%
wd  aee) = iR at) = f@o
We have,
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Now equation (5) can be expressed in the form :
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Equation (6) represents the Hill’s equation and by Floquets theorem (Magnus and Winkler 1966)
this equation has the solution

f(@) = Aei®?py(2) + Bei®? py(z)
where p,(x) and py(z) are periodic functions with period .
Now defining functions w, and w, as
W = —wy+wy, W= —oy—iy

equibion (6) is equivalent to a system of linear differential equations
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Golomb (1958) (c. f. Magnus and Winkler 1966) has shown that « can be determined from the
equation
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[n the present case we have
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Since g, is small, solution (7) can be applied in the present case.

Let us choose  py(x) = pa(®) = cos 2z
8o that
f(z, & = [Ae® 4 Beriaz] os % (7a)

where 4 and B are constants and can be determined from the houndary conditions.

The boundary condition on the surface is
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where S is a constant depending on the source.
Now when « is real, equation (7a) becomes
f(x€) = (4} Bycosawz i (A—B)sina x] cos 2

The condition in (9) shows that in this case the constants A and B are imaginary, and hence to make
the displacement to be real we require
A}+B = 0
Hence, we get
f(-"’: §) = QA smax cos Zx

We may note that this displacement remains finite as z > 00 or x —> 0

And when o is positive imaginary, equat ion (7a) shows that for the displacement to be finite at infinity
we tequire B = 0 and hence
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Now using the condition in equation (9) we get
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In the present case
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where @ and ¥, are given by Eq. (8).

Neglecting . and other higher orders, we have
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Performing the integration (Erdelyi et al. 1959) we get
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where Jy (£) and ¥y are the Bessel function of the first and second kind of order of » vespectively.

For the displacement on free surface z = O we get
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Now we see from Eq. (12) that « (2, r) = u (0, r)as z = O.
Therefore expression of u (z, ») in Eq. (12) is valid whenz =20

Hence the displacement gives as
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3. Diseussion

Equation (18) shows the displacement conesponding to the velocity of S-wave as preserited in
equation (4). The parameter ‘17, which is a funetion of veloeity distribution inside the earth as well
as the depth of low velocity channel. may be evaluated on the basis of the known velocity
distribution model. To evaluate the constants  po, py, ps, p and k. the data from the S-wave velocity
distribution upto a depth of 140 km prescribed in Gutenberg-Biich ncdel (Andeison 19€4) were
consulted. This model practically reviews the velocity presciited by Gutenberg (1959a, b), Lehmann
(1961) and Dorman, Ewing and Oliver (1960). Method of least squaie was applied and the constants
evaluated are as follows:—

po = 0-05189 pe = 0-62595

@ = 0-01100 p = 0-10000 and

k= 0-30485
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Fig- 1

Discontinuous lines show the velocity distributions of shear
waye from Gutenberg-Birch model. Continuous curve
shows distribution of shear wave

Having known the values of the constants the velocities of S-wave at different depths have been
compared graphically in Fig. 1 with that of the actual distribution as prescribed in Gutenberg-
Birch model. Tt is seen from x2-test of gignificance that the fitness of the curve thus drawn has got
more than 999 level of significance.

Equation (18) indicates that the amplitude of the displacement is inversely proportional to the
distance traversed as observed in general for the body waves (Ewing, Jardetzky and Press 1957).
It is also inferred that the amplitude of the displacement is directly proportional to a function of
the source energy. It may be noticed that equation (18) which gives a solution of the problem is similar
to the solution of the wave motion. The velocity of propagation of shear wave is ‘1/F’ which depends
on the depth of the low velocity channel and the velocity distribution inside the earth. From the
values of the constants given in (19) we get, 1/ = 3-2803 km/sec. It is interesting to note that this
velocity is closely agreeing to the velocity of Lg (Bath 1956).
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