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सार — मौसमी ऑटो�रग्रै�सव इंट�गे्रटेड मू�वगं एवरेज (SARIMA) मॉडल ने मौसमी पूवार्नुमान लगाने क� अपनी 

�मता के कारण अपनी शुरुआत से ह� लोक�प्रयता हा�सल क� है। आमतौर पर, SARIMA मॉडल मौसमीता को 
पकड़ता है ले�कन मौसमी प्र�क्रया म� ब�हजार्त चर (चर�) के प्रभाव पर �वचार नह� ंकरता है। इस�लए, इस 
अध्ययन का उद्देश्य SARIMA-X मॉडल को अनुभवजन्य रूप से प्रस्तुत करना और लागू करना है जो मौसमीता के 
साथ-साथ प्रभा�वत करने वाले कारक� (X) के प्रभाव� को भी ध्यान म� रख सकता है। जलवायु प�रवतर्न मानव 
अिस्तत्व के सामने सबसे बड़ी वैिश्वक चुनौती बन गई है और इसका प्रभाव सामािजक, आ�थर्क और पयार्वरणीय 
चुनौ�तय� के संबंध म� बहुआयामी होगा। इस पांडु�ल�प का उद्देश्य ब�गलोर, भारत के वषार् समय श्रृंखला डटेा का 
पूवार्नुमान लगाना है। वषार् श्रृंखला के �वश्लेषण और मॉड�लगं म� �नयोिजत कायर्प्रणाल� ब�हजार्त चर तापमान, सापे� 
आद्रर्ता और सतह� दबाव के साथ SARIMA-X मॉडल थी। इस पांडु�ल�प म�, हमने SARIMA-X मॉडल के साथ-
साथ इसक� अनुमान प्र�क्रया पर सं�ेप म� चचार् क� है। प्रस्ता�वत मॉडल का �नदान �कया गया और प�रणाम� से 
पता चला �क मॉडल पयार्प्त और सं��प्त था। प्रस्ता�वत मॉडल क� तुलना पारंप�रक SARIMA मॉडल से क� गई है। 
इस तुलनात्मक अध्ययन से यह �नष्कषर् �नकलता है �क मौसमी मॉड�लगं म� ब�हजार्त कारक� का उपयोग करना 
सव��म है। 

 
ABSTRACT. The Seasonal Autoregressive Integrated Moving Average (SARIMA) model has gained popularity 

since its inception due to its ability to forecast seasonality. Usually, the SARIMA model captures the seasonality but does 
not consider the effect of the exogenous variable(s) in the seasonality process. Hence, this study aims to empirically 
introduce and implement the SARIMA-X model which can account for seasonality as well as the effects of influencing 
factors (X). Climate change has become the foremost global challenge facing human existence and the effect will be 
multifaceted with respect to social, economic and environmental challenges. This manuscript aims to forecast the 
precipitation time series data of Bangalore, India. The methodology employed in the analysis and modelling of 
precipitation series was the SARIMA-X model with exogenous variables temperature, relative humidity and surface 
pressure. In this manuscript, we have briefly discussed the SARIMA-X model along with its estimation procedure. The 
proposed model was diagnosed and the results showed that the model was adequate and parsimonious. The proposed 
model has compared with the traditional SARIMA model. The supremacy of using exogenous factors in seasonality 
modelling is concluded by this comparative study. 

 

Keywords  – Exogenous variables, Modelling, Precipitation, SARIMA model, SARIMA-X model. 
 
 
 
1. Introduction 

 
Climate change is one of the prime global challenges 

that the mother earth is facing. The effect of climate 
change will be multifaceted with respect to social, 
economic, and environmental challenges. According to an 
IPCC (2018) special report at 1.5 degrees Celsius 
warming, 6 percent of the insects, 8 percent of the plants, 
and 4 percent of the vertebrates will be at risk of 
extinction. Climate change modifies rainfall patterns 

across the world. Climate change affects all countries 
across the world in different magnitudes. In respect to 
impact of climate change, India is enlisted to group of 
vulnerable countries. According to the IMD report, India 
has evidence of a change in amount, frequency and 
intensity of rainfall in various states in the last 30 years 
(https://internal.imd.gov.in/). Weather forecasting plays a 
crucial role for crop monitoring and pest forewarning 
system. According to a multivariate statistical study by 
Puvaneswaran (1990), the key variables to examine 
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climatic processes are a humidity factor, a temperature 
factor and a rainfall factor. Precipitation is highly 
vulnerable to climate change with major consequences for 
agricultural production (Tang et al., 2019). Precipitation is 
among the most significant criteria of farming 
management since it has a considerable effect on crop 
development, growth and yields, on the occurrence of 
pests and diseases, fertilizer requirements, etc. 
Precipitation is not easy to forecast, because it depends on 
time and space (Hashim et al., 2016). Numerous attempts 
have been made to model and forecast the frequency, 
intensity and magnitude of rainfall using different 
methodologies. Earlier time prediction approaches such as 
the simple quantitative approach have been used for 
rainfall predictions, but it has become unreliable due to 
evolving seasonal rainfall patterns. In the last few 
decades, a wide variety of techniques such as regression 
analysis, time series analysis, soft computing technique 
and hybrids methodology have been used for modelling 
and forecasting precipitation. Sadhuram and Murthy 
(2008) developed a linear multiple regression model to 
predict Indian summer monsoon rainfall (ISMR). Prasad 
et al. (2010) developed a multi-predictor logistic 
regression model for forecasting three research areas, 
namely India overall, Orissa on the east coast and Gujarat 
on the west coast, to estimate average monthly 
precipitation. Murthy et al. (2018) conducted an empirical 
study for modeling and forecasting South-West monsoon 
rainfall patterns in North-East India. The adopted 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) and Analysis of Means (ANOM) methodology 
to successfully capture the existing pattern of rainfall of 
that given area. Lama et al. (2021) used several parametric 
models (such as the SARIMA model and exponential 
autoregressive (EXPAR) model) and non-parametric 
models (Time Delay Neural Network (TDNN) model) for 
forecasting rainfall of the Sub-Himalayan region of India 
and compared their prediction ability. Harun et al. (2013) 
compared the statistical method and artificial intelligence 
(AI) for rainfall prediction. They selected Auto-
Regressive Integrated Moving (ARIMA) and Adaptive 
Splines Threshold Autoregressive (ASTAR), as a statistic 
model, and as AI, a combination of Genetic Algorithm-
Neural Network (GA-NN) was used. Dimri et al. (2020) 
investigated the monthly mean minimum and maximum 
temperatures and the precipitation for the state 
Uttarakhand, India, by using the SARIMA model. They 
found that the forecasted value of both parameter fits well 
with the estimated trend value of the data. As the 
SARIMA model does not include the information of 
exogeneous variables, it is unable to capture the effect of 
extraneous factors.  The effect of exogenous variables 
plays a very crucial role in precipitation forecasting. 
Gutierrez-Lopez et al. (2019) used a number of 
meteorological factors such as humidity, surface 

temperature, atmospheric pressure, and dewpoint to 
predict short-term precipitation. Precipitation is influenced 
by different factors to a varying degree (Manandhar et al., 
2018). According to Holley et al. (2014), temperature and 
humidity are the most important factors in forecasting 
precipitation. Hence, time series without exogenous 
variables is not sufficient for modeling and forecasting in 
these aspects. Exogenous variables play a very crucial role 
in capturing volatility in time series analysis (Yeasin            
et al., 2021). The model of time series with explanatory 
variables has the potential to define the fundamental 
variations in data from time series and to measure the 
effect of environmental impacts. In recent times, the 
SARIMA-X model is extensively used for its greater 
adaptability.  SARIMA-X models may characterize time 
series that show non-stationary behaviours both within 
and across periods satisfactorily and also capture the 
effect of exogenous variables (Raman et al., 2018).  In 
essence, the objective of this research is to model monthly 
precipitation data in order to have more insight into the 
effects of these variables on climate change and 
agricultural production. In order to achieve the goals, the 
SARIMA-X model has been used to analyze Bangalore, 
India, monthly Precipitation time series data with 
exogenous variables Temperature, Relative Humidity and 
Surface Pressure.   

 
 

2. Methodology 
 
SARIMA-X is a rational extension of the SARIMA 

model that allows integrating independent variables that 
put on some explanatory value to the process. If the 
SARIMA model is not adequate to provide appropriate 
efficiency, it is very normal to search for other driving 
phenomena whose effect over time is not adequately 
rooted in the past values of the dependent time series. The 
time series model building approach of SARIMA-X has 
two phases. In the first phase, we begin with a statistically 
and conceptually sound regression model. And in the 
second phase, the residuals from the regression are 
modeled with SARIMA to remove the seasonality and 
serial correlation that is present in the residual series. The 
final SARIMA-X model comprises the effect of 
exogenous variables along with non-seasonal AR and/or 
MA terms and seasonal AR and/or MA terms to maximize 
the explanatory power while eliminating the significant 
autocorrelation exhibited by the residuals. To ensure that 
the established SARIMA-X model is statistically accurate, 
there are statistical assumptions need to fullfilled 
(Andrews et al., 2013). These assumptions are: the series 
must be stationary, there should be no significant serial 
correlation in the residuals and explanatory variables must 
have significant, non-zero coefficients and logical signs, 
with high correlation to the dependent variable.   
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The external variables can be modeled by multiple 
linear regression equation and can be expressed as: 

 
ttkkttt xxxY ωβββ ++++= ,,22,11 ...                    (1) 

 
where, x1,t, x2,t,…,xk,t are observations of k number of 

external variables corresponding to the dependent variable 
Yt; β1,…,βk are regression coefficients of external 
variables; ωt is a stochastic error, i.e., the error series that 
is independent of the input series.  

 
The residual series ωt can be represented in the form 

of the SARIMA model as follows (Peter & Silvia, 2012): 
 

( ) ( )( ) ( ) ( ) ( ) t
s

t
Dsds BBBBBB εθωφϕ Θ=−− 11         (2) 

 
where, 
 
s = length of periodicity (seasonality); 
 
 ( ) p

pBBBB ϕϕϕϕ −−−−= ...1 2
21  

 
= the non-seasonal autoregressive operator of          

order p; 
 
φ1,φ2,…,φp = the corresponding non-seasonal 

autoregressive parameters; 
 
Φ(Bs)  = 1-Φ1 Bs-Φ2 B2s-…-Φp Bps 
 
= the seasonal autoregressive operator of order p; 
 
Φ1, Φ2,…,Φp = the equivalent seasonal 

autoregressive parameters; 
 
θ(B)= 1-θ1 B-θ2 B2-…-θq Bq 
 
= the non-seasonal moving average operator of  

order q; 
 
θ1,θ2,…,θq = the associated non-seasonal moving 

average parameters; 
 
Θ(Bs)= 1-Θ1 Bs - Θ2 B2s-…-Θp Bqs 
 
= the seasonal moving average operate of order q; 
 
θ1,θ2,…,θq = the corresponding seasonal moving 

average parameters; 
 
(1-B)d  = the non-seasonal differencing operator of 

order d to produce non-seasonal stationarity of the dth 
differenced data (usually d = 0, 1, or 2); 

(1-Bs)D = the seasonal differencing operator of order 
D to produce non-seasonal stationarity of the dth 
differenced data (usually d = 0, 1, or 2). 

 
εt = error of the model 
 
The general SARIMA-X model equation can be 

obtained by substituting ωt in regression equation (Cools 
et al., 2009; Aburto & Weber, 2007). Formally, the 
SARIMA-X model can be represented by the following 
equation 

 

( ) ( )
( ) ( )( ) ( )Dsds

t

tkkttt

BBBB

B

xxxY

−−

Θ
+

++++=

11

B

...
s

,,22,11

φϕ

εθ

βββ

                       (3) 

 
The basic steps of SARIMA-X methodology are as 

follows : 
 
Step 1 : Stationarity and Seasonality 
 
As the SARIMA modeling process has been 

discussed earlier, we tested the dependent time series for 
stationarity using the ADF test and examined seasonality 
by using the WO test. Based on the test results, we apply 
appropriate seasonal and non-seasonal differencing 
schemes for the dependent variable. For consistency and 
reliability, the differentiation scheme applied to the 
dependent variable may be applied to all explanatory 
variables to stationarize them as well. The associations 
between them are further robust over time since both the 
dependent and independent variables become stationary. 

 
Step 2 : Examine the correlation between variables 
 
After ensuring both seasonal and non-seasonal 

stationarity, exogenous variables are screened based on 
the correlation. If any exogenous variables do not show 
significant evidence of linear association with the study 
variable, then those variables are eliminated from              
the exogenous variable list as discussed above in 
Assumption 4.  

 
Step 3 : Built regression model and check the 

residuals 
 
In this step, we start building a regression model by 

the stepwise regression procedure in which includes 
significant variables in the model and eliminates variables 
from the model that is insignificant simultaneously. After 
fitting the regression model, the residuals from the model 
are collected and analyzed. We tested the presence of 
serial correlation. If autocorrelation is present in the 
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residuals series that indicate that AR and/or MA terms 
may be inserted in the model. 

 
Step 4 : Identification of SARIMAX model 

parameters 
 
Seasonal AR and/or MA and non-seasonal AR 

and/or MA terms in the regression model are driven by the 
significance lags of the ACF and PACF. The process of 
identification of SARIMA parameters have already been 
discussed in the SARIMA model. Identification of 
SARIMAX model parameters are similar to the 
identification of SARIMA model parameters. AIC and 
SBC of the favorable models are examined and select the 
most suitable model from the list of the favorable model 
has the lowest AIC and SBC value. 

 
Step 5 : Parameters estimation 
 
Generally, the SARIMA-X model can be represented 

by the following equation 
 
 

 ( ) ( )
( ) ( )( ) ( )Dsds

t

tkkttt

BBBB

B

xxxY

−−

Θ
+

++++=

11

B

...
s

,,22,11

φϕ

εθ

βββ

                        (4) 

 
 
The parameters of the SARIMA-X models are 

commonly estimated using the maximum likelihood 
estimation technique. 

 
On assuming εt~NID (0, σ2

e), then the MLE will be 
asymptotically equivalent to the minimization of 2

tε∑ , 
which can be obtained by using the non-linear technique. 
The vector of parameters of order (k+p+q+P+Q+1) that 
need to be estimated are Ω and σ2

e. 
 

(
)qqp

pk

ΘΘΘ

=Ω

,...,,,,...,,,

',...,,,,...,,,,...,

2121

212121

θθθφ

φφϕϕϕβββ
             (5) 

 
The maximum likelihood function can be expressed 

as : 
 

( )
( ) ( )

( ) ( )N
N

N
T

e

XBYXBY
L

Γ





 −Γ−−

=Ω

−

det2

2
1exp

,

1

2

π
σ        (6) 

 
where ΓN is the auto-covariance matrix of ε. Estimate 

Ω and σ2
e  that maximizes L is equivalent to maximize the 

logarithm if L. 

 
 

Fig. 1. Flowchart of SARIMA-X model 
 
 

( ) ( )

( ) ( )XBYXBY
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2log
2

log π
 

 

( ) ( ) SSENN
N 2

1detlog
2

2log
2

−Γ−= π                    (7) 

 
The estimate of the parameters Ω̂  and σ2

e are 
obtained by minimizing 

 
2

1
t

N

t
SSE ε∑

=

=                                                           (8) 

 
Step 6 : Diagnostic checking 
 
Different models can be obtained with various 

combinations of seasonal AR, non-seasonal AR, seasonal 
MA, and non-seasonal MA individually and collectively. 
The best model is obtained with the help of AIC and SBC 
values. A new model should be identified by repeating the 
above steps if the model is not optimal. Practically, this 
move  is  to  verify  whether  the model assumptions about  
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Fig. 2. Time plot of precipitation series 
 

 
 

TABLE 1 
 

Summary statistic 
 

 Precipitation Temperature Relative 
Humidity 

Surface 
Pressure 

Mean 66.64 24.09 64.59 92.59 

Median 50.01 23.76 69.13 92.56 

Mode 0.00 23.67 74.69 92.40 

Standard 
Deviation 

65.87 2.70 15.40 0.22 

Kurtosis 1.72 -0.44 -0.85 -1.14 

Skewness 1.21 0.38 -0.56 0.23 

Minimum 0.00 18.48 23.73 92.20 

Maximum 425.00 31.15 88.02 93.10 

 
 
 

the errors are fulfilled. This can be accomplished by 
carrying out the Ljung-Box test.  

 
Step 7 : Application 
 
Finally, the forecasting ability of the method is 

analyzed  by utilizing different criteria. Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) are the 
most widely used accuracy metrics. Now the model is 
ready for various practical applications (Fig. 1). 

 
3. Results and discussion 

 
Data description 
 
In this study, precipitation as the dependent variable 

and temperature, relative humidity, and surface pressure 
as independent variables have been considered. The 
monthly data on precipitation, temperature, relative 
humidity, and surface pressure for 39 years (from 1981 to 
2019) period of Banglaore city has been collected from 
NASA Prediction of Worldwide Energy Resources 
(https://power.larc.nasa. gov/ ).  

 
 

Fig. 3. ACF plot for residuals of the regression model 
 

 
TABLE 2 

 
Correlation of precipitation with other variables 

 
 Variables Correlation p-value 

Temperature -0.09 0.06 
Relative Humidity 0.61 <0.01 
Surface Pressure -0.96 <0.01 

 
 
 

TABLE 3 
 

Parameters estimate of regression analysis 
 

Parameters Estimate Std. Error p-value Significance 

Intercept 2960.70 1611.63 0.07 No 
Temperature 9.76 1.73 < 0.01 Yes 

Relative Humidity 3.59 0.27 < 0.01 Yes 
Surface Pressure -36.30 16.89 0.03 Yes 

 
 
To get a clear idea about datasets, a summary of 

datasets and the time plots of precipitation series are given 
in the following Table 1 and Fig. 2 respectively: 

 
The summary Table 1 provides insights into the 

distribution and variability of precipitation, temperature, 
relative humidity and surface pressure. Precipitation has              
a   high   mean  (66.64)   and   standard  deviation  (65.87), 
indicating significant variability and skewness (1.21). 
Temperature shows a mean of 24.09 with low variability 
and slight positive skewness (0.38), suggesting a relatively 
normal distribution. Relative humidity has a mean of 
64.59, a higher median (69.13) and negative skewness            
(-0.56), indicating a left-leaning distribution. Surface 
pressure shows minimal variability (mean 92.59, standard 
deviation 0.22) and slight positive skewness (0.23), with 
values closely clustering around the mean. 

 
Correlation analysis for exogenous variables 
 
The compatibility of the exogenous variables is 

screened using the test significance of correlation. The 
following table gives details about correlation analysis.  
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Fig. 4. Decomposition plot of precipitation series 
 
 
 

TABLE 4 
 

ADF test 
 

Variables Test statistic p-value 

Precipitation -10.34 0.01 

Temperature -17.91 0.01 

Relative Humidity -23.60 0.01 

Surface Pressure -9.60 0.01 

 
 
 

The next step is regression model building. The 
regression model is fitted with precipitation as the 
dependent variable and temperature, relative humidity and 
surface pressure as independent variables. The final 
results of the regression process are displayed in the 
following Tables 2 & 3. 

  
For validation of this model, the residuals must be 

checked for auto-correlation. The residuals of the 
regression are checked with the help of the Box-Ljung test 
and ACF plot (Fig. 3) the Box-Ljung test is significant. 
That means the regression model shows a lack of fit and 
the residuals are serially correlated. ACF plots also show 
significant lags. So improvement is needed for these 
models. To remove serial correlation from the residuals 
AR and/or MA terms must be added. 

 
Test for stationary and seasonality 
 
After that, SARIMA model has been implanted. In 

time series analysis, the most important assumption is the 
stationary of the data sets. To test the stationary we used 
the ADF test. The null hypothesis of the ADF test is “The 
dataset is not stationary” (Table 4). 

 
Before the SARIMA model building, we should 

check the seasonality of the precipitation series. For this, 
we apply Webel-Ollech (WO) test for seasonality and 
check the plot of the decomposed series (Fig. 4). 

 
 

Fig. 5. ACF of precipitation series 
 

 
TABLE 5 

 
Parameters estimate of SARIMA model 

 
Parameters Estimate Std. Error p-value Significance 

AR1 0.52 0.13 < 0.01 Yes 

MA1 -0.33 0.15 0.02 Yes 

SAR1 0.27 0.04 < 0.01 Yes 

SAR2 0.32 0.05 < 0.01 Yes 

Intercept 63.78 7.92 < 0.01 Yes 

 
 
 

 
 

Fig. 6. ACF of residuals of the SARIMA model 
 
 

The null hypothesis of the WO test is the series is 
non-seasonal. The WO test is significant, i.e., the series 
has seasonality. Also, from the above plot, it is clear that 
the series exhibits seasonality. 

 
Fitting SARIMA model 
 
Now the next step is to fit the SARIMA model               

for   the   selected  datasets.  We  selected the order  of  the 
SARIMA model in such a way that the AIC and SBC 
values are minimum. ACF and PACF helps to find the 
order of the SARIMA model. ACF and PACF plots are 
presented in Fig. 5. The best fitted model for study data is 
SARIMA (1,0,1) (2,0,0)12 (Table 5). 
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Fig. 7. ACF of residuals of SARIMAX model 
 
 
 

TABLE 6 
 

Parameters estimate of SARIMAX model 
 

Parameters Estimate Std. Error p-value Significance 

AR1 0.17 0.35 0.64 No 
MA1 -0.05 0.35 0.90 No 
SAR1 0.15 0.05 < 0.01 Yes 
SAR2 0.16 0.05 < 0.01 Yes 

Intercept 4997.36 1955.15 0.01 Yes 
Temperature 7.28 2.18 < 0.01 Yes 

RH 3.47 0.33 < 0.01 Yes 
Surface Pressure -57.58 20.55 <0.01 Yes 

 
 

TABLE 7 
 

Comparison among the models 
 

Model RMSE MAE 

Regression model 45.00 33.11 

SARIMA model 52.57 39.60 

SARIMAX model 43.50 31.81 

 
 

The residuals of the SARIMA model are analyzed 
with the help of the Box-Ljung test and ACF plot. The 
Box-Ljung test is significant and the ACF plot is given in 
Fig. 6. 

 
Fitting SARIMA-X model 
 
Now we incorporate the exogenous variables into the 

SARIMA  model and quantify its effect on the forecasting 
accuracy. Parameters estimate of the SARIMA-X model 
are given in Table 6. 

 
For study data, the Box-Ljung test is not significant, 

i.e., models do not evidence lack of fit and the residuals 
are not serially correlated (Fig. 7). 

 
 

Fig. 8. The actual predicted plot 
 

 
 
 

The following table gives the comparison forecasting 
accuracy of the above discussed models (Table 7). 

 
From the above comparison, we find that the 

SARIMA-X model has the lowest RMSE and MAE 
values.  We   use  the  Diebold-Mariano  test  to determine 
whether the prediction of SARIMA and SARIMAX is 
significantly different or not, based on residuals generated 
by the models. The null hypothesis is that the two 
forecasts have the same accuracy. The alternative 
hypothesis is taken as the first forecast is less accurate 
than the second forecast. The test is significant. The result 
shows that the SARIMA-X model produces a better 
forecast than the SARIMA model. The actual predicted 
plot has been presented in Fig. 8. 

 
4. Conclusion 

 
This manuscript examined the seasonality behavior 

of precipitation data series and the potential impact of 
exogenous variables, viz., temperature, relative humidity, 
and surface pressure on the study variable. The inclusion 
of relevant external variables into the SARIMA model is 
examined to be capable to enhance the forecasting 
accuracy. We empirically compare the SARIMA model 
and types of SARIMA-X models. From this empirical 
study, we can infer that the SARIMA-X established its 
supremacy over the SARIMA model.  The findings of this 
study has provided direct support for the potential use of 
accurate forecasts in decision-making for the farmers, 
Agri-industry as well as the government of India for 
policymaking. Further research can be done on the 
optimum criteria to select numbers and types of 
exogenous variables to include in the SARIMA-X model.  
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