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सार – इस शोध पऽ में मॉडल पूवार्नुमानों के व् यापक मूल् यांकन के िलए पारंपिरक और ः थािनक नैदािनक दोनों 
ूकार की तकनीक को साधन के रूप में िकए गए उपयोग को दशार्या गया है। इसका मूलभूत कायर् भौितक ूिबयाओ ंके 
संबंध में िवशेष रूप से उच् च िवभेदन मॉडल् स तथा ूेक्षणों के िलए मॉडल की अन् य किमयों और अच् छाईयों को उजागर 
करना है। पारंपिरक िनं कषर् भी तथाकिथत ‘डबल पेनल् टी’ मद से बािधत होता है और इस ूकार यह अकेले पूवार्नुमान 
तथा ूेिक्षत वषार् के पैटन् सर् के बीच ः थािनक एवं कािलक आधार पर वषार् के पिरमाण उपलब् ध नहीं करा सकता है। 
ऑब् जेक् ट-बेः ड डॉयग् नोिः टक इवैल् यूएशन की िविध एक ूकार से िवः थापन िविधयों की ौणेी की एक ः थािनक (spatial) 
सत् यापन तकनीक है जबिक वेवलेट िवँ लेषण ः थािनक सत् यापन के िफल् टिरंग टाइप से िकया जाता है। इसमें पहले 
वाला िवशेषताओ ंपर आधािरत सत् यापन तकनीक है जबिक बाद वाला ः केल सेपरेशन िसद्धान् त पर आधािरत है। इस 
शोध पऽ में अित ूचंड उं णकिटबंधीय चबवात ‘फैलीन’ की िः थित को अध् ययन के िलए िलया गया है और भूमंडलीय 
पूवार्नुमान ूणाली से वषार् के पूवार्नुमान िलए गए है और रां शीय मध् य अविध मौसम पवूार्नुमान कें ि में इस एकीकृत 
मॉडल को चलाया गया है तथा इसका सत् यापन उपमह सह वषार्मापी िमिौत वषार् िवँ लेषण के साथ िकया गया है। 
सुिनिँ चत और अनवरत पिरमाणों का उपयोग करते हए परंपरागत सत् याु पन ः कोसर् की गणना की गई है तथा िविभन् न 
अवसीमाओ ंसे ः थािनक सत् यापन ः कोसर् के साथ गणना की गई है। वषार् पूवार्नुमान के संबंध में दोनों भूमंडलीय मॉडल् स 
के समम िनं पादन के पिरणामों को यहाँ संके्षप में ूः तुत िकया गया है।      

 
ABSTRACT. The current study demonstrates the utilisation of a tool for the comprehensive evaluation of model 

forecasts using both traditional and spatial diagnostic techniques. The fundamental idea is to provide additional and 
meaningful insight into the model weaknesses and strengths in terms of underlying physical processes especially for very 
high resolution models and observations. The traditional scores also suffer from the so called “double penalty” issue and 
hence alone cannot provide a measure of spatial and temporal match between the forecast and observed rainfall patterns. 
Method for Object-based Diagnostics Evaluation is a spatial verification technique in the category of displacement 
methods while wavelet analysis comes into filtering type of spatial verification. Former is a features based verification 
technique while the latter is based on scale-separation principle.  The case of Very Severe Tropical Cyclone ‘Phailin’ is 
taken up for the study and the rainfall forecasts from Global Forecast System and Unified Model run at National Centre 
for Medium Range Weather Forecasting are verified against gridded satellite-cum-raingauge-merged rainfall analysis. 
The traditional verification scores were computed using categorical and continuous measures and the spatial verification 
scores were computed against various thresholds. The results are presented to summarise the overall performance of both 
the global models with respect to the rainfall prediction. 

 
Key words – Model evaluation tool, Categorical verification scores, Object-based diagnostics, Intensity-scale 

analysis. 
 

 
 

1.  Introduction 
 
 National Centre for Medium Range Weather 
Forecasting (NCMRWF) has a mandate to constantly 
improve upon the numerical weather prediction models 
for the prediction of weather over India and its 
neighbourhood by adopting the latest developments in the 
modelling community. The modelling systems and its 
year-to-year improvement should be hand-in-hand with 
the performance evaluation of the available systems at the 
centre and its mutual comparisons. Day-to-day weather 
forecasts over the regions predicted by the operational 

model and other experimental models should be 
constantly monitored and the statistical measures of the 
different aspects of the various model-generated 
prognostic and diagnostic variables should be produced 
and archived to look into the various properties from all 
possible angles (For information on general framework of 
verification see Murphy and Winkler, 1987; Jolliffe and 
Stephenson, 2003; Stansky et al., 1989; Wilks, 2006 and 
Ebert, 2008). Not only the simple and direct properties of 
the model in terms of the traditional parameters like 
anomaly correlation and RMSEs, but also the measures 
related to the spatially coherent features of the model 
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should be investigated simultaneously to understand the 
performance and to diagnose the limits of the skills of the 
model and for comparison between the modelling systems 
(Davis et al., 2006 & 2009; Brown et al., 2007; Gilleland, 
2013; Gilleland et al. 2009; 2010a & 2010b; Casati, 2010; 
Casati et al., 2004; 2008; Ebert, 2008 & 2009, Gallus, 
2010; Ebert and McBride, 2000; Ebert and Gallus, 2009; 
Ahijevych, et al., 2009; Mittermaier and Roberts, 2010). 
The day-to-day statistics can be aggregated to estimate the 
overall performance of each of the episodes of synoptic 
scale and mesoscale phenomena occurring on a very 
regular basis in different types of weather regimes. The 
daily statistics of the episodes can be aggregated and 
summarised for every month to assess the monthly 
performance of the models, which in turn can be again 
aggregated over a season or year to condense the huge 
amount of information into very few quantitative figures. 
This will allow the year-to-year comparison of 
performance of multiple modelling systems or year-to-
year variability for a single modelling system. 
 
 This paper focuses on the verification and evaluation 
of the rainfall predictions for a recent tropical cyclone 
event, namely the Very Severe Cyclonic System (VSCS) 
‘Phailin’. The current study evaluates the performance of 
the forecast of this system by two global models at 
NCMRWF adopted from National Centres for 
Environmental Prediction (NCEP) and United Kingdom 
Met. Office (UKMO), namely, NGFS and NCUM 
respectively (Prasad et al., 2011 & 2013; Rajagopal  et al., 
2012). The forecast of the tropical cyclone (TC) ‘Phailin’ 
was very successful with more or less accurate prediction 
of track, intensity and landfall and the gradual decay after 
the landfall. The current study is a demonstration of 
Model Evaluation Tools (MET) implemented on IBM 
Power 6 High Performance System at NCMRWF. MET is 
a tool for comprehensive performance evaluation between 
different models, of any variable with a forecast and with 
any corresponding observation or analysis. It incorporates 
both traditional scores as well as spatial verification scores 
like, Method for Object-based Diagnostics Evaluation 
(MODE) and wavelet analysis. It has been implemented 
for models like, Weather Research and Forecasting 
(WRF), Global Forecast System (GFS), Unified Model 
(UM) and the regional versions of UM. 
 
 The traditional scores suffer from the problem of the 
so-called double-penalty issue. This is because, traditional 
grid-point verification methods penalise a minor shift in 
the location twice, once for missing grid points where the 
precipitation event occurred, and also for predicting false 
alarms at some other grid points. MODE is an effective 
alternative to provide additional diagnostic information 
and an objective assessment of location, size and intensity 
errors of the synoptic systems which is otherwise 

impossible through traditional approaches. Wavelet 
analysis uses scale-decomposition approach to identify the 
scale at which the skill is maximised. It is applied to 
forecast and observation fields to obtain spatial scale 
components and to compute the bias, error and skill of 
forecast on each spatial scale. It provides the information 
on the ability of the model in reproducing the observed 
scale structure and scale dependency of error and skill. 
The current study is an attempt to diagnose the overall 
performance of the two global models for TC ‘Phailin’ in 
all angles using traditional and spatial verification 
techniques. This study is a preliminary attempt to 
formulate and design a set of standard diagnostic 
measures for the routine monitoring and objective 
assessment of the overall performance of the numerical 
models in rainfall prediction and for the comparison 
between different modelling systems. The following 
sections deal with the data and methodology, results and 
discussions followed by conclusions. 
 
 
2. Data and methodology 
 
 TC ‘Phailin’ originated from a depression over north 
Andaman Sea on 8th October, 2013 near (12° N, 96° E) 
and moved west-northwestwards intensifying into deep 
depression on 9th and crossed Odisha and adjoining north 
Andhra Pradesh coast near Gopalpur at 2230 hrs IST of 
12th October, 2013 as a Very Severe Cyclonic Storm. 
Sustained maximum surface wind speed reported was          
215 kmph with estimated central pressure of 940 hPa as 
per estimates by India Meteorological Department (IMD). 
Maximum rainfall was over north-east sector at the time 
of landfall (38 cm at Banki in Cuttack district). All the 
model runs starting with initial analyses of 0000 UTC        
8-14 October, 2013 and 7 days of forecasts were 
considered for the current study, The predicted 24-hour 
accumulated precipitation is compared between the two 
global models namely NGFS and NCUM. The rainfall 
forecasts valid for these 7 days are examined in detail to 
assess the overall performance with respect to traditional 
verification scores and the features-based verification 
procedures. The domain of study is (75-100° E, 5-30° N) 
which covers the TC system during the period of study. 
The resolution of NGFS is T574L64 global spectral 
corresponding to an average resolution of about 23 km 
near equatorial regions. The resolution of NCUM is 
N512L70 corresponding to an average resolution of 
around 30 km near equatorial latitudes. 
 
 MET provides four major tools to estimate various 
kinds of verification statistics, namely, Point-stat, Grid-
stat, MODE and Wavelet. Point-stat is the standard 
verification measure computed at station points and Grid-
stat  is  the  same  computed at some common regular grid  
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Figs. 1(a-h).  Box and whisker plots depicting distribution of mean rainfall (FBAR) (in millimeters) over the domain of study at each 

forecast lead times of 1-7 days from NGFS and NCUM runs vs. mean observed gridded rainfall analyses (OBAR) along with 
the corrresponding time series at each forecast lead times for the period 8-14 October, 2013. The mean value for all the 7 days 
period is also written along with the legends 

 
 
points. Before the computation of the statistics, both 
observation and forecast matched pairs need to be 
generated at a common grid by some of the most popular 
re-gridding techniques suitably selected for the variable 
under study. The resolution of the current study is 
restricted by the resolution of the gridded rainfall analysis 
which is 50 km. The model rainfall is regridded to 50 km 
bi-linearly using copygb utility. Traditional scores were 
computed for both continuous and categorical measures 
using Point-stat and Grid-stat. Continuous measures are 
basically based on the difference between forecast and 
observed rainfall, whereas categorical measures are based 
on the 2 × 2 categorisation of ‘yes’ or ‘no’ of rainfall 
values at different rainfall thresholds by generating a 
contingency table for each of the threshold. As the focus is 
on Tropical Cyclone and the number of land raingauge 
stations reporting the associated rainfall is very less, the 
gauge-based metrics are not shown in the current paper. 
Grid-stat results are presented for traditional scores, which 

are computed against the IMD-NCMRWF gridded 
satellite-rainguage merged rainfall analysis (Mitra et al., 
2003 & 2009). 
 
 Spatial verification of rainfall comes into at least 
four types - neighbourhood, object-based, scale-separation 
and deformation. But the two categories being used here 
are scale separation (a filtering approach) and object-
based (a displacement approach). For object-based 
verification, the MODE was used and for scale separation, 
wavelet stat tool was used both of which are part of the 
Model Evaluation Tools (MET). Individual days of scores 
were averaged across the days and the forecast lead times 
to assess all the aspects of the verification and overall 
summary scores. Appendix-I gives the brief description of 
MODE and the settings adopted for the current study 
(Brown et al., 2007 and Davis et al., 2006). Wavelet stat 
tool decomposes the forecasts and observations according 
to  intensity and scale, by thresholding the same to convert  
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Figs. 2(a-e).  Box and whisker plots depicting distribution of various mean rainfall scores  (in millimeters) over the domain of study at each 

forecast lead times of 1-7 days from NGFS and NCUM runs computed against observed gridded rainfall analyses for the period 
8-14 October, 2013. The scores are Multiplicative Bias (MBIAS), Mean Error (ME), Mean Absolute Error (MAE), Pearson 
Correlation (PR_CORR) and Root Mean Squared Error (RSME) 

  
 
into binary fields and decomposing into sum of 
components of different scales. Casati et al. (2004) 
describes the methodology in detail. A 2-dimensional 
Haar wavelet filter is used. Discrete wavelet transforms 
are usually performed on square domains of 2n × 2n grid 
points. Automated tiling method is adopted here which 
figures out the maximum tile of dimension 2n × 2n that fits 
within the domain and places the tile at the centre of the 
domain. For each threshold and for each scale component 
of binary forecast and observation, mean squared error 
(MSE) is evaluated. The largest error is typically 
associated with smallest scale and highest threshold. For 
each threshold and scale component, the intensity-scale 
skill (ISS) score based on the MSE of binary forecast and 
observation scale components is evaluated taking random 
chance as reference forecast (Casati et al., 2004; Jolliffe 
and Stephenson, 2003; Wilks, 2006). For each threshold 
(t) and scale component (j), the MSE for random binary 
forecast is equipartitioned on the n + 1 scales to evaluate 
the ISS. 
 
ISS(t, j) = [MSE(t)random - MSE(t, j)*(n+1))]/MSE(t)random 

 
 The detailed analysis of the mature stage of the 
tropical cyclone around the period of landfall of the 
system was carried out to demonstrate the capabilities of 

the MODE and wavelet stat tool and finally, the overall 
performance was objectively assessed.  
 
3. Results and discussion 
 
 3.1. Traditional verification scores 
 
 The current section deals with the traditional 
verification of NGFS and NCUM forecasts of ‘Phailin’ 
tropical cyclone against IMD-NCMRWF satellite-cum-
raingauge-merged gridded rainfall analysis as mentioned 
in the previous section. Two types of metrics are 
generated, the first with the continuous variables and the 
second with categorical variables. For continuous 
variables, the verification methods are consistent with the 
general framework of verification outlined by Murphy and 
Winkler (1987). The domain mean of the forecast and the 
observation computed over the forecast-observation pairs 
(FBAR and OBAR) is only one of the many important 
aspects of performance of the models. FBAR and OBAR 
are plotted together in Figs. 1(a-h), with colours of red 
(NGFS) and blue (NCUM) and dark green (OBAR) for 
the seven days period of 8-14 October, 2013. Fig. 1(a) 
depicts the boxes denoting the first, second and third 
quartiles of the mean rainfall on each forecast day of the 
period. The whiskers  represent  the  maximum-minimum,   



  
 
                  MOHANDAS and SINGH : VERIFICATION OF RAINFALL FORECASTS – VSCS ‘PHAILIN’              391 

  

 
 

Figs. 3(a-h).  Similar to Fig. 1, except for categorical rainfall metrics for the rainfall threshold of ≥ 1 mm. The categorical rainfall score (in 
millimeters) shown is Mean Forecast (FMEAN) alongwith Base Rate (BASER) with its distribution according to the forecast 
lead times as well as the time series at each of the lead times 1-7 

 

 

 
if there are no outliers, but the minimum fencing when 
there are suspected outliers represented by open circles. 
The mean values of individual forecast days are plotted as 
times series with the mean of all the days is shown along 
with the legends on each of the time series panels. 
 
 The observed domain mean rainfall could be seen to 
be ranging from around 6 mm to 10 mm with the median 
value of near around 8 mm. The mean value is also nearly 
equal to the median value for the 7 days period of 8-14 
October, 2013, in the case of observed rainfall. The 
observed rainfall reached around 10 mm on 9th and 12th 
and after 12th there was a reduction in the domain mean 
rainfall after the landfall. It could be clearly seen that 
NCUM had a tendency to generally over predict the 
domain mean rainfall compared to NGFS, during the first 
four days of forecasts. There was a clear-cut tendency to 
over predict the associated rainfall for the tropical cyclone 
by NCUM up to day-5 forecasts [also seen in the figures 

of geographical plots of regridded rainfall of                
Figs. 6(a&b)], mainly owing to the larger spread of heavy 
or rather heavy rainfall contours. Overall, up to day-3 
forecasts the domain mean rainfall by NGFS is more or 
less closer to the observed contours in the time series 
panels up to day-3, beyond which NGFS rainfall showed a 
tendency to under predict the same almost on all days. 
Both models were consistent in predicting maximum 
rainfall on 12th October, 2013 up to day-4, after which 
there was a general tendency to shift the maximum 
towards the later period. NCUM was able to predict the 
reduction in domain mean rainfall after 12th up to day-4 
forecasts, while in the case of NGFS, up to day-3. Beyond 
day-5, there was found a general reduction in the skill of 
both models. The domain mean rainfall decreased from 
8.74 on day-1 to 7.083 on day-7 for NGFS, while for 
NCUM there was a reduction from 9.902 to 7.589. The 
rainfall dipped below observed after day-5 for NGFS and 
after day-6 for NCUM. 
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Figs. 4(a-f).  Similar to Fig. 2, except for the categorical rainfall metrics for a rainfall threshold of ≥ 1 mm. The categorical scores                  
(in millimeters) shown are Frequancy Bias (FBIAS), Accuracy (ACC), Critical Success Index (CSI), Gilbert Skill Score (GSS), 
Hanssen_kuipers Discriminant (HK) and False Alarm Ratio (FAR) 

 
 
 
 For other scores for continuous variables the box and 
whisker plots are shown in Figs. 2(a-e). The measures 
shown are multiplicative bias (MBIAS), Mean Error 
(ME), Mean Absolute Error (MAE), Pearson Correlation 
(PR_CORR) and Root Mean Squared Error (RMSE). 
MBIAS also gave the similar conclusions as FBAR/ 
OBAR that both NGFS and NCUM were slightly over 
predicting till day-4 and after that hovering around a value 
of 1. But NCUM was showing more over prediction in the 
first four days. From day-5, the day-to-day variability was 
larger in general for both the models. Mean Error (ME) 
decides the direction of bias. It was showing positive bias 
till day-4, and after that the bias was showing large 
variability around 0. Mean Absolute Error (MAE) 
indicated the order of error.  It was showing a sharp 
increase in error from day-1 to day-4, from around 6 mm 
to 10 mm and after that the bias was more for NCUM 
during the first four days as well as RMSE. However, on a 
positive note, NCUM was also having better correlation 
between forecast and observation throughout the forecast 
period, compared to NGFS. The order of RMSE values 
was approximately between 10 and 25 mm, whereas the 
order of MAE was mostly between 6 & 12 mm. As RMSE 
imposes high penalty on large errors than does the MAE, 
this is very likely with a small sample size. Also RMSE 
was slightly higher for NCUM compared to NGFS. 

 For categorical measures, the daily rainfall is divided 
into 5 categories with thresholds of 1, 5, 10, 50 and          
100 mm and various metrics were computed. Figs. 3(a-h) 
shows statistics for lower threshold value of 1mm.  At 1 
mm threshold, the observed values of Base Rate (BASER) 
are ranging from 0.45 to 0.67. The first quartile is near 
0.56 and third quartile is near 0.65 with the median value 
of nearly 0.60. The mean value of Base Rate is 0.588 
which is also closer to the median value. NCUM shows 
the mean forecast (FMEAN) of the same order as that of 
the observed throughout the forecast period. NGFS shows 
under prediction of rainy areas of 1mm and above at all 
lead times with most of the individual days being 
predicted to be lower and lower with lead time. NCUM 
does not show much reduction in the area extend of rainy 
grid points at the light rainfall threshold. However, 
NCUM values of FMEAN are closer to the Base Rate 
throughout the forecast period compared to NGFS. In 
short, it can be seen that NCUM predicts large areas of 
light rainfall during most of the forecast period, while 
NGFS showing much lesser area coverage of light rainfall 
category. 
 
 Similar picture arises when looking at all the other 
metrics in Figs. 4(a-f) for the same threshold. Figs. 4(a-f) 
shows   the   scores   of   important  categorical  measures,  
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Figs. 5(a-h). Continuous verification statistics for daily rainfall (millimeters) against the gridded 

rainfall analyses averaged for the period 8-14 October, 2013 for NGFS and NCUM 
models and over each forecast lead times from day-1 to day-7; (a) mean forecast 
(FMEAN) (b) Accuracy (ACC) (c) Frequency Bias (FBIAS) (d) False Alarm Ratio 
(FAR) (e) Critical Success Index (CSI) (f) Gilbert Skill Score (GSS) (g) Hanssen-
Kuipers Discriminant (HK) and (h) Heidke Skill Score (HSS). Thresholds used are          
1 mm, 5 mm, 10 mm, 50 mm and 10 mm 

 

 
Frequency Bias (FBIAS), Accuracy (ACC), Critical 
Success Index (CSI), Gilbert Skill Score (GSS), Hanssen-
Kuipers discriminant (HK) and False Alarm Ratio (FAR). 
FBIAS is nearly 1 for NCUM for all lead times indicating 
that the frequency of ‘yes’ events are matching very well 
with that of the observed ‘yes’ events on all lead times. In 
contrast, NGFS under predicts the area throughout the 
forecast period for 1mm threshold. Accuracy is a measure 
of proportion of correct forecasts to the total number of 
events. Throughout most of the lead time, NGFS shows 
better performance with Accuracy always being on the 
higher side of 0.5 (with a range of about 0.6 to 0.7) for 
day-1 which gradually decreases to a range of (0.5-0.6) at 

day-7. NCUM is mostly showing values less than 0.5 after 
day-5, indicating poor performance beyond day-5. It can 
be seen that FAR is mostly on the higher side for NCUM 
on individual days at any lead time compared to NGFS. 
All the skill scores (CSI, GSS, and HK) shows slight 
upper hand for NGFS at all lead times. To summarise, it 
can be seen that at lower thresholds of 1mm, NGFS is 
clearly showing better skill than NCUM, though the area 
covering lower rainfall threshold is too less. 
 
 Looking at only one threshold will not give any 
conclusive measure of the performance of model rainfall 
forecast.  So  one  needs  to  look  at a range of thresholds,  
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Figs. 6(a&b).  Observed and forecast rainfall regridded to 50 km resolution 
along with the simple objects and clusters captured at 
convolution thresholds 2, 10, 20, 50 mm. NGFS and NCUM 
forecasts are shown for (a) day-1 and day-3 and (b) day-5 and 
day-7 lead times. Rainfall contours are coloured at intervals 0.1, 
1, 2, 4, 8, 16 and 32 cm and the objects of the same cluster are 
of single colour in a field but can have different colors in 
different fields. The blue objects are always un-clustered ones 
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Figs. 7(a-d).  Frequency bias, Critical Success Index (CSI), total number of matched objects and total matched area for NGFS and NCUM 

for the period 8-14 October, 2013 as a time series of forecast lead time 24-168 hours for daily rainfall (mm). The mean value 
is also indicated in each panel. (Convolution threshold = 2 mm, Convolution radius = 2 grid sizes) 

 
 
which are carried out in Figs. 5(a-h). It gives an overall 
overview of the performance of the models at thresholds 
of 1, 5, 10, 50 and 100 mm. As the number of days being 
verified are only 7 the sample size dwindles too fast as 
one goes from lower range to heavy to rather heavy 
rainfall category. So at thresholds of 50 and 100 mm, the 
comparison becomes statistically irrelevant, where the 
model mean rainfall (FMEAN) and the sample 
climatology (BASER) both converges to nearly zeroes. At 
1mm threshold, the average FMEAN value is nearly 0.5 
for NGFS and 0.6 for NCUM, which was also seen in    
Figs. 3(a-h). In between these thresholds, the BASER is 
nearly 0.2 at 5 mm and 0.15 at 10 mm. At 1 mm threshold, 
NCUM value of FMEAN is closer to BASER. At 5 mm, 
both models are slightly over predicting the frequency of 
rainy areas while NGFS is closer to the observed. At 
10mm, both models are showing almost comparable 
performances and matching very well with the BASER. 
 
 In the case of Accuracy, at lower thresholds (1 and     
5 mm), NGFS is showing higher values compared to 
NCUM. NGFS shows comparatively less frequency bias 
(FBIAS) especially in lower thresholds. Only in 100 mm 
threshold, NGFS is showing extremely high value of bias 
compared to NCUM. This may be mostly due to the 
difference in the intensity of the system in day-7 
prediction by both the models. NGFS is mostly able to 
predict the intensity of the system up to day-7 whereas 
NCUM shows poor performance in that range. NCUM 
mostly fails to predict the cyclonic system in day-7, while 
NGFS is able to predict the same, but in a completely 
wrong location (as shown by the geographical plots of the 
mean rainfall which is not shown here). FAR is also less 

for NGFS in lower thresholds of 1 and 5 mm, while at 
higher thresholds (especially at 100 mm) NGFS values are 
high. This also supports the conclusions that NGFS is able 
to predict better intensity but at a wrong location beyond 
day-5 compared to NCUM, so that the relative small 
sample size of 100 mm threshold can generate very high 
value of FAR. All the skill scores (CSI ,GSS and HK) 
shown in Figs. 5(a-h) also in general shows that at lower 
thresholds of 1 mm and 5 mm NGFS shows better 
performance while at higher thresholds, NCUM shows 
better performance in the ‘rather heavy’ to ‘heavy’ 
category. Here is the relevance of verification methods 
which account for the performance of the models in terms 
of the location error and to qualify the models according 
to the question, ‘which model has shown more location 
error and how far?’. The next section is devoted to 
identify the spatially coherent features of rainfall predicted 
by the models which is most likely to mimic the observed 
pattern and to arrive at an objective quantification of the 
spatial match or error. 
 

3.2. Method for object-based diagnostics evaluation 
(MODE) 

 
 Method for Object-based Diagnostics Evaluation 
(MODE) is a spatial verification method, the details of 
which can be obtained from Davies et al. (2004). This is 
more suitable for mesoscale model verification of highly 
discontinuous fields like precipitation and cloudiness. 
Davies et al. (2004) used this for WRF model outputs at     
4 km resolution. The current study may perhaps be the 
first attempt to apply it to the global model forecasts at a 
relatively  coarse  resolution of 50 km. Hence some tuning  
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TABLE 1  
 

Median of Maximum Interest (MMI) for NGFS (G) and NCUM (U) for 24, 72, 120 and 168 hour forecasts valid  
for 13 October, 2013 at thresholds 1, 5, 10, 20 and 50 mm 

 

24 hr 72 hr 120 hr 168 hr 
CT (mm) 

NGFS NCUM NGFS NCUM NGFS NCUM NGFS NCUM 

1 0.861 0.8569 0.8398 0.8467 0.8322 0.842 0.8291 0.8383 

5 0.8572 0.7822 0.712 0.8605 0.7513 0.8524 0.803 0.8577 

10 0.8772 0.9383 0.6381 0.7841 0.6128 0.7969 0.6411 0.8213 

20 0.7414 0.9163 0.7772 0.7676 0.5772 0.8712 0.6032 0.5137 

50 0.921 0.9514 0.9625 0.9833 0.8004 0.9404 0.6564 0.5426 

 
 
 
of the interest maps was required in the parameter settings 
rather than using the same settings given by Davies et al. 
(2004). Hence a brief description of the methodology with 
the inclusion of these modified parameter settings are 
given in Appendix - I. Also we are using only one 
convolution radius (2 grid spaces) with a range of 
convolution thresholds rather than many convolution 
radii, as at higher convolution radii the field is getting too 
smooth and fails to capture any simple objects.  
 
 Figs. 6(a&b) shows the simple objects generated by 
the MODE analysis tool for gridded rainfall analysis, and 
day-1, day-3, day-5 and day-7 forecasts by NGFS and 
NCUM at various convolution thresholds, 2 mm, 4 mm, 
10 mm, 20 mm and 50 mm valid for 13 October, 2013, the 
most intense period at landfall. At 2 mm threshold, the 
objects cover maximum area and are clustered together 
with the Fuzzy logic over a region covering most of the 
domain. The observation object cluster contains 3-4 
objects of the same colour which are compared against the 
day-1, day-3 and day-5 forecast clusters of NGFS and 
NCUM. Most matching clusters in different fields may 
have different colours and hence a strict colour matching 
should not be attempted to when comparing clusters 
between different fields. In all panels one common feature 
is that unmatched objects are all colored in blue and all 
other colours are clusters, pairs of which are all matched 
between the observation and the forecast fields. In general 
it could be noted that the clusters occupy larger areas in 
the forecasts compared to the observation and the total 
interest computed will be the maximum for the lowest 
threshold. As it goes to higher and higher thresholds, the 
objects areas and the cluster sizes decrease and the total 
interest also diminishes very fast. At highest threshold of 
50mm, the objects are very less in both number and area 
coverage and at longer lead times of day-5 and beyond the 
cluster itself is not formed often due to the very low total 
interest (< 0.7) between the objects in the same fields and 
hence the match is not being made. 

  Median of Maximum Interest (MMI) can be 
considered as a single objective score to assess the general 
agreement of all the forecast objects in the entire domain 
with the observed objects. This is because, MMI accounts 
for all the attributes of the forecast-observation pairs 
characteristic of the errors in location, orientation and 
intensity distribution of the simple objects (Appendix - I). 
Table 1 lists the Median of Maximum Interest (MMI) 
values for day-1, day-3, day-5 and day-7 forecasts valid 
for 13 October, 2013 for thresholds 1, 5, 10, 20 and            
50 mm. In general it can be seen that NCUM features 
better performance with higher number of MMIs while at 
day-7 NCUM fails to produce any strong system and 
hence has poor MMI at higher thresholds of 20 mm and 
above. Though NGFS produced the Tropical Cyclone in 
day-7 forecasts, it probably failed to produce Total 
Interests for the simple objects at higher rainfall range so 
as to exceed the threshold value of 0.7 to make a cluster. 
This may be due to the higher weights given to the 
centroid distance and other parameters being taken into 
consideration for the computation of Total Interest as the 
location not the intensity is in more error in this case. 
Thus in general, except at longer lead times beyond day-5, 
the MMI values are above a useful threshold value of 0.7 
and can be considered as a measure of better performance. 
Also it can be seen that NCUM produced higher values of 
MMIs compared to NGFS almost at all lead times and on 
all rainfall thresholds, except on day-7 at higher rainfall 
ranges, in which case, NGFS scores are predictably higher 
owing to the better intensity forecasts.  
 
 Traditional verification scores applied to the model 
output rainfall computed by defining matched observed 
objects to be hits, unmatched observed objects to be 
misses and unmatched forecast objects to be false alarms, 
weighted by object area [Figs. 7(a-d)] shows that at lower 
convolution thresholds of 2 mm and convolution radius of 
2 grid sizes, NCUM features slightly higher frequency 
bias  and  lower  CSI  compared  to NGFS, when averaged  
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Figs. 8(a-d). The bars denote the time series of the number of matched observed (blue) and forecst  (red) objects (top two) and 
unmatched observed (blue) and forecast (red) objects (bottom two) for 24 hour rainfall forecasts for the period 8-14 
October, 2013 by NGFS and NCUM respectively for convolution thresholds (a) 2 mm (top left 2×2 square panels) (b) 4 
mm (top right 2×2 square panels) (c) 10 mm (bottom left 2×2 square panels) and (d) 15 mm (bottom right 2×2 square 
panels). Matched number of observation objects are represented as ‘hits’ and unmatched number of observation objects 
as ‘misses’, while the unmatched number of forecast objects are represented as false alarms 

 
 

 

over 7 days of lead time. NGFS is having better number of 
matched objects, while features lesser matched area 
except for day-1 and day-7. This can be an indication of 
more number of forecast objects of small sizes for NGFS 
and lesser number of large contiguous areas for NCUM as 
model-specific characteristics. Figs. 8(a-d) gives statistics 
of time variation of total number of matched and 
unmatched objects captured during the period of TC 
Phailin for 24-hour rainfall forecasts for four thresholds, 
2, 4, 10 and 15 mm. In general it can be stated that, for the 
case of number of matched objects, 24-hour rainfall 
features more number of hits for NGFS for the entire 
episode. Also the number of misses and false alarms are 
less for NGFS compared to NCUM. 
 
 
 3.3. Wavelet analysis 
 
 Wavelet analysis evaluates the forecast skill as a 
function of the precipitation intensity and the spatial scale 

of error. Casati et al. (2004) states that, the loss of forecast 
skill of a mesoscale model mainly owes to small spatial 
scale errors at larger precipitation thresholds. Different 
scales are associated with different physical processes. For 
example, small scales are associated with convective 
showers and mesoscale events and large scales are 
associated with frontal systems and other large scale 
synoptic systems. Any weather phenomena can be 
considered as consisting of all range of scales from micro 
to the maximum size of the event. The wavelet analysis 
carried out at a finite number of scales will quantify the 
performance of the rainfall forecasts for these scales and 
will give an idea about the scales of maximum and 
minimum average displacement error at each threshold. 
Different categorical scores are computed for each 
particular scale component, like Intensity-scale Skill score 
(ISS) which is based on the mean squared error (MSE). 
Thus, this approach enables the user to assess the skill of 
the model in simulating these scales and hence the 
associated physical processes. 
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Figs. 9(a-f).  Intensity skill scores of rainfall at different thresholds (bars) of 0.1, 1, 5, 

10, 20 and 50 mm, plotted at different scales 50, 100, 200, 400, 800 and 
1600 km along with the binary difference averaged for 8-14 October, 2013 
for forecast lead times 24, 72 and 120 hours by NGFS and NCUM 

 
 
 Here, as the grid resolution of study is 50 km, the 
mesoscale features cannot be resolved, the scales of the 
range of (50-1600 km) are considered. Figs. 9(a-f) shows 
intensity skill score plotted against the scale in kilometres 
as bar diagrams for day-1, day-3 and day-5 forecasts by 
NGFS and NCUM. Different colour bar for each scale 
denotes different thresholds of 0.1, 1, 5, 10, 20 and 50mm. 
At day-5, both the models show considerable degradation 
in the skill to simulate the scales even up to 800 km. 
NCUM shows poorer skill at 800 km scale compared to 
NGFS. In general, both the models show better capability 
to simulate scales of 800 km and 1600 km at all thresholds 
and NGFS on average, shows relatively better skill in    
800 km scale compared to NCUM. This may be partly due 
to the difference in the resolution of the models, as NGFS 
runs at comparatively higher resolution. At 50 km scale, 

both models show the least skill perhaps due to more 
displacement error. Averaged over the entire episode (not 
shown here), NGFS shows lower skill at higher thresholds 
compared to NCUM at 50 km scale. 
 
4. Summary and conclusions 
 
 The study evaluates the overall performance of the 
rainfall forecasts by NGFS and NCUM global models for 
the case of TC ‘Phailin’. There are 7 days of forecasts 
taken into account during the period of 8-14 October, 
2013, from the time when the system is formed over the 
southeast Bay of Bengal and till the land fall has occurred. 
The verification is carried out against gridded rainfall 
analysis to assess the spatial pattern and the performance 
of the predicted rainfall.  
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 The traditional verification scores are giving mixed 
results for continuous variables with mean value of the 
rainfall predicted closer to that observed by NGFS as 
compared to NCUM, in which case there is always an 
over prediction up to day-4. NCUM suffers from more 
bias and poor skill scores during the first four days of 
forecasts. The categorised rainfall evaluation with a lower 
threshold value of 1mm shows that the relative frequency 
of occurrence by NCUM is better matching with the 
frequency of the observed events (Base Rate) throughout 
the seven days forecast period. NGFS predicts lesser 
frequency of occurrence of the event compared to the 
observed and also less variability. Though NCUM shows 
less frequency bias in the lower threshold of 1 mm, 
Accuracy and all other skill scores are comparatively 
better for NGFS and False Alarm Ratio relatively less. 
Frequency bias is very high for NGFS compared to 
NCUM at 100 mm threshold. For FAR and all skill scores, 
it can be concluded that at lower thresholds of 1 and 5 
mm, NGFS performs better than NCUM, while for higher 
thresholds, NCUM is superior to NGFS. 
 
 MODE analysis shows that NCUM is having 
marginally better scores in terms of total interests. In 
general, the wavelet analysis for both models show better 
capability to simulate synoptic scales of order of 800 km 
and 1600 km. The difference in the resolution of the 
models may have some impact on the scale of best 
performance. At 50 km scales both the models show the 
worst skill and NGFS is worse than NCUM in this 
respect. The NCUM forecasts are found to be superior to 
NGFS up to day-5 forecasts though NCUM is unable to 
predict any system on day-7 forecasts. 
 
 It can be noted that MODE analysis is carried out 
only at one Convolution Radius (CR = 2 mm) and over a 
number of Convolution Thresholds (CT). Thus the Total 
Interest indicates an overall match between the smooth 
rainfall forecasts against the gridded rainfall analysis. As 
the effective grid resolution is taken as 50 km, which can 
be considered as quiet coarse, the use of higher values of 
CR over-smooth the pattern and will not survive the 
‘Convolution-thresholding’ process at higher CT’s. So it 
is most apt for rainfall verification of higher resolution 
forecasts against higher resolution observations. The 
entire study is conducted at 50 km resolution where as the 
models it selves are having higher resolution. We are 
actually limited by the resolution of the observations. The 
experiment however proves that we are ready with the 
verification tool whenever the rainfall forecasts by 
mesoscale models are made available along with 
comparable or high resolution observations. 
 
 The current study demonstrates the new ways of 
model performance evaluation and more comprehensive 

analysis techniques. These types of standard scores are 
useful in assessing the overall quality of the forecasts for 
the kind of extreme weather events which last for at least 
about a week. However, as the sample size is relatively 
small, the scores cannot be generalised or a definite 
statement of the performance of a particular model cannot 
be arrived at. The object-based scores are useful in day-to-
day assessment of the agreement between forecast and 
observed rainfall patterns and in-depth analysis of the 
performance in the simulation of various physical 
processes. A long period forecast experiment or a large 
sample size can be used to assess the strength and 
weakness of the models. So an ensemble of scores of large 
set of extreme weather events or accumulation of scores 
through a longer period like a month or season can help in 
assessing the performance of the models in different 
scenarios or convective environments. One aspect of the 
verification which is out of scope of the current study is 
the issue of ‘if the errors are within the acceptable limits 
or not’. As this is a one-off case study of a tropical 
cyclone, the sample size is too inadequate to decide 
whether the forecast biases are within acceptable limits or 
whether the forecast biases reflect the deviation occurring 
within the verification sample data. For that, we need a 
large set of cases of tropical cyclone predictions by the 
same formulations of models over the region to generate 
the climatology and to evaluate separately the forecast and 
observation biases against the climatology. 
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APPENDIX - I 
 

Method for Object-based Diagnostics  
Evaluation (MODE) 

 
 This is a displacement technique of spatial 
verification methods which provides information which is 
not otherwise possible to obtain using traditional grid-
point based verification methods (Davis et al., 2004). It 
objectively identifies simple objects in rainfall fields at 
different thresholds, which would mimic what humans 
call as “regions of interest”. This process is a multistep 
one which is called the ‘convolution-thresholding’ 
technique. It basically involves application of a simple 
circular filter which in terms is a function of convolution 
radius (CR). Once the filter is applied, the convolved field 
is thresholded using a convolution threshold (CT) to 
generate a mask field. These simple objects are the 
connected regions of “1” in the mask field. Finally, the 
actual data is restored inside the mask regions of object 
interiors to obtain the object field. Thus these objects are a 
function of CR and CT. 
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 Once simple objects are generated in the rainfall 
field, various object attributes are computed and compared 
to merge the objects in the same field and match the 
objects between the two different fields, say forecast and 
observation. The summary statistics can be computed 
based on the single object statistics as well as statistics of 
the pairs of objects. As an example, Area is an attribute 
which is simply the count of the number of grid squares an 
area of object occupies. Axis angle gives the tilt of the 
object as curvature implies the curviness. Aspect ratio is 
the ratio of the width and length of the rectangle which is 
aligned so as to have the same axis angle as the object and 
for which the length and width are chosen so as to just 
enclose the object. Complexity is defined by comparing 
the area of an object to the area of its convex hull. 
Similarly pair attributes are defined such as centroid 
distance, angle difference, union area, intersection area 
and symmetric difference. 
 
 Matching and merging of the objects are achieved by 
various techniques and “Fuzzy engine” logic is applied for 
the current study. This involves assigning “interest maps”, 
“confidence maps” and weights for the attributes (α) 
which are taken in to consideration. Interest maps [I(α)] 
range from zero to one and are applied to each attributes 
to convert it into interest values. 1 indicates high interest 
and 0 indicates no interest and there will be some 
attributes featuring intermediate interests. Confidence 
maps [C(α)] also range from zero to one, but is a function 
of the entire set of attributes to indicate the relative 
confidence of one field in terms of other fields thus is 
dependent of other parameters also. By default if the 
attribute is independent of any other attribute, the 
confidence map is defined as 1. The scalar weights (ω) are 
to be assigned to each attribute giving preference to which 
attribute the user assign maximum weightage. Finally a 
single number called total interest [T(α)] is computed 
using all the three maps by a formula as given below. 
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 The total interest is then thresholded and the pairs of 
objects that are having total interest more than the 
threshold are merged if they are in the same field and 
matched if they are in the different fields. MODE outputs 
the statistics of single as well as cluster of objects.  The 
scores can be summarised as Median of Maximum 
Interest (MMI), which is an example of a useful single 
measure of the general agreement between forecast and 
observation for the entire domain (See Davis et al., 2009). 
Median is taken instead of Mean to avoid the effect of 
outliers. The details of the MODE configurations and the 

definitions of various interest maps and confidence maps 
are as given below.  
 
 General 
 

Grid_res 
 

= 50 km 

Convolution 
thresholds  
 

= 1, 2, 5, 10, 20 and 50 mm 

Convolution radius 
 

= 2 (grid spaces) 

Forecast_merge_flag = 2 (Fuzzy Engine merging  
method) 
 

max_centroid_dist  
 

= 200 

total_interest_thresh 
 

= 0.7 

 
Interest functions and piecewise linear functions 

 

Centroid Distance Interest 

0.0 1.0 

100.0/grid_res 1.0 

1000.0/grid_res 0.0 

 
 

Boundary Distance Interest 

0.0 1.0 

500.0/grid_res 1.0 

2000.0/grid_res 0.0 

   
 

Convex Hull Distance Interest 

0.0 1.0 

500.0/grid_res 1.0 

2000.0/grid_res 0.0 

     
 

Angle Difference Interest 

0.0 1.0 

30.0 1.0 

90.0 0.0 

     
 

Area Ratio Interest 

0.0 0.0 

1.0 1.0 
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Intersecting area ratio Interest 

0.00 0.00 

0.10 0.50 

0.25 1.00 

1.00 1.00 

Weights 
 
centroid_dist_weight  =  2.0  
 
boundary_dist_weight  =  4.0 
 
convex_hull_dist_weight  =  0.0 
 
angle_diff_weight  =  1.0 
  
area_ratio_weight  =  1.0  

  
 

Confidence functions  int_area_ratio_weight  =  2.0 
  
complexity_ratio_weight  =  0.0 aspect_ratio_conf(t) = ( (t - 1)**2/(t**2 + 1) )**0.3; 
  
intensity_ratio_weight  =  0.0 area_ratio_conf(t)    = t 

 
 

 

 

 

 

 


