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सार – इस शोध पऽ में वषर् 2010 के मॉनसून ऋतु के दौरान WRF (डब् ल् यू आर एफ) मॉडल पूवार्नुमान का 

सत् यापन 0.250 ः थािनक िवभेदन पर दैिनक रूप से ूेिक्षत TRMM (टी आर एम एम) वषार् के साथ िकया गया है। 
औसत ऽुिटयाँ तथा वगर्मूल औसत ऽुिटयाँ जैसे सवर्मान् य ः कोसर् की गणना करने के िलए परंपरागत िमड प् वांइट 
सत् यापन तकनीक को लगाया गया है। व् यापक रूप से इः तेमाल िकए जाने वाले सुिनिँ चत कौशल ः कोसर् का भी ूयोग 
सात िभन् न िभन् न वषार् अवसीमाओ ंकी गणना करने के िलए िकया गया है। यह ः कोसर् केवल 7.5 िम.मी. अवसीमा में 
मॉडल के िनं पादन की सामान् य ूकृित की जानकारी दे सकता है जो सामान् य ौणेी की वषार् से अिधक का पूवार्नुमान 
सटीकता में अपकषर् को दशार्ता है। वषार् पूवार्नुमान सत् यापन के िलए उदे्दँ य अिभमुख िनकटः थ वषार् के्षऽ (CRA) िविध 
पर िवचार िकया गया है। इस िविध से यह भी संपुिं ट हई है िक वषार् की माऽा में विृद्ध होने से मॉडल के कायर्ु  िनं पादन 
में कमी आई है। ठीक इसी ूकार िनकटः थ वषार् के्षऽ िविध में औसत वगर् ऽुिट िवयोजन ः पं ट रूप से देखी गयी है। 
ूेक्षण की तुलना में मॉडल पूवार्नुमान में बड़ी ऽुिट वषार् की िः थित अथवा घटना में िवः थापन के कारण हई है। आमतौर ु
पर इस मॉडल से िदन के 1 पूवार्नुमान में पैटनर् ऽुिटकी तुलना में माऽात् मक ऽुिट का कम योगदान रहा है जबिक यह 
िदन के 2 पूवार्नुमानों के तुल् य रहा है। महत् वपूणर् ौणेी के ऑकंड़ों का ूयोग करके िदए गए िनकटः थ वषार् के्षऽों के 
पूवार्नुमान 35.5 िम.मी. की अवसीमा में ूेिक्षत िः थितयों से 80 ूितशत से अिधक बार अच् छी तरह मेल खाते हैं और 
64.5 िम.मी. की अवसीमाओ ंमें पूरे मॉनसून के दौरान 50 ूितशत मेल खाते हैं। जब ऋतु के दौरान 10 िभन् न िभन् न 
तेज बौछारों वाली घटनाओ ंपर अलग से अध् ययन िकया जाए तो पूवार्नुमान के मेल खाने की ूितशतता में और विृद्ध हो 
सकती है। 

 
ABSTRACT. WRF model forecast during monsoon season 2010 have been verified with daily observed TRMM 

rainfall at 0.25° spatial resolution. Conventional grid-point verification technique has been deployed to calculate common 
scores like mean errors and root mean square errors. Widely used categorical skill scores have also been computed for 
seven different rainfall thresholds. The scores only could find the general nature of the model performance depicting the 
degradation of forecast accuracy exceeding moderate rainfall category with 7.5 mm threshold. Subsequently the object 
oriented contiguous rain area (CRA) method has been considered for rainfall forecast verification. The method also 
confirmed that the performance of the model deteriorates along with the increase in rainfall amount. At the same time, 
within CRA method, the decomposition of mean square error has clearly found out that the major error has been occurred 
due to displacement of rain object or event in the model forecast compared to observation. In general, volume error 
contributes less as compared to pattern error in day-1 forecasts of the model whereas they are comparable in day-2 
forecasts. Applying statistically significant best-fit criteria, the forecast CRAs have been successfully matched to 
observed events more than 80% of the time for 35.5 mm threshold and 50% for 64.5 mm thresholds respectively during 
whole monsoon season. The percentage of match further increases when 10 different active spells of the season has been 
considered separately. 

 
Key words – Contiguous rain area, WRF forecast, Forecast verification, TRMM rainfall. 

 
 

1.  Introduction 
 
 Forecasting of rainfall over India during summer 
monsoon season is the most challenging task for 
numerical weather prediction models. As the rain bearing 
systems of monsoon embedded in large scale flow portray 
non-linear scale interactions and variety of physical 
processes, their observed nature in terms of rainfall is still 

the subject of continual study. The rainfall forecasts of 
numerical weather prediction (NWP) model over the 
region are associated with the monsoon systems are being 
constantly verified for further improvement in the model.   
Many studies by several authors (Basu, 2005; Roy 
Bhowmik et al., 2006; Mandal et al., 2007; Roy Bhowmik 
and Durai, 2009) on rainfall verification over Indian 
peninsular   region  and  its  sub-regions  during  monsoon  
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Fig. 1. The schematic diagram of the assimilation procedure of WRFDA-WRF-ARW system 

 
 
 
season have been carried out considering different time 
and horizontal scales during monsoon for different kinds 
of models.  Quantitative verification studies (Das         
et al., 2008; Ashrit and Mohandas, 2010) using categorical 
and continuous skill scores collectively portray inadequate 
picture for mesoscale forecasts. Categorical scores also 
could not bring reasonable picture for observed rainfall 
events with changing amount, i.e., the equitability of the 
score depends on the sample size of the verification 
dataset (Hogan et al., 2010).   

     

   WWRP/WGNE (World Weather Research 
Programme/Working Group of Numerical 
Experimentation (WMO, 2008) recommended about 
standardize verification of short range prediction of 
rainfall by NWP model. Accordingly, the verification of 
rainfall forecasts can be sought to improve forecast quality 
through better understanding of forecasts errors. There are 
various methods of verification alternative to point-wise 
comparison between forecast and observation. Applying 
three such different verification techniques for wind 
components (e.g., anomaly correlation, object-based 
verification and variance anomalies), Riffe and Davis 
(2005) illustrated the benefit of high-resolution over 
coarse grid structure of the model in terms of temporal 
error variance and realistic nature of error growth. Newly 
modified neighborhood verification approach (Ebert, 
2008, fractions skill scores; Roberts and Lean, 2008) have 
advantages over the traditional metrics (e.g., root mean 
square error, mean error, correlation coefficient, skill 
scores and etc. Theis et al., 2005) but give credit only to 
the close forecasts. As mentioned in the recommendations 
(WMO, 2008), diagnostic methods give more in-depth 
information about the model performance. Simple 

methods using maps; time series; scatter plots; quantile-
quantile or exceedance probability produce handy 
graphical results. But advance diagnostic methods have 
proven to be very much useful in evaluating deterministic 
models both in research and operational settings. Some 
examples include multi-scale spatial statistics, scale 
decomposition methods, field verification methods and 
object oriented methods.  Harris et al. (2001) employed 
three methods of multiscale statistical analysis to assess 
model forecasts at high resolution for a convective storm 
using radar observations. Scale decomposition methods 
for precipitation forecasts define the intensity and scale of 
the errors, e.g., intensity based scale separation (Casati       
et al., 2004). For objective evaluation of a regional 
ensemble forecasting system Kiel and Craig (2007) 
proposed a technique based on pyramidal matching 
algorithm. Object oriented verification methods,              
e.g., Contiguous Rain Area (CRA) method (Ebert and 
McBride, 2000; Grams et al., 2006), Method for Object-
based Diagnostic Evaluation (MODE) by Davis et al. 
(2006) and Structure-Amplitude-Location (SAL) method 
(Wernli et al., 2008) are feature based model evaluation 
and address the skill of forecasts for episodic and 
localized phenomena. In addition, the object oriented 
verification methods are basically designed for rainfall 
verification at high resolution and thus applicable for the 
performance evaluation of mesoscale models during 
monsoon season. Dube et al. (2014) compared the 
performances of two global models using CRA method 
while taking the rain objects associated with the heavy 
rainfall over Himalayan region.  

 

 
   In this paper, the quantitative verification of WRF-
ARW model (operational in India Meteorological 
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Department - IMD) forecasts over Indian region for a 
whole monsoon season has been completed. The study is 
based on object-oriented CRA method described by Ebert 
and Gallus (2009). The method has employed using 
Tropical Rainfall Measuring Mission 3B42 Version 6 
(TRMM 3B42V6) rainfall observations along with model 
forecasts with matching resolutions (temporal and spatial). 
The inference has been drawn on the basis of the results 
obtained during one monsoon season.  
 
 
2.  Data and methodology 
 
 2.1. Model and data 
 
 The regional mesoscale analysis and forecasting 
system WRFDA + WRF is installed for real-time            
use in IMD, Delhi with its different components                    
(i.e., preprocessing program - WPS and REAL, 
assimilation program - WRFDA, boundary condition 
update - update_bc and forecasting model - WRF-
ARW). The processed observational data from different 
sources are assimilated in WRFDA system to improve 
the first guess (Global Forecasting System analysis. 
Assimilation is done in a domain (23.2° S to 46.2° N; 
39.6° E to 120.5° E) with 27 km horizontal resolution 
and 38 vertical eta levels up to 50 hPa pressure level at 
the top. The cold-start mode of assimilation is presently 
adopted for WRFDA system the schematic diagram of 
the same procedure is shown in Fig. 1. The above 
mentioned modeling system has been utilized to 
generate forecasts during whole monsoon season of 
2010. The WRF model has then been integrated up to    
51 hours twice a day at 0000 and 1200 UTC. The WRF 
model has been configured with full physics (including 
cloud microphysics, cumulus, planetary boundary layer 
and surface layer parameterization) as well. In the 
present study, only 0000 UTC model forecasts have 
been considered.  
 
 The verification experiments make use of available 
three hourly TRMM (3B42 V6) rainfall analyses and the 
forecasts operationally generated every day in IMD during 
monsoon 2010. The TRMM rainfall at horizontal 
resolution (0.25°) within a box (Latitude: from 6.5° N to 
38.5° N and Longitude : from 66.5° E to 100.5° E) 
covering Indian region have been utilized in this study.  
Following the conventional practice in the region, the 
accumulation period of observed rainfall for a day is 
considered from 0300 UTC of a day to next day         
0300 UTC. Over same specified region, the WRF-ARW 
forecast rainfall has been interpolated to 0.25° from its 
native 27 km resolution using bilinear interpolation. The 
accumulation period also has been matched with the 
observation. 

   

TABLE 1 
 

Classification of daily rainfall based on intensity 
 

Descriptive term used Category  Rainfall amount in mm 

No Rain I 0.0 

Very light Rain II 0.1- 2.4 

Light Rain III 2.5 – 7.5 

Moderate Rain IV 7.6 – 35.5 

Rather Heavy V 35.6 – 64.4 

Heavy Rain VI 64.5 – 124.4 

Very Heavy Rain VII 124.5 – 244.4 

Extremely Heavy Rain _ ≥ 244.5 

Exceptionally  Heavy 
Rain 

 When the amount is a value near 
about the highest recorded rainfall 
at or near the station for the month 
or season.  

 

 2.2. Verification 
 
  The verifications using neighborhood technique with 
two different approaches have been completed with the 
grid-point analyses and up scaled forecast rainfall for 
whole India region. In first approach, the scores like mean 
error (ME), mean square error (MSE) and  root mean 
square error (RMSE) have been computed along with two 
widely used two categorical skill scores (threat score - TS 
and equitable threat score - ETS) for seven rainfall 
thresholds.  In next approach, objected oriented CRA 
method has been employed for verification over whole 
India region. 
 
 The CRA method utilized in this study has been 
developed following the technique described in a study by 
Ebert and Gallus (2009) but the realization of the steps       
of working algorithm are formulated according to the 
distinct features and characteristics of observed and 
forecast rainfall over the region during whole monsoon 
season. The rainfall threshold defined for CRA method 
have been selected on the basis of the nature and size       
the rainfall objects over the region. At the same time,       
the analysis through computed categorical scores            
has shown that the comparison of model performance 
between different thresholds could not bring out        
distinct differences and provided required information    
for the selection of threshold at the time of CRA 
verification.  
 
 The rain categories used in India Meteorological 
Department (described in Table 1) are used for the 
computation of categorical skill scores. The last two 
categories above very heavy rain class in the Table 1 are 
not considered for the verification purpose as their 
occurrences  are  limited over a region with comparatively  
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TABLE 2 
 

Average sizes of CRA for different rain thresholds  
converted to equivalent square 

 

Rainfall 
Thresholds in 
mm per day 

Average no of adjacent 
points from 0.25° × 0.25° 

gridded  data 

Average size of CRA 
approximated to 

equivalent square area 

2.4 1974 11° × 11° 

7.5 876 7.5° × 7.5° 

21.5 184 4° × 4° 

35.5 68 2° × 2° 

50 46 1.5° × 1.5° 

64.5 38 1° × 1°  

 
small spatial coverage throughout monsoon season 2010. 
At the same time, the previous studies (Ashrit and 
Mohandas, 2008; Das et al., 2008; Durai et al., 2010) also 
depicted that the NWP models always underestimated 
heavy rainfall events. The widespread rainfall over Indian 
region during the monsoon season showed few 
discontinuities, making it difficult to apply the CRA 
analysis at low thresholds.  As a result, the computed 
spatial extent of the object (CRA) were too big for the 
rainfall categories 2.4 mm and 7.5 mm and therefore have 
not been considered in CRA method. The average sizes of 
the CRAs for different rainfall thresholds are given in 
Table 2.  
 
 Fig. 2 shows the schematic view of CRA formation 
which has been adopted from the work by Ebert and 
Gallus (2009). The figure is self-explanatory with the 
representation of forecast, observed field and merged 
fields. The working implementation of the CRA method 
for the present study has been formulated in the following 
steps.  
 
(i) Both observed and forecast rainfall fields are merged 
by retaining greater value of rainfall at certain grid point. 
 
(ii) Extract the grids points with rain value greater than 
or equal to a given threshold based on considered rainfall 
categories. 
 
(iii) Flood fill (seed fill) algorithm has been employed to 
find contiguous rain area (a collection of grid points 
exceeding threshold adjacent to each other) from extracted 
grid points in previous step (ii). 
 
(iv) For a certain rain threshold, the minimum size 
restriction (in terms of number of grid points) has been 
applied to select a CRA for further computation.  
 
(v) The rectangular template from observed field 
according  to  horizontal span of the CRA zone (maximum 

 
 

Fig. 2.  CRA formed by the overlap of the forecast 
and observed rain areas. The area shaded in 
solid orange color shows the position of 
forecast template and final best fit position 
is shown in light orange shaded region. The 
observed template is shown in blue shade 
and the arrow is showing the direction of 
translation of the forecast CRA. The red 
outline surrounding the whole area shows 
the region for which verification statistics 
have been computed 

 
and minimum value of latitude and longitude) has been 
defined for further procedural steps. 
 

(vi) Sufficiently large search domain from forecast field 
has been created by extending the boundaries of the 
previously selected rectangular template in all the four 
sides. In present study, 1.5 times of observed template 
length and breadth have been enlarged to set the search 
domain. The maximum horizontal extension is limited to 5 
degrees or less on each side. 
 
(vii) Consequently, observed template has been displaced 
over search domain of forecast field till best match 
criterion has been fulfilled, i.e., maximum spatial 
correlation coefficient has been reached. 
 
(viii) Only those rain grid point information has been 
retained for which simultaneously both defined criteria 
(spatial correlation coefficient ≥ 0.3 and Mean Squared 
Error <1600 mm2) has been satisfied. 
 
(ix) Finally according to Ebert and McBride (2000), total 
mean square error in terms of percentage displacement, 
volume and pattern has been decomposed as 
 
 MSEtotal  = MSEdisplacement  +  MSEvolume +  MSEpattern. 

  
 The decomposition procedure computes the 
displacement  component  as  the  difference  in  the  mean  



  
 
              DAS et al. : VERIFICATION OF WRF FORECASTS WITH TRMM RAINFALL - CRA METHOD              407 
  

 

 
 

Figs. 3(a-c). Errors in rainfall forecasts averaged over whole India region (a) Mean error, (b) Mean square error and (c) Root 
mean square error (mm) 

(a) 

(b) 

(c) 

 

 
squared error before and after shifting the forecast, the 
volume error as the bias in mean intensity and the pattern 
error as a residual. 
 
 MSEdisplacement = MSEtotal  - MSEshifted,  

 

 MSEvolume =  2
XF   and  

 

 MSEpattern = MSEshifted -  MSEvolume, where F  and X  
are the mean forecast and observed values after the shift. 
 
(x) But for the cases where MSE total< MSE shift,           
i.e., %MSE displacement is negative the modified formula 
from Murphy (1995) have been utilized. 
 

       2222 1 FFxtotal srrssXFMSE   

 
 where, sF and sx are the standard deviations for 
forecast and observed values respectively; and r is the 

original spatial correlation between the forecast and 
observed rain. Shifting the forecast template location 
improves its correlation with the observations to ropt. The 
decomposition formula now become  
 
 MSEdisplacement = 2 sF sx (ropt – r) 
  

 MSEvolume = 
2

'' 




   and   XF

  
 MSEpattern = 2 sF sx (1 - ropt) + (sF  - sx)

2 
 
 Independently for each day of the season, all CRAs 
have been defined and then selected following the 
algorithm stated above for four selected thresholds          
(i.e., 21.5, 35.5, 50.0 and 64.5 mm daily rainfall).  The 
CRAs are stenciled separately for four different thresholds 
in a day and every individual CRA has been considered to 
make a match between observed and forecast fields. The 
forecast error for each CRA has been computed with three  
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TABLE 3 
 

Selected spells during summer monsoon 2010 
 

Spell No Duration during 2010 

1 7 - 9 June 

2 5 - 7 July 

3 19 - 22 July 

4 24 - 27 July 

5 30 July - 1 August 

6 5 - 8 August 

7 19 - 22 August 

8 25 - 27 August 

9 7 - 9 September 

10 16 - 20 September 

 
 
 

partitions, i.e., displacement, pattern and volume errors. 
The mean value has been computed considering all CRAs 
for a certain threshold happened during the season 
irrespective of their locations and the days of occurrence.  
The CRA method has been employed separately for day-1 
and day-2 forecasts.   The average statistics of CRA for all 
days during whole monsoon season has been computed 
from each day CRA scores.   
  
 Ten different spells of monsoon season have been 
when the monsoon was active over Indian region and the 
all India total rainfall exceeded climatological normal of 
the same. The specific durations have been mentioned in 
Table 3. The CRA method has been employed to find the 
matches between observation and model forecasts for each 
rain object separately putting the matching criteria 
described above. A rain object found in observation has 
been searched in the forecast, and the match or HIT case 
for the model forecast has been considered when the 
forecast CRA after shifting produce optimal spatial 
correlation with respective observed CRA. On the 
contrary, it is a MIS. The reverse search has not been 
considered, i.e., a rain object found in forecast has not 
been searched in the observation. For the days in all 
different 10 spells, the number of HITs and MISes has 
been counted separately for four different thresholds.  
 
3.  Results and discussion 
 
 3.1. Verification scores for rainfall 
 
 Verification of forecast rainfall with observed 
analysis has been done for Indian region considering 
whole monsoon period JJAS 2010 on the basis of  
standard  scores such as RMSE, ME, MSE which has been  

 
Fig. 4.  Threat scores at different rainfall categories in rainfall 

forecasts averaged over whole India region 

 

 
Fig. 5.  Equitable threat scores at different rainfall categories in 

rainfall forecasts averaged over whole India region 

 

 
 

Fig. 6.  Variation in numbers of CRA at day-1 forecasts over whole 
India domain during the season with varying thresholds in 
rainfall amount and minimum number of grid points in a 
CRA. for 21.5, 35.5, 50 and 64.4 mm rainfall thresholds 
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Fig. 7. Same as figure 6 but for day 2 forecasts 
 

 
computed and summarized for day-1 (27 hour) and day-2 
(51 hour) forecasts. The scores mentioned above             
are computed daily taking average over the region to show  



  
 
              DAS et al. : VERIFICATION OF WRF FORECASTS WITH TRMM RAINFALL - CRA METHOD              409 
  

 

 
 

Figs. 8(a-d).   Pie chart of volume, displacement and pattern mean square errors in day-1 forecasts for different 
rainfall   thresholds for (a) 21.5 mm (b) 35.5 mm (c) 50.0 mm and (d) 64.4 mm   

 

 
 
time series of the errors in Figs. 3(a-c).  The time series 
graphs of model performance for day-1 and day-2 
forecasts do not show any specific feature during whole 
monsoon season rather the systematic error is less than its 
random error. Fig. 3(a) shows that the rainfall is 
overestimated by the model in day-1 (~ 5 mm) which is 
reduced in day-2 forecast (~2.0 mm). But, there is no 
significant improvement in RMSE with forecast hours. 
The model errors (MSE and RMSE) vary in day to day 
forecasts and the systematic contribution in the error is 
less compared to its randomness. 
 
 Although, model produce positively biased rainfall 
over every region throughout the season, the small values 
of mean error compared to MAE and RMSE depict the 
randomness of the error. The errors also enhances over the 
region of higher rainfall, e.g., west-coast and north-eastern 
states. The order of errors does not portray any significant 
differences between different forecast lengths and 

specifically, day-2 have little higher values compared to 
day-1.  
 
 In our study, the description has been limited to two 
specific categorical skill scores Threat Score (TS) and 
Equitable Threat Score (ETS) also known as critical 
success index and Gilbert skill score respectively. The 
domain average scores have been computed daily 
considering all grid points over the region. The finally 
seasonal mean values of the scores have been derived 
separately for each threshold. The TS for seven threshold 
valued of rainfall masked over whole Indian domain 
shown in Fig. 4 depicted well-known characteristics of the 
score. The TS score degraded with an increase in rainfall 
intensity. The model performed poorly for the rain 
thresholds above 35.5 mm as the TS value approach to 
zero (no skill value). The ETS score has also been plotted 
in a similar manner in Fig. 5 and it approaches to zero (no 
skill value)  as  rainfall  amount  rises  above 35.5 mm and   
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Figs. 9(a-d). Same as figure 8 but for day-2 forecasts 
 

 
 
the values of the score far below 1.0 associated with 
correct forecast.  The ETS score is portraying inadequate 
picture about the model performance. In their study, 
Bousquet et al. (2006) indicated that these scores at higher 
resolution could not give necessary picture for verification 
and ability of phase correction and filtering over scales are 
necessary. As usual, model provides best performance in 
predicting rain and no-rain events (considering threshold 
of 0.1 mm). These two scores over whole India region 
signify that the model performed poorly above moderate 
(7.5 mm) rainfall amount (with TS below 0.1 and ETS 
below 0.05) which is also in agreement with other 
previous verification studies with models over the region 
(Ashrit and Mohandas, 2010; Mandal et al., 2007). 
 
 The mean error, root mean square error gives 
performance measure of the model in absolute sense and 
do not ensure the specific nature of the model forecasts 
over the region. Categorical skill scores have treated the 
model forecasts with double penalty as the model could 

not forecast rainfall events location (grid coverage) with 
absolute accuracy. Therefore, the displacement of the rain 
event in the model forecast from the observed location 
leads to the fact that the grid points with observed 
rainfalldo not show rainfall in the model forecast and vice 
versa. Then, the total error in model forecasts is primarily 
the displacement error added with the errors in pattern and 
intensity of rainfall. In the next section, the results of 
verification with an object oriented method have been 
discussed. 
 
 3.2. Verification with CRA method 
 
 The experiments have been conducted for the model 
forecasts with different thresholds to determine the 
minimum size of the CRA for certain rainfall category. 
The variation in the number of CRA detected within the 
forecast and observed rainfall distribution during the 
season have been noticed as the required minimum 
number  of  grid point changes. Figs. 6 and 7 show that the  
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Fig. 10.  Number of observed CRA and number matches found (HIT) or no matches found (MISS) in the day-1 forecasts 
for different thresholds of rainfall 

 
 

 
 

Fig. 11. Same as figure 10 but for day-2 forecast 

 
 
 

number of CRA for all thresholds decreases steadily with 
an increase in grid points for both day-1 and day-2 
forecasts respectively. As we restrict the size of CRA, the 
increase in intensity threshold focuses more on the peak 
rain areas rather than the broad rain areas. Alongside, for 
small CRA over the specific region the selection of best 
match between observation and forecast is also difficult.  
The larger size also restricts to put best-fit criteria in a 
rather stringent manner. Although, the slope and number 
of CRA are not same for day-1 and day-2, but their overall 
nature is same for each threshold. The number of CRA 
increases rapidly as the number grid points drops below 
20 for all thresholds. When the minimum size of CRA is 

set above 20 number of grid points, the number of CRA 
decreases slowly for all categories. Therefore, for all rain 
thresholds, a common optimal size has been selected 
based on the curves in Figs. 6 and 7. The computation has 
been completed with a minimum size of CRA consisting 
at least 20 grid points for all days of the season.  
  
 The Figs. 8 and 9 depicted the decomposition of 
MSE in day-1 and day-2 rainfall forecasts respectively         
for different thresholds during whole monsoon season              
of  2010.  The  Fig. 8  represents  the  seasonal  day-1 
error partitions for four rain thresholds. From the pie 
charts  it   is   clear   that   the  maximum  error  is   due  to  
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TABLE 4 
 

Percentage of matches between observed CRA and forecasts and average absolute linear displacement of  
CRAs for different thresholds of rainfall 

 

Match (HIT) in forecasts (%) Average linear displacement in forecasts (degree)

Day-1 Day-2 Day-1 Day-2 
Rainfall threshold 

category (mm) 
Spell Season Spell Season Spell Season Spell Season 

21.5 82.5 80.9 76.3 76.5 2.7 2.6 2.8 2.7 

35.5 89.5 87.4 84.0 84.7 2.8 2.7 3.0 2.9 

50.0 72.9 77.0 71.3 68.8 2.4 2.6 3.1 2.9 

64.4 60.5 54.9 56.3 51.7 2.7 2.6 2.5 2.9 

 
 

 
displacement irrespective of rainfall amount. More than 
half of the forecast error arises due to the displacement of 
the rainfall objects in the forecast from their observed 
positions.  The day-2 has also found to follow similar 
characteristics in Fig. 10. In day-1 forecasts, the error 
contribution of pattern mismatch is always found to be 
greater than volume error for all rain thresholds. In other 
words, the day-1 forecasts of the model maintain 
consistent relations among the components of MSE for all 
rain thresholds. The least error occurred due to rain 
intensity estimation, highest error values because of 
displacement and pattern mismatch errors were in between 
them.  But the similar behavior has not been portrayed by 
day-2 forecasts. The volume and pattern errors have 
nearly similar significance within total forecast error for 
two rain thresholds (35.5 and 50 mm) but they are 
irregular for other two. This typifies the fact that the 
model forecasts lose coherence between structure and 
intensity for certain CRAs in day-2 forecasts. Thorough 
inspections yield that the volume error shows a little 
increasing trend with rainfall amount. Although, the 
displacement plays the major role in model performance 
but portrays different characteristics for different 
thresholds (also not homogeneous over the spatial extent 
of the region). This implies that the model has 
comparatively poor skill for higher rainfall amount but 
does not provide any obvious information about forecast 
bias (systematic error) towards rainfall amount. The major 
share of displacement error also shows an increase from 
21.5 mm to 35.5 mm threshold but decreases thereafter in 
both forecasts hours (day-1 and day-2). 
 
 The results of match between observed and forecast 
CRAs for ten spells are displayed in Figs. 10 and 11 for 
day-1 and day-2 forecasts respectively. Different colors 
correspond to various rain thresholds. Two series of bar 
graphs side by side are representing total HIT and MIS 
numbers for a certain spell. Both figures show that the 
number of HIT reduces along with the increase in rainfall 
threshold. The figures also show that the match percentage 

is higher at 35.5 mm category compared 21.5 mm 
although total number of observed CRA decreases 
considerably. The poor match percentage at higher rainfall 
is very much clearly seen for both forecast hours. For a 
few spells, the MIS number exceeds HIT although total 
numbers of CRA are very less at higher thresholds. The 
comparison between forecast hours while carried out spell 
by spell, shows the percentage HIT is more in               
day-1 compared to day-2 up to rainfall threshold of               
50 mm whereas MIS exceeds HIT numbers for several 
spells. 
 
 The Table 4 also summarizes the percentage of 
matches (HIT) found in case spells and whole season for 
day-1 and day-2 forecasts considering four different 
thresholds. It is also obvious that during whole season, the 
day-1 forecast of the model shows the superiority over  
day-2 for each category. The percentage HIT increases 
during active spells of monsoon compared with whole 
season. The average percentage match for rain objects 
between observation and forecast is found to above 50% 
for 64.4 mm rain threshold which increases towards lower 
rainfall amount for both day-1 and day-2 forecasts. The 
HIT percentages are above 80% for 35.5 mm.  
 
   The average linear displacements of the center of 
mass of forecast CRAs from their corresponding matches 
in observation has been computed for each 4 rain 
thresholds (right most 4 columns shown in Table 4).  It is 
found that the order of average linear shift does not 
change drastically with rain intensity but a marginal 
increase has been found from day-1 to day-2. The 
significant difference also not has been found between the 
values for spells and season.  Because, the computation of 
mean have considered comparatively large number of 
CRA for lower thresholds (number of CRA falls with an 
increase in rain intensity shown in Figs. 6 and 7). The 
average size of rain objects also shrinks for higher amount 
which in turn produce less error in locating the center of 
mass of each CRA compared to lower threshold.  
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4.  Conclusion 
 
 The present study attempted to utilize the strength of 
the object oriented CRA method for rainfall verification to 
get an insight of the forecast error in terms of 
displacement, pattern and volume. The common 
verification scores like ME and RMSE along with 
categorical skill scores could bring out a few facts 
regarding model performance such as :  
 
(i) The errors in rainfall forecasts are random in nature 
but overall overestimation has been found during the 
whole season which is marginally reduced in day-2 
forecast from day-1. 
 
(ii) Categorical skill scores show that the model 
performance declines and shows poor performance 
exceeding moderate rainfall category (with TS below 0.1 
and ETS below 0.05).  
 
(iii) Model performed poorly for heavy rainfall categories 
which have also been found in previous studies. 
 
 But, an insight in the model performance has been 
achieved applying CRA method and decomposed MSE 
have explained the comparative error contribution 
amongst displacement, pattern and volume. The following 
facts have been brought out after using the specific object 
oriented verification. 
 
(i) The model performance has shown evident decline 
in model performance with time and also with increasing 
rainfall intensity.  
 
(ii) Still, the match between observed and forecast CRAs 
is above 70 per cent when best-fit criteria have been 
deployed up to 50 mm rainfall threshold throughout the 
season and during active spells over whole India.  
 
(iii) The displacement error has the major share within 
total MSE irrespective of forecast duration or rainfall 
threshold. 
 
(iv) The day-1 forecasts of the model are more consistent 
in terms of the relative amplitudes of three different 
partitions of total MSE with varying threshold, but the 
regularity diminishes in day-2 forecasts. 
 
(v) The mean displacement (shifting) of forecast CRA 
from the respecting match in observed field does not vary 
significantly with rain intensity but a certain increase have 
been noticed from day-1 to day-2 forecast. 
 
 The study only shows the beneficial use of CRA 
method for the verification of mesoscale forecasts. The 
CRA verification using rainfall analyses with higher 

horizontal and temporal resolution is expected to be more 
critical about model performance. Ten different active 
spells have been considered in the study to find out 
existing variation of CRA nature during the specified 
duration compared to seasonal average. But, performance 
of the model does not differ very much from average 
picture.  
 
 Furthermore, in continuation, future studies will 
consider the dependency of model performance over 
spatial heterogeneity over different geographical regions. 
Different spells (active or subdued) of several monsoon 
seasons may also be studied to bring out specific nature of 
the model forecasts over temporal scales.  
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