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सार  – पूवार्नुमान सत् यापन पद्धित को ृैक् शन िः कल ः कोसर् (एफ एस एस) के नाम से जाना जाता है जो 

ः लाइिडंग िवंडो ऑपरेटसर् के उपयोग से िवशेष ूकार की गणना करता है जो खचीर्ली गणना हो सकती है। इस ः कोर का 
मुख् य अवयव खंिडत घटना आविृतयों की गणना करना है जो भारी-भरकम सब-िमड्स (िवंडोज़) योगफल के समतुल् य है। 
इसे आमतौर पर कुण् डलीकरण ऑपरेशन से जाना जाता है। इसकी वैकिल् पक व् यवः था है िक ‘योगफल के्षऽ सारणी’ का 
उपयोग िकया जाए, िजसका इः तेमाल कंप् यूटर मािफक् स में के्षऽ संरचना में सब-िमड्स का तेजी से योगफल िनकालने में 
िकया जाता है। इस शोध पऽ में हमने एफ एस एस की गणना अविध को काफी कम करने के िलए ‘योगफल के्षऽ 
सारणी’ के उपयोग के बारे में वणर्न िकया है, हमने इस ः कोर को सामान् य करने के िलए समय की अविध को भी 
शािमल िकया है। हमने आदशर् िः थित में ः थािनक सत् यापन िविधयों अन् तर-तुलनात् मक पिरयोजना से इस ूणाली को 
दशार्या है और उच् च िवभेदन वाली एन डब् ल् यू पी डेटासेट पर ः कोर की िवशेषताओ ंकी व् याख् या की है।     

 
ABSTRACT. The forecast verification metric known as the Fractions Skill Score (FSS) is typicallycomputed using 

sliding window operators, which can be computationally expensive. A keycomponent of the score is the computation of 
fractional event frequencies, which is equivalent to a weighted summation of sub-grids (windows) commonly realized as 
a convolutionoperation. An alternative approach is to use “summed area tables”, which have been used incomputer 
graphics as a means to quickly compute summations of sub-grids in texture fields.In this paper we describe how a 
summed area table can effectively reduce the computationtime of the FSS while also allowing the score to generalize to 
include the time dimension.We demonstrate the methodology on idealized cases from the Spatial Verification 
MethodsInter-comparison Project and explore the properties of the score on a high-resolution NWPdataset. 

 
Key words– NWP, Fractions skill score (FSS). 
 

 

1.  Introduction 
 

As numerical weather prediction (NWP) model 
forecasts increase in spatial and temporal resolution, the 
community is turning to diagnostic spatial verification 
approaches to provide moreuseful and meaningful 
quantitative evaluation than is possible using simple 
statistics like rootmean square error. Gilleland et al. 
(2009) identified four types of spatial verification 
methods, namely neighborhood methods, scale separation 
methods, feature-based methods, and field de-formation 
methods, each of which is well suited for particular types 
of verification problems. The neighborhood methods are 
particularly useful for determining the spatial scales at 
which sufficient forecast skill is achieved. They use 
various metrics to compare forecasts to observations in 
spatial windows of progressively larger size, thereby 
providing information aboutforecast accuracy as a 
function of spatial scale.  

 
The fractions skill score (FSS) introduced by Roberts 

and Lean (2008) is a neighborhood verification method 
being used by the U.K. Met. Office and other national 
centres to verify high resolution precipitation forecasts 
against radar rainfall estimates (Mittermaier and       

Roberts, 2010). Conceptually, the spatial distribution of 
events within a small area is treated probabilistically 
rather than deterministically. An event is the binary (yes 
or no) occurrence of something, for example, whether rain 
in a grid box exceeds a certain intensity threshold. For a 
given n×n window size, the FSS considers a perfect 
forecast to be one with the same frequency of eventsas 
was observed within the window, regardless of their 
particular placement within the window. An example of 
an observation and forecast field that could yield a perfect 
FSS is shown in Figs. 1(a&b). The fractions skill score is 
computed as the fractions Brier score (a variation of the 
Brier skill score used to verify probability forecasts), 
divided by the sum of the mean squared forecast and 
observed fractions and can be written as: 
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where N is the number of windows in the domain 
(dependent on sliding window size) and pf  is the forecast 
fraction, po is the observed fraction of the sliding window. 
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Figs. 1(a&b). Two fields (observation and forecast) that have an 
equivalent fractional event frequency and lead to a 
perfect FSS (assuming a single window) 

 
 

The computational cost of the FSS is linked to the 
method used to compute the fractional event frequency 
(po, pf), the field domain size and the window size. 
Typically the FSS is computed for a large range of 
window sizes and the resulting score plotted as a function 
of windowsize. This allows the scale at which the FSS 

reaches the target skill of 






 
2

5.0 op
 to be easily 

determined [Roberts and Lean (2008)]. 
 
2. Fast methods 

 
As defined by Roberts and Lean (2008) the fractional 

event frequency of a window with width n, centered on 
the coordinate (i,j) in the observation field O is computed 
as: 
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where Io(i,j) is either 0 or 1. The equation is also 

applied to the forecast field F, with asimple matrix 
substitution (Io for IF). In both cases the equation is 
evaluated over all pixelsin the field, requiring (n × n) 
additions in each centered window; as the window size 
increasesthe computational load also increases. In practice 
this can be implemented using a convolutionoperation, for 
example using a box-car kernel. 

 
2.1. Summed area table (integral image) 

 
In the context of the FSS tables, the event frequency 

calculation is repeated for multiple windowsizes and 
object threshold levels, easily making it the most time 
consuming component of computing the spatial 
verification metric. Even though convolution is often 
optimized  on moderncomputers, calculating the score can 

 
Figs. 2(a&b). An example of a field (a) and the corresponding 

summed area table (b) 

 
 
be slow. In this paper we propose the use of a 
“summedarea table”, also known as an integral image, 
which is a structured array that is pre-computed, then 
indexed to efficiently compute summations over a field. 

 
The concept of a summed area table was first 

introduced for the efficient calculation of “mip-maps” in a 
computer graphics (Crow, 1984) and they are still popular 
in computer vision for fast feature extraction in object 
detection frameworks (Viola and Jones, 2004). To 
computethe summed area table, Ô, the value at any point 
(i,j) is the sum of all the grid cells aboveand to the left of 
(i,j), inclusive: 
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Once the summed area table has been computed, the 

task of summing a window of width mand height n from 
the coordinate (i,j) in the observation field O is 
accomplished with just fourarray references using the 
following relation: 
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The calculation of Ô is demonstrated in Figs. 2(a&b) 

where the right panel shows the summedarea table with 
the coordinates for each grid-cell. Using the same relation 
we can define Equation 2, extending the fractional event 
frequency calculation to rectangular windows (m × n) 
centeredon the coordinates (i,j) like so: 
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Fig. 3. The mean computation time (100 repetitions) for the FSS when using a Fourier Transform based convolution (black) and summed area tables 
(gray) is shown for increasing square domains (250 to 1000 grid-cells) and window sizes (2 to 200 grid-cells) 

 
where Ô is the precomputed summed area table of 

e observation field, using Equation 3. Asbefore the 
quation is also applied to the forecast field F, with a 

simp

 practice the summed area table is computed once 
per t rdinates of the 
entire domain and indexing the table with a matrix of 
coor


                       

(6) 

 
which we can use to compute a sliding window sum 

using shifted coordinates samples, like s

 
 

th
e

le field substitution (F for O), requiring two summed 
area tables to be computed for each calculation of the 
fractionskill score. Although the FSS is normally 
computed for square windows, we generalize inEquation 4 
to rectangular windows to facilitate extension to the time 
domain (see Appendix) or non-isotropic domains such as 
coasts or mountain ranges, where unequal dimensions 
may bepreferable. 

 
2.1.1. Sampling summed area tables 
 
In

hresholdded field, as are the shiftedcoo

dinates performs (as shown above) performs a fast 
sliding window sum. Using a matrix notation for sampling 
wedefine the matrix sampling function as {} and let the 
entire set of domain coordinates i and j be represented as 
the matrices I and J respectively: 
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The computational co

window sizes is always the same because thesummed area 

table is computed only once and the number of coordinate 
samples does notincrease. The calculation is only bound 
by the gridded forecast domain size, which increasesthe 
size  the coordinate matrices. 

aximum extent of the 
doma o minimize them. Window coordinates that 
exten ions of the summed area 
table ustbe mapped to values. Our approach clips the 
coor

 based 
conv ution. Fig. 3 demonstratesthe difference between 
the tw w sizes both 
methods arefast to compute. However, the integral image 
base

st of sampling different 

of
 
2.2. Boundary conditions 
 
As windows approach domain boundaries there will 

be boundary effects and window scalesmust be 
constrained to a fraction of the m

in t
d beyond the indexable reg
 m
dinates of the rectangles that extend beyondthe 

forecast domain, which is equivalent to padding the field 
with zeros (as done by Roberts and Lean (2008). 

 
2.3. Complexity and computation time 
 
The summed area table method for calculating the 

sliding window sum required for the FSS isvery efficient, 
even when compared to optimized FFT

ol
o approaches, showing that small windo

d FSS exhibits (approximate) constant time 
performance and as window sizes increase the maximum 
performance gain ranges between 30% to 85% relative to 
the FFT approach. A fair and objective way to compare 
algorithm complexityis through the use of Big “O” 
notation (Knuth, 1968). The notation is a measure of 
algorithm properties relative to their growth rates: non-
linear growth is considered poor while linear or 
approximately linear is considered good. Using the 
integral image to calculate requires aconstant number of 
array lookups. The calculation is bound by the number of 
grid cells (N) and a constant number (4) of lookups for a 
variable sized window, resulting in a computational 
complexity of O(N). The more complex convolution 
approach is a combination of both a Fast Fourier
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Figs. 4(a-c). Fast FSS calculations shown at precipitation thresholds (0.5 to 32 mm/hr) with markings to 
show (red circles) a correspond e calculations from the NCAR implementation 
(Gilleland, 2014). The examples m the perturbed precipitation case set provided 

 
 
 

ransformation (FFT) O(N logN) and a matrix 
ultiplication O(N2), which explainsthe differences seen 
 Fig. 3.  

Validation of the approach 

o validate the method it was applied to a 
preci Spatial Verification 

Inter-comparison Project (Ahijevychet al., 2009).                
Figs. 4(a-c) shows the Fast FSS computed for a subset of 
the perturbed precipitation cases (as lines) which are 
comp red tovalues (red circles) from the NCAR FSS 
impl

(b) (c) 

ing subset of th
 (a, b, c) are fro

by the Spatial Verification Inter-compar oject ison Pr

 
 
T
m
in

 
 
2.4. 
 
T
pitation data set provided by the 

a
ementation developed by Gillelandet al. (2014) 

atprecipitation thresholds of 0.5 to and 32 mm/hr and 
scale intervals of 25 km. Figs. 4(a-c) clearly shows the 
equivalence of the fast FSS calculation to the original 
methodology proposed by Roberts and Lean (2008). 

(a) 
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Figs. 5(a&b). Fractions Skill scores for (a) experimental 1.5 km high-resolution and (b) 12 km operational NWP systems at different spatial scales and 
ecipitation threshold levels 

 

 

pr

 

 

(a) (b) 

 
 
Fig. 6. FSS for 1.5 (solid) and 12 (dashed) km resolution NWP, for three precipitation thresholds. Subsets of the NWP models and correspondin

analysis fields show the spatial variation at the beginning, middle and end of the period centered on 0000 UTC 26th of November, 2011 
g 
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3. Demonstration using Australian rain events 

p  km 
regio

     

 to June 2012 
hour pared between 
the 1

s up to 300 km and precipitation thresholds 
from

     

f an intense 
rain for 1.5 km 

and 12 km model forecasts initialized at 1200 UTC on the 

itation 
thres

the middle of the event. 
er

n this paper 
 how summed area tables can be 

validated 
them

ecipitation forecasts”, Weather and 
Forecasting, 24, 6, 1485-1497. 

 
, we 

25th. For each forecastwe calculated the FSS for the 50 km 
spatial scale and 0.5, 2.0 and 4.0 mm/hr precipAs a further demonstration of the method

com re the performance of an operational 12a
nal NWP system that includes 6 hourly four 

dimensional variational assimilation and an experimental 
1.5 km system that includes 3 hourly three dimensional 
variation assimilation. The 12 km system uses routine in 
situ and satellite data, as described in the Bureau of 
Meteorology's Operations Bulletin 98 (BoM, 2013). The 
1.5 km system is based on the U. K. Met. Office 1.5 km 
system (Lean et al., 2008) and applied to a smaller   
10° × 12° domain centered over Sydney in southeastern 
Australia. The higher resolution system also has higher 
vertical resolution near the Earth's surface, at the expense 
of levels in the mesosphere. For this reason the high 
resolution system assimilates a reduced set of channels 
from satellite sounders. The high resolution system is 
however nudged towards rainfall analyses based on radar 
and rain gauge data (Chumchean et al., 2006) during the 
assimilation window. The forecasts are verified against 
analyses based on radar rainfall estimates and rain gauge 
data (Chumchean et al., 2006) where the radar coverageis 
of a suitable quality. 

 
3.1. Comparing multiple rain-events 
 

Int

    

holds. We selected these scales to explore the 
differences between the models at low rainrates and to 
assess the temporal skill of the forecasts for this event. 
Results are shown in Fig. 6. 

 
Over the period of interest it is difficult to identify 

where one model performed significantly better than the 
other. The high values of FSS in Fig. 6 indicate that both 
models accurately captured the occurrence of rain. The 
peak skill occurred near 

From the period of November 2011
ly forecasts of precipitation were com
.5 km and 12 km models. Events of interest were 

identified from the dataset by selecting forecasts that 
maintained overland precipitation greater than 1 mm/hr, 
resulting in a large set (many thousands) of hourly 
forecasts for analysis. The FSS results for forecasts of 
hourly rainfall out to 36 hours were then grouped by lead 
time and the mean fraction skill score was calculated by 
averaging the numerator and denominator of the score 
separately.  

 
Figs. 5(a&b) shows the resulting skill plots for 

spatial scale
 0.5 mm/hr to 16 mm/hr at lead times of three and six 

hours respectively. The results suggest that the 1.5 km 
model performs slightly better at low precipitation levels 
andspatial scales, particularly at the three hour lead time 
which is likely due, at least in part, tothe assimilation of 
radar data. As the forecast lead times increase the skill of 
the 12 km model appears to improve while the skill of the 
1.5 km model decreases. At the six hour lead timethe   
1.5 km model appears to reduce in skill more rapidly than 
the 12 km model at moderateprecipitation thresholds. 

 
3.2. Comparing a single event over time 
 

    

ethod against independent calculations of FSS on a 
high-resolution data set. The key benefitof using summed 
area tables over other approaches is their comparative 
simplicity and, most importantly, their speed. Using the 
FSS we compared two NWP models at 36 matched lead 
times, leading to the calculation of many thousands of the 
FSS, to explore mean and temporal performance of the 
models. Without a fast approach to calculate the FSS, as 
we have provided, generation of the scores required for 
our verification experiments would take a significantly 
longer time or a large computer resource. As suggested 
earlier the FSS can be extended to the time dimension 
(Duc et al., 2013) and the fast computation of the FSS for 
three dimensional data via summed area volumes is 
described in the Appendix. This work has shown that 
summed area tables are a useful tool when calculating 
verification metrics that require local summation (or 
smoothing), for interested readers a good reference 
implementation for summed area tablesis provided by van 
der Walt et al. (2014). 
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stration only, 
 we follow the definition by Tapia (2011) t

“integral volume”. To compute the integral 
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a volume of dimension m×n×p, centered on the coordinate (i,j,k) is accomplished in 

ces, leading to a redefinitionof Equation 2: 
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where the coordinates are (I,J, K) are defined as matrices and the sampling of the integralvolume is performed in a 
similar fashion to Equation 7. In practice the time window (p) for meteorological forecasts will generally be small since 
the time scales relevance for mesoscale modeling are typically on in the order of hours. For the particular case of 
estimating rainfall accuracy, combining time and spatial uncertainty has the disadvantage of making interpretation of the 
results more difficult. However, if the forecast user is willing to be tolerant of some temporal error in forecast mesoscale 
weather processes, then the addition of a temporal dimensioni

 
FSS implementation 

 
An example reference implementation is provided to demonstrate the simplicity of using thesummed area table 

calculations as a part of computing the FSS. For comparison a FFT basedapproach is also provided. 

he fraction skill score (2D). 

.. moduleauthor:: Nathan Faggian <n.faggian@bom.gov.au> 

""" 

scipyimport signal 

al_table(field): 

urier_filter(field, n): 

return signal.fftconvolve(field, np.ones((n, n))) 

eld, n, table=None): 

Fast summed area table version of the sliding accumulator. 

ry hits/misses. 

" 

return field 

ble = compute_integral_table(field) 

r, c = np.mgrid[0:field.shape[0], 0:field.shape[1]] 

n the skill score is appropriate. 

 
Implementation 1: FSS using summed area tables and FFT based convolution in Python. 
 
""" 

.. module:: fss 

:platform: Unix 

:synopsis: Compute t

 

import numpy as np 

mport pandas as pd i

from 

 

defcompute_integr

return field.cumsum(1).cumsum(0) 

 

deffo

 

defintegral_filter(fi

""" 

:param field: nd-array of bina

:param n: window size. 

""

w = n // 2 

if w < 1.: 

if table is None: 

ta
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r = r.astype(np.int) 

c = c.astype(np.int) 

w = np.int(w) 

.clip(r - w, 0, field.shape[0] - 1), 

 0, field.shape[1] - 1)) 

 + w, 0, field.shape[0] - 1), 

 

4) 

ake(table, np.ravel_multi_index((r1, c1), field.shape)) 

ake(table, np.ravel_multi_index((r0, c0), field.shape)) 

-= np.take(table, np.ravel_multi_index((r0, c1), field.shape)) 

tegral_table -= np.take(table, np.ravel_multi_index((r1, c0), field.shape)) 

 

deffour

""" 

at = fourier_filter(fcst> threshold, window) 

at = fourier_filter(obs> threshold, window) 

 

 = np.nanmean(np.power(fhat, 2) + np.power(ohat, 2)) 

 

deffss(fcst, obs, threshold, window, fcst_cache=None, obs_cache=None): 

. 

mfcst: nd-array, forecast field. 

 and score. 

shold, window, fcst_cache) 

ohat = integral_filter(obs> threshold, window, obs_cache) 

 

r0, c0 = (np

np.clip(c - w,

r1, c1 = (np.clip(r

np.clip(c + w, 0, field.shape[1] - 1)) 

integral_table = np.zeros(field.shape).astype(np.int6

integral_table += np.t

integral_table += np.t

integral_table 

in

returnintegral_table 

 

ier_fss(fcst, obs, threshold, window): 

Compute the fraction skill score using convolution. 

:paramfcst: nd-array, forecast field. 

:paramobs: nd-array, observation field. 

:param window: integer, window size. 

:return: tuple of FSS numerator, denominator and score. 

""" 

fh

oh

num = np.nanmean(np.power(fhat - ohat, 2))

denom

return num, denom, 1.-num/denom 

""" 

Compute the fraction skill score using summed area tables

:para

:paramobs: nd-array, observation field. 

:param window: integer, window size. 

:return: tuple of FSS numerator, denominator

""" 

fhat = integral_filter(fcst> thre
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 = np.nanmean(np.power(fhat, 2) + np.power(ohat, 2)) 

 

deff

mfcst: nd-array, forecast field. 

 and score. 

num_data, den_data, fss_data = [], [], [] 

in levels: 

) 

 level) 

 ftable, otable) for w in windows] 

 

n_data.append([x[1] for x in _data]) 

  

um_data, index=levels, columns=windows), 

mns=windows), 

umns=windows)) 

.. 

 

num = np.nanmean(np.power(fhat - ohat, 2)) 

denom

return num, denom, 1.-num/denom 

ss_frame(fcst, obs, windows, levels): 

""" 

Compute the fraction skill score data-frame. 

:para

:paramobs: nd-array, observation field. 

:param window: list, window sizes. 

:param levels: list, threshold levels. 

:return: list, dataframes of the FSS: numerator,denominator

""" 

 

for level 

ftable = compute_integral_table(fcst> level

otable = compute_integral_table(obs>

 

_data = [fss(fcst, obs, level, w,

num_data.append([x[0] for x in _data]) 

de

fss_data.append([x[2] for x in _data]) 

return (pd.DataFrame(n

pd.DataFrame(den_data, index=levels, colu

pd.DataFrame(fss_data, index=levels, col


