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Lee waves associated with a large circular mountain
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ABSTRACT. The present work is concerned with the baroclinic properties of stationary waves be-

hind a large circular mountain.

It is based on a linear, baroclinic model which includes the Coriolis

force f, and its variation with latitude B. The free stream velocity U/ and the stability parameter 7 is
assumed to be independent of height. A wave equation is derived for the vertical component of per-
turbation velocity. Its asymptotie solution indicates that the wave amplitude is a function of the non-
dimensional parameter (m=fL/IUd), where L and d are unit lengths along the horizontal and vertical
axes of reference, Numerical values of the solution are presented to indicate the attenuation of the
wave with radial distance, with variations in m and with height.,

1. Introduction

The theoretical and practical aspects of
the mountain wave problem have received
considerable attention in the last decade.
Important theoretical work on stationary lee
waves is available in the investigations of
Stewart (1948), Charney and Eliassen (1949),
Bolin (1950), Smagorinsky (1953), Kurbatkin
(1959) and Saltzman (1963). The first three
investigations were concerned with an
essentially barotropic atmosphere. Baroclinic
features were introduced by Smagorinsky
and, recently, a very comprehensive work on
meridional motion created by heat sources
and orographic barriers is available in the
paper by Saltzman (1963). Kurbatkin
(1959) also considered baroclinic features, but
assumed a rigid upper lid at the top of the
atmosphere. In the present investigation, a
few results are presented on the baroclinic
disturbance in the lee of a large circular
mountain, without the assumption of a
rigid lid.

If we consider, as a first approximation, a
homogeneous air stream, without shear and
with constant static stability, then physical
considerations enable us to distinguish bet-
ween three horizontal scales of interest in the
mountain wave problem (Queney et al. 1960).
They are,

(a) 10 ko : Non-hydrostatic and negli-
gible Coriolis force;

(8) 100 km: Hydrostatic and non-
geostrophie, with constant Coriolis
force ; and

(¢) 1000 km: Hydrostatic and geostro-
phic with a variable Coriolis force,

A large barrier, such as the Tibetan Pla-
tean, comes under category (e).

Apart from considerations of scale, the flow
pattern behind a mountain depends on the
choice of appropriate boundary conditions.
In the present study we have assumed a linear
model. This restricts the scope of the investi-
gation to mountains of small height.

By linearizing the lower boundary condi-
tion, we assume that the flow is entirely over
the mountain, that is, there is no cross-
mountain flow at the lower boundary. Thisis
a departure from reality, but is an acceptable
approximation for mountains less than one
kilometre in height (Charney and Drazin
1961, Phillips 1963).

Physical considerations require that the
vertical component of the perturbation he
bounded at the upper boundary. But, as is
well known, the upper and lower boundary
conditions by themselves are not sufficient to
give a unique solution to the problem; an
additional constraint is"required to make the
problem determinate. In this investigation,
we make use of the radiation condition for
outgoing waves at infinity.
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The principal assumptions may be sum-
marized as follows :

(i) We consider a hypothetical cir=
cular mountain extending up to
1000 km in a radial direction,
but of 1 km height. The computa-
tions assume a flat earth on which
the B8 plane approximation  is
valid.

(it) At the lower boundary the flow
is assumed to be entirely over the
mountain.

(ii7) The free stream velocity [7 is
assumed to be representative of
a steady zonal current without
shear, We also assume that the
static stability of the atmosphere is
invariant with height.

(iv) The effect of turbulence and fric-
tional dissipation is neglected.

(v) Non-linear effects are not consi-

dered in the present work.

2. Basic Equatjons

Let U represent the freestream velocity
and let p, p, § be the pressure, den-
sity and potential temperature of the
undisturbed air. In Cartesian co-ordinates
(ox, oy, oz) the perturbation  velocity
components are specified by u, v and w,
while p, p and 6 stand for perturbations
of pressure, density and potential tempe-
rature. If we represent the perturbation
vorticity ¢ and divergence D by

L = (8v/ax)—(aw/ay). (
D = (9u/dx)+(av/8y).

1)
(2-2)

then, for steady motion, the change in
vorticity and divergence is given by

U(8L/ox)+-Bv = —fD (2:3)
U(D)ox)—fL+Bu = —(1/p) V2 p. (2+4)

where f=2 @ sin ¢, B=df/dy and *7,* is the
Laplacian operator in two dimensions. We

P. K.

DAS

have omitted non-linear terms in (2.3) and
(2.4).

On eliminating ¢ and using the

strophic relation we get
Der + (fIURD = —(150) [V + (BU)—
—(BN@eNpz, (2:5)

where subscripts have been used to denote
derivatives,

geo-

To compensate for compressibility, it is
convenient to change over to the co-
ordinates of Palm and Foldvik (1959). We
have

u, .0 = [p(0)p(2)]} (', o', w'), (2
p= [piz)p (0]t 9. (2:7)
The subscripts o, z refer to the earth’s
surface and the vertical co-ordinate of the
point under consideration. For simplicity
in notation, we shall hereafter drop the
primes with the understanding that we
are dealing with variables defined by (2-6)
and (2-7). It is important to note that when
we introduce this transformation p (z) on
the right hand side of (2-5) is replaced
by the constant p(0). As we shall see
later, this constant is eventually elimi-
nated in the final equation for .

6)

We express the equation of continuity
and the first law of thermodynamics by the
relations

D —wz — A, (2-
1
ZORY
— }(2/0z) In plz) —g e,
gB|U?,
86z In g ard

Wi+ 12w

(pa=-t-Apa),
where A =
2
B

¢ is the velocity of sound.
In (2-8) we have assumed that
1/p (dp [dt) = — (g/c*)w.

It is to be noted that (2-9) results from a
combination of the first law of thermody-
namies and the vertical equation of motion.,
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In the latter equation we have retained
the vertical acceleration, but not the Coriolis
force. The omission of the vertical Coriolis
force is justified for the scale of motion in
which we are interested. It could be argued
on similar grounds that, for this scale of
motion, it is hardly necessary to include
the vertical acceleration. We have, however,
retained this term to show that the final
equation may be reduced, if necessary, to
the one used for defining the flow past a
small three-dimensional plateau, or a small
two-dimensional mountain. In the subse-
quent analysis, the retention of this term
is of no consequence.

On eliminating D and p from (2-5), (2-8)
and (2-9) we finally get

L(w) = 0, (2-10)

where
L =(2*az*)(V )+ (f/U) 8*/e22+12V 2+
+B/U (2% oa*+13)—2%(9%/ o2/ U2)—
—B/fl(8°%/ax®)+1%). (2-11)

There are two interesting cases in our
consideration of (2:11)—

(?) If we ignore terms containing f, B
and A, we get

[(8%/20®) (VA 4BV, w=0.

This equation was solved by Wurtele
(1957) for a small three-dimensional
plateau.

(1) If we also omit the derivatives with
respect to y, we are left with

Waz—+Wzz +1Pw =0,

This is the basic equation for a two-dimen-
sional mountain on which extensive investi-
gations have been carried out in the past
(Scorer 1949, Crapper 1959, 1962).

Our aim is to solve (2-10) with the terms
containing f and B, but considerable
simplification is possible on considering the
order of magnitude of different terms. Let
us consider the following representative
values ;
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¢ =3X10-1km sec-1
g =10-2km gec-2
S =104 sec-1
U =10-2km sec-1
P=1'0km2
A?=10-3km-2 and
B=1'6x10-8 km-! sec-1
Using the equation of state, we note

that

A= —g/c*[1 —y/2(1+R]g 2T/a2)],

where y=¢p [co. Hence, for an isothermal
atmosphere

A=—03g/c
and with o7T/9z =— *006°¢/m,

A=—0 4 g’/02

Consequently, A2 may be taken to be of the
order of 10-* km-* in our computations.

As the horizontal extent of the moun-
tain is 1000 km, we take

3/dx ~ 3/dy ~ 10-3km

and  2/gz ~ 10-1 km-1,

The nine operators and multipliers in
(2:11) now have the following orders of
magnitude in units of km—*:

(1) 8%/8x2p22~10-8

(2) 9%82%(V,?) ~ 10-12

() (fIU) (8*/02%) ~ 108

(4) BYV,2 ~ 10-¢

(5) (B/U)(2%/0a?) ~ 1012

(6) BI2/U ~ 10-6

(T) A%(2%/a2®+f2(U?) ~ 107
(8) (Bf)(2/0y)(@*/0a?) ~ 1013
(9) (BP/f)(2/ay) ~ 107
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We note that the Rossby number(Ry=U/fL)
for flow over a mountain of this size is of
the order of 0-10. For the purpose of the
present investigation, we may only retain
the three largest terms, namely, those which
have an order of magnitude of 10-¢ km=.
Equation (2-10) is then simplified to

B(wez+0yy)+(f/U g+ (B Upe=0 (2-12)

For convenience in computation, it 1is
desirable to express (2-12) in non-dimen-
sional units, Let L, d be two representa-
tive lengths, such that L is equal to the
maximum horizontal extent of the moun-
tain (1000 km) and d is approximately the
height of the tropopause (10 km).

Putting

e*=z/L, y*=y/L, *==2/d
in (2-12), we find
T 2w mPwss +kw =0,

where m? = ( fLIUd),
k® = BL2/U. (2-15)

(2-13)

(2-14)

To simplify the notation we have omitted
starred symbols, but it will be understood
that we refer to non-dimensional  umits

defined by (2-13).

The effect of *baroclinicity”, or static
stability which  renders the perturba-
tions baroclinic, is contained in the factor
(fL/1Ud), which oceurs as the  coeflicient
of ws: in (2-14). This factor has an in-

teresting physical interpretation.

If it is put equal to unity, then (2-14) is
the appropriate equation for only; baro-
tropic perturbations (Stewart 1948). But,
as we can see, one can always put the co-
efficient (fL/IUd) equal to unity for any
static stability by choosing the proper ratio
of the horizontal to the vertical unit length,
that is, by choosing a suitable value of
(L/d).

The non-dimensional parameter
(m=fL/1Ud), can be also expressed by & com-
bination of the Froude number (F=U%/gd)
with the Rossby number (B = U/fL).
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We have
m = (F|Rg) X (g/IU?®). (2-16)

In the present investigation (F/R,) is
fixed by the dimensions of the mountain
and the free stream velocity U. Consequently,
it is possible to study the distortion of the
perturbation as a function of the parameter m
by varying the static stability /.

3. Method of solution

TLet us define
where

a stream function ¢

Y= f(w/U)dz (3°1)

then w may be replaced by ¢ in (2°14),
because any solution of (2-14) will also hold
for ¥ defined by (3-1).

For obtaining numerical values of the
solution, it is convenient to use a theorem
of Hsu (1948) for inverting a double Fourier
transform. This theorem was also used.by
Wurtele (1957) for three-dimensional flow
over a plateau.

Let
o
¢ = f? Y(x, y, 2) exp—i(sz-Hty)dz dy (3+2)
—00 —0
From (2-14) we have
(d*¢/dz?) + pP¢p =0, (3:3)
u? = [k2—(s®+3)] / m®. (3-4)
The appropriate solutions of (3:3) are
(3-5)
depending on whether p is complex or
real. We have chosen the positive complex
solution to represent outgoing waves ab

infinity. When p is real, the solution with
negative p is the only realistic one possible.

The constant A is fixed by the shape
of the mountain

where

¢ = A exp — pz, A expipz

Tet us consider the following mountain,
o= H exp — a*(@*+1%), (3-6)
whence

o = wHda? exp —(s2-- )[4,  (37)
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where subscript 0 refors to z = 0,

Introducing the polar co-ordinates

s=pceosa, z=rcosf,
t=p sin o, y=r sin 8, (3-8)
we obtain
® w2
dmip = f f $ X exp ipr cos (a—80) X pdpd
p— (3-9)

From the meteorological point of view,
the second solution of (3-5) is more interes-
ting, because it represents waves which can
propagate energy to great heights. The
first solution only represents waves which
are rapidly damped with height. We may,
therefore, use the second solution and try to
evaluate the asymptotic form of (3-9).
We have

w© 72

Y = H/16ma® f Jexp —p*/4a® X expi X

} o -mfa
X [(B—p?*) z/m+ pr ces (a—0)] ¥ pdpd?.
(3-10)
To find the asymptotic form of the above in-

tegral, we evaluate the saddle point (20 » %)
of the expression—

i
h(p, &) = (F*—p®) 2/m—+pr cos («—0). (3.1})

If we omit the negative saddle point
from the path of integration to eliminate
the upstream wave, we get

Po = mhr[R, tan ay= y/a, (3-12)
a,b

where
7= 22 R = g2, (3.13)
Noting that a,b

4
PD! Ly
hipy, o9) = kR/m,

we arrive at the following expression for i
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p > H[16ma2 X exp — (mhr/2aR)2
X mkz[R2 X exp (ikR/m). (3-14)

It is of interest to note that the asymptotic
solution  (3-14)  contains the factor
exp(tkR/m)/R, whichwe know is the funda-
mental solution for outgoing waves at infinity.

4. Numerical resulis

Numerical values of y(r, 8, 2) may be obtained

from (3-14). For this purpose we may only
consider the real part of ¢, so that the
last  term of (3-14) s replaced by
cos (kR/m)/R, whichis available in a tabulat-
ed form.

Let us consider the following numerical
values of H and «

H =01,

a = 2-0. (4-1)

The maximum height of the mountain
is then 1-0 km, and H is reduced to one
hundredth of its maximum value at about
1000 km from the centre of the mountain,

If we substitute in (2-15) the numerical
values of f, L, U and d, as given in section
2, we find

m =1l (4-2)

We have, therefore, evaluated $as a
fanction of m by considering different
values of . The results are shown in Table
1, where 2=0-5 and the different values of
m correspond to | = 3, 2, 1 and 0-5.

The variation of  with m is shown
graphically in Tig, 1. The interesting features
are (a) an increase in wave amplitude with
decrease in m and (b) the relatively small
change in wave length with variations in
m. The first result would indicate that with
large values of the static stability I, m is
small and the wave amplitude is large. But,
as we have seen earlier, the interpretation
for varying m is much more general,
because we could have also decreased m,
by altering the ratio of the horizontal and
vertical unit lengths /4, '



bb2 P. K. DAS

o 858

—_— wxt—

=10}

Fig. 1. Variation of Y with m
(Figures in parenthesis represent values of m)
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TFigures indicate values of § 10% at each grid point. Nodal lines are represented by foll lines.
Dotted lines represent intermediate contours of ¢ x 10%
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We also computed the variation of ¢ with
z for one particular value of m (0-5). The
results are shown in Fig. 2, where the baro-
clinic feature of the disturbance is clearly
seen. The wave fronts tilt backwards with
height, and there is an increase in waye am-
plitude with altitude.

It is difficult to state how far the com-
putations shown in Fig. 1 agree with obser-
vations. There are very few upper air obser-
vations available from Tibet and adjoining
China. We note, however, that if the centre
of the circular mountain is taken to be
along the meridian 85°E and hetween 30°—
40°N, then the first major trough line is
between 105°E and 110°E. This is in rea-
sonable agreement with the few observa-
tions we have of the quasi-stationary trough
observed to the east of Tibet in winter.

There is another significant difference
between the present work and Wurtele’s
earlier investigation (1957). In Wurtele’s
work, the nodal lines (isopleths of
w=0) are rectangular hyperbolae. This
gives a crescent-shaped region of updraft
behind the barrier. But, in our work, we see
from (3-14) that the nodal lines are repre-
sented by

kR/m = (2n+1) =/2. (4-3)
Hence, if z =z, y=0  are taken
as reference points, then the nodal lines in
the xy-plane are the cireles

(/o) + (y/7)® = 1.

If we refer to the work of Kurbatkin (loc.
cit), who also found a crescent-shaped
region of updraft, we find that this is a con-
sequence of non-geostrophic motion. The
inclusion of the first term in (2-11) ultimately
yields a wave equation, whose solution is
only  specified within its characteristic
cone. In our treatment the first term of
(2-11) is at least two orders of magnitude
smaller than the terms which have been
retained.  Consequently, we do mnot find
a crescent-shaped region of updraft.

(4-4)
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TABLE 1
Variation of ¢ withm (z = 0-5)
m

f'_'_'_"—"_“*—"_"—"—’—-ﬁ

r 0-3 05 10 2:0

¢ <108
1-5 —1-81 —1-17 —-62 —-20
2.0 —1-39 —1-07 —73 —36
2-5 — <76 — 74 —-H8 —-24
3-0 — 33 — -38 —32 —=16
35 12 6 —-07 —-04
4-0 <35 -15 <08 05
445 40 = 15 (8
50 =35 22 <13 08
55 17 <12 11 -(3
60 =01 (12 <02 01
6:5 —_ 12 —06 —-03 —-01
5. Summary and conclusions

The principal results of the study may

be summarized as follows,

(i) For a large circular mountain, exten-
ding up to 1000 km in a radial direction,
the non-dimensional parameter

m= fL[10d

provides a measure of wave distortion. This
is a combination of the Froude Number ¥
the Rossby Number R, and the static stabi.
lity 1.

(1) The wave amplitude increases as we
decrease m. With large values of the static
stability I, m is small and the wave amplitude
is large,

(t21) Variations in m appear to have little
influence on the wave length of lee waves,

(i) The variation of  along the vertical
is shown in Fig. 2 for m= 0-5. We note
that the wave front tilts backwards with
height.

(v) The nodal lines, in the present work,
are circles. When we consider a smaller
obstacle, as in  Wurtele’s investigation
(loc. cit), the mnodal lines are rectangular
hyperbolae. This appears to be a conse-
quence of non-geostrophic motion, which is
important for a small mountain, but negli-
gible in our work,
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