Total Solar Radiation in relation to duration of sunshine

B. R. YADAV

Meteorological Office, New Delhi

(Received 30 March 1964)

ABSTRACT. An attempt has been made to establish a relation between the total radiation from sun and sky and the duration of bright sunshine based on the formule, $Q/Q_A = a + b(n/N)$, Q and Q_A being the radiation amounts on one square centimeter of horizontal surface at the surface of the earth and at the top of the atmosphere respectively and n and N being the actual and the maximum possible hours of bright sunshine respectively. The values of the regression constants aand b have been computed for daily, weekly and monthly data. Data from daily observations have been grouped for the dry and the monsoon seasons, and the constants a and b calculated and compared with those obtained by others.

Mean monthly total radiation at a few places in north India, having the same cloud regime as at Delhi, has also been computed and discussed.

1. Introduction

Apart from the fact that the solar radiation is a major control in all atmospheric processes, the duration and intensity of radiation are important for photosynthesis which plays a vital role in plant growth. A detailed investigation into the processes which control the thermal balance at the ground surface is necessary for an understanding of the physics of air and soil layers near the ground. In turn, this thermal balance of the ground surface is controlled by the incoming solar radiation and the downward heat radiation from the absorbing gases like water vapour, carbondioxide and ozone in the atmosphere. It is, therefore, necessary that the radiant energy measurements be made at a number of stations. Unfortunately, the network of stations recording solar radiation income is very meagre and it will take much time to establish a wide network of stations. Angström (1924) suggested a relation $Q/Q_0 = a' + (1 \cdot 00 - a') n/N$, where Q and Q_0 are radiations actually received on any day and on a clear sky day respectively, n and N the actual and the maximum possible duration of sunshine respectively and a'is the mean proportion of radiation received on a completely overcast day. Thus a' is dependent on the type and thickness of clouds. Moreover, Q_0 instead of being a constant quantity would vary with moisture contents and would depend on scattering nuclei in the atmosphere. It is, therefore, better to use here the relation $Q/Q_A = a + b(n/N)$, where Q_A is the radiation at the top of the atmosphere and a and b are constants.

2. Brief description of the instruments

For the measurement of total solar radiation at Delhi a Moll-Gorczynski solarimeter with a recording millivoltmeter having a range of 0-15 mV is used.

The solarimeter is installed on the roof of the observatory at New Delhi where an unobstructed view of the whole sky is available. Hourly and daily values of total radiation are evaluated from the solarimeter records. Duration of bright sunshine is recorded with a Campbell-Stokes sunshine recorder.

3. Analysis of records

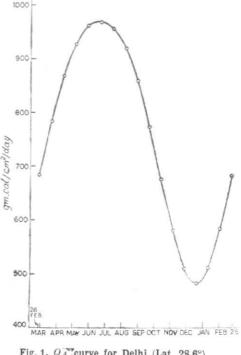
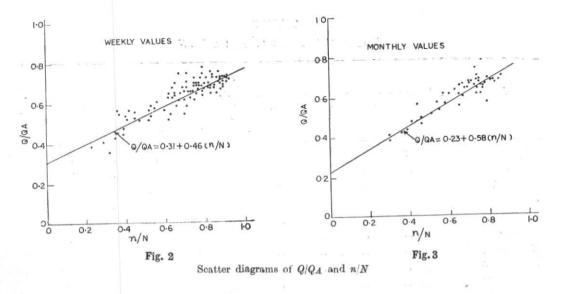

Table 1 gives the mean values of the possible and actual hours of sunshine in each month. The percentage of possible sunshine in different months has also been calculated. The data used here is from 1959 to 1962. It is noteworthy that these figures

TABLE 1

	Hours of possible sunshine per day	Hours of actual bright sunshine per day	Percentage of possible sunshine
Jan	10.52	7.63	$72 \cdot 5$
Feb	$11 \cdot 57$	8.48	$73 \cdot 3$
Mar	$11 \cdot 96$	8.40	$70 \cdot 2$
Apr	$12 \cdot 87$	9.45	. 73.4
May	$13 \cdot 58$	9.53	$70 \cdot 2$
Jun	$13 \cdot 97$	7.63	$54 \cdot 6$
Jul	$13 \cdot 81$	$6 \cdot 02$	$43 \cdot 6$
Aug	$13 \cdot 19$	$4 \cdot 93$	$37 \cdot 4$
Sep	$12 \cdot 37$	$7 \cdot 20$	$58 \cdot 2$
Oet	$11 \cdot 48$	$8 \cdot 85$	$77 \cdot 1$
Nov	10.73	$9 \cdot 18$	$85 \cdot 5$
Dec	10.32	8.02	77.7


are almost the same as calculated by Mani. et al. (1962) in respect of data of Delhi for 1958. It can be seen from the table, that (i)July and August are the months of maximum cloudiness or the minimum duration of sunshine, (ii) May has the maximum duration of sunshine hours, (iii) August has the minimum number of sunshine hours and (iv) November is the clearest month.

The daily, weekly and monthly values of Q, Q_A, n and N were calculated in order to determine the ratios Q/Q_A and n/N. In all these computations the average values for 1959-62 were used. The daily values of Q_A were interpolated for New Delhi latitude (28° 35′ N) from the values given for specific latitudes and dates by List (1958). The values of N were determined from the Indian Ephemeris and Nautical Almanac considering the daily duration of sunshine from the time of sunrise to sunset. The Q_A curve for New Delhi is shown in Fig. 1. Scatter diagrams for the weekly and the monthly ratios Q/Q_A and n/N have been shown in Figs. 2 and 3 respectively. Lines representing the best fits for the least square regression equations for

the weekly values and the monthly values were drawn and the least square regression constants d and b and r—the correlation coefficient between Q/Q_A and n/N have been calculated. On similar lines the values of Q/Q_A and n/N were computed for daily data and from their scatter diagrams the constants a and b and the coefficient of correlation have been calculated. For daily values, n/N ranged from 0 to 0.96 while for the weekly and the monthly values n/N ranged from 0.23 to 0.92 and 0.30 to 0.96 respectively. Since the number of daily ratios is very large a frequency distribution (Table 2) has been given instead of the scatter diagram. In order to analyse the daily data seasonwise these were grouped separately into (i) clear and dry season (October to May) and (ii) cloudy and wet season (June to September). Table 3 shows the different values of a, b, a_0 and b_0 and also r, the coefficient of correlation between Q/Q_A and

n/N. The constants a_0 and b_0 were determined since some workers have calculated them by the relations, $Q/Q_0 = a_0 + b_0 (n/N)$, which, when compared with $Q/Q_A = a + b (n/N)$ used here, gives the relations $a_0 = a/(a+b)$ and $b_0 = b/(a+b)$. Since in the case of clear sky, *i.e.*, when n/N is nearly unity, $Q=Q_0$ and $Q_0/Q_A = a+b$. Table 4 shows the comparative study of a, b, a_0 , b_0 and r, calculated for Delhi with those worked out by others for different parts of the world.

4. Discussion of the results

The values of the coefficient of correlation in the different cases of grouping the data range from +0.83 to +0.95. The values of the regression constants for weekly and daily data are quite close to each other but for a little difference with the monthly values. It can also be seen that the constants when compared in the seasonwise groups of daily values an appreciable difference is noted. In which case these differences in the values of a, b, (a+b) would be due to greater moisture content of the atmosphere during the wet season which causes greater absorption of the radiation in the atmosphere. The values of the constants in the case of daily data, irrespective of season, are midway between those for the

clear and dry and cloudy and wet seasons. A similar trend of the values of \cdot these constants was found earlier by Mooley *et al.* (1962) for Madras.

It is interesting to compare the values of these constants found for Delhi with those found by other workers given in Table 4. It can be easily concluded that the regression constants a and b for clear and dry season of Delhi have very good agreement with those for Wingfield, Trinidad, Jamaica, Windhock, Pretoria, Blomfontein and Durban and that there is a slight difference when compared with those for Kabete. In the case of monthly values, it is seen that the constant a for Delhi is exactly the same as that for Kabete, Varsailles, and 32 stations within latitudinal belt 7°S to 65°N and practically same as for Mt. Stromlo, and the constant b for Delhi is in very good agreement with those for Kabete and Rothamstead. There is a very good agreement between the values of r for Delhi and almost all the stations shown in Table 4. It is also noteworthy that the constants a, b, a_0, b_0 and r for monthly data of Delhi have marked difference with those for Madras. While for daily and weekly data there is very good agreement between the values of a, b, a_0 , b_0 and r for Madras and Delhi.

263

B. R. YADAV

TABLE 2

Frequency distribution of $Q \ QA$ and n/N

$n_{i}N$	Q Q A											
70, <u>1</u> 3	•000 to •100	$\begin{array}{c} \cdot 100 \\ ext{to} \\ \cdot 200 \end{array}$	•200 to •300	·300 to ·400	·400 to ·500	•500 to •600	•600 to •700	• 700 to • 800	•800 to •900	Tota		
000 · 100	7	16	28	15	9	2				77		
$100 - \cdot 200$			2	7	7	6				22		
· 200 — · 300	* *	• •	1	7	13	5	* *			26		
· 300 — · 400				5	20	16	1			42		
$\cdot 400 - \cdot 500$			+ +		11	31	6	4		52		
· 500 — · 600					3	29	15	5		52		
$\cdot 600 - \cdot 700$					2	33	59	7		101		
$\cdot 700 - \cdot 800$			* *		* *	12	124	50	1	187		
·800 — ·900 *						7	122	139	8	276		
$\cdot 900 - 1 \cdot 000$							20	102	6	128		
Total	7	16	31	34	65	141	347	307	15	963		

TABLE 3

Regression constants and correlation coefficient r, between $Q\ Q_A$ and n/N for Delhi

	a	Ь	a_0	bo	r
Monthly	0.23	0.58	0.28	0.71	0.86
Weekly Daily	0.31	0.46	0.40	0.60	0.80
(i) Clearand dryseason	0.29	0.52	0.35	0.64	0.83
(ii) Cloudy and wet season	0.32	0.43	0.40	0.57	0.90
(iii) Irrespective of season	0.31	0.48	0.39	0.60	0.87

TABLE 4

Va	lues	of	a,	ь,	a_0 ,	b_0	and	11	obtained	by	different	workers

	Location	Latitude	a	b	a_0	b_0	r
	DAI	LY					
Glover and McCulloch (1958)	Kabete (E. Africa)	$1.3^{\circ}S$	0.26	0.57			0.92
Glover and McCulloch (1958)*	Windhock (S. Africa)	$22 \cdot 6^{\circ}S$	0.26	0.52			0.02
	Pretoria (S. Africa)	$25 \cdot 6^{\circ} S$	0.25	0.50			
	Blomfontein (S. Africa)	$29 \cdot 1^{\circ}S$	0.26	0.49			
	Durban (S. Africa)	$29 \cdot 8^{\circ}8$	0.26	0.51			
	Wingfield (S. Africa)	$33 \cdot 9^{\circ}S$	0.29	0.50			

٠

Mean of the values given for the different years

TOTAL SOLAR RADIATION AND DURATION OF SUNSHINE

		Lo	eation		La	titude	a	l		a_0	b_0		r
				D	AILY								
mith (1959, 1960)		Trinida	ad (W.	Indies)	10) · 6°N	0.27	0.	49				
owan**		Jamaio			18	8°N	0.31	0	49				
imball		Washi (U. S	ngton 5. A.)	D. C.	4	$7 \cdot 3^{\circ} N$				0.22	0.78	8	
ngström		Stockh	nolm (S	weden)	5	$9 \cdot 4^{\circ} N$	• •		••	0.23	$0 \cdot 7'$	7	•••
Looley, et al. (1962)		Madra	s (India	a)	1	$3 \cdot 0^{\circ} N$	0.31	0	$\cdot 44$	0.41	0.5		·83
Lani, et al. (1962)		New1	Delhi (I	ndia)	2	$28 \cdot 6^{\circ} N$	•	C	••	0.38	0.5'	7 0	·90
				M	ONTH	ILY							
lover and McCulloch (1	1958)	Kabet	e (E.A	(frica)		$1.3^{\circ}S$	$0 \cdot 2$	3 0	$\cdot 62$. () . 97
ritz and McDonald	1000/			u.S.A						0.35	$0 \cdot 6$	1 (.88
Black, et al. (1954)			illes (F			48.8°N	0.2	3 (.50			. ()•9(
Diack, crut. (1001)				Austral	lia) 3	$35 \cdot 3^{\circ}S$	$0 \cdot 2$	5 ($(\cdot 54)$. ()•8
				with belt			0.2	3 (-		
		35.1	(T)	lial	1	$13 \cdot 0^{\circ} N$	0.3	0 0	0.46	0.39	0.6	31	0.9
Mooley, et al. (1962) **Quoted by S		59, 1960		TAB	LE 5					n Q/Q ₀ ndur	, and 7.	a/N	
**Quoted by S	mith (19 Incident	59, 1960))	TAB	LE 5		al/em²/			54.000	, and n	n/N Nov	D
**Quoted by S	Incident das and 954) the	59, 1960 solar ai)) nd sky	TAB radiati	LE 5	ı gm. c	al/em²/	day a	t Jullu	ndur			3(
**Quoted by Si I Computed by Rama Yegnanarayanan (1 Computed by using formula	Incident das and 954) the 38 (n/N)	59, 1960 solar al Jan 321)) nd sky Feb 420 421	TAB radiati Mar 457 473	LE 5 ion in Apr 569 627 TABL	1 gm. c May 644 679 Æ 6	al/cm ² / Jun 634 641	day a Jul 546 528	486 535	ndur Sep 458	Oct 459	Nov 375	D0 30 33
**Quoted by Si I Computed by Rama Yegnanarayanan (1 Computed by using formula	Incident das and 954) the 38 (n/N)	59, 1960 solar an Jan 321 314 Incident)) Feb 420 421 solar :	TAB radiati Mar 457 473	Apr 569 627 TABL 7 radia	1 gm. c May 644 679 E 6 ation in	al/cm ² / Jun 634 641 gm. ca	day a Jul 546 528	486 535	ndur Sep 458	Oct 459	Nov 375	3(
**Quoted by Si I Computed by Rama Yegnanarayanan (1 Computed by using formula	Incident das and 954) the 38 (n/N)	59, 1960 solar al Jan 321 314 Incident Jan 376)) nd sky Feb 420 421 solar : Feb 475	TAB radiati Mar 457 473 and sky Mar 536	LE 5 ion in Apr 569 627 TABL y radia Apr 621	1 gm. c May 644 679 Æ 6 ation in May 651	al/cm ² / Jun 634 641 gm. ca Jun 598	day a Jul 546 528 1/cm ² / Jul 513	t Jullur Aug 486 535 day Aug 414	ndur Sep 458 509 Sep 500	Oct 459 524 Oct 481	Nov 375 374 Nov 443	3(3: D
**Quoted by Since the second	Incident das and 954) the 38 (n/N)	59, 1960 solar an Jan 321 314 Incident Jan 376 355	 md sky Feb 420 421 solar : Feb 475 456 	TAB radiati Mar 457 473 and sky Mar 536 509	SLE 5 ion in Apr 569 627 TABL radia Apr 621 596	1 gm. c May 644 679 E 6 ation in May 651 629	al/cm ² / Jun 634 641 gm. ca Jun 598 539	day a Jul 546 528 1/em ² / Jul 513 484	t Jullur Aug 486 535 day Aug 414 433	ndur Sep 458 509 Sep 500 454	Oct 459 524 Oct 481 445	Nov 375 374 Nov 443 416	30 3: D
**Quoted by Since A is the second	Incident das and 954) the 38 (n/N)	59, 1960 solar al Jan 321 314 Incident Jan 376)) nd sky Feb 420 421 solar : Feb 475	TAB radiati Mar 457 473 and sky Mar 536 509 514	Apr 569 627 TABL v radia Apr 621 596 611	1 gm. c May 644 679 JE 6 ation in May 651 639 652	al/cm ² / Jun 634 641 gm. ca Jun 598 539 584	day a Jul 546 528 1/em ² / Jul 513 484 507	t Jullur Aug 486 535 day Aug 414 433 441	ndur Sep 458 509 Sep 500 454 497	Oct 459 524 Oct 481 445 475	Nov 375 374 Nov 443 416 409	3(3) ID
**Quoted by Si Computed by Rama Yegnanarayanan (1) Computed by using formula $Q/Q_A = 0.23 \pm 0.5$ Aligarh Gorakhpur	Incident das and 954) the 38 (n/N)	59, 1960 solar an Jan 321 314 Incident Jan 376 355	 md sky Feb 420 421 solar : Feb 475 456 	TAB radiati Mar 457 473 and sky Mar 536 509	SLE 5 ion in Apr 569 627 TABL radia Apr 621 596	May 644 679 JE 6 ation in May 651 639 652 633	al/cm ² / Jun 634 641 gm. ca Jun 598 539	day a Jul 546 528 1/em ² / Jul 513 484	t Jullur Aug 486 535 day Aug 414 433	ndur Sep 458 509 Sep 500 454	Oct 459 524 Oct 481 445	Nov 375 374 Nov 443 416	3 3 I

4

TABLE 4 (contd)

265

5. Estimation of solar radiation at a few places in northern India

Table 5 shows the computed mean daily values of the total radiation for different months by Ramdas and Yegnanarayanan (1954) and by the present author using the relation $Q/Q_A = 0.23 \pm 0.58 \ n/N$ for Jullundur (Lat. 31°25' N, Long. 75°35' E). The ratio n/N was calculated by taking the average monthly values of the duration of sunshine data (1959-62). It is interesting to note that the values compare favourably. The above relation can, therefore, be used for calculating the approximate total radiation at places in northern part of India having the same cloud conditions as at Delhi. The data of the duration of sunshine were available for five selected stations, viz., Sugarcane Research Station, Gorakhpur (Lat. 27°00'N, Long. 83°27' E), Government Agriculture Farm, Aligarh (Lat. 27°00' N, Long. 78°10'E), Government Rice Research Station, Nagina (Lat. 29°28'N, Long. 78°32'E), Sugarcane

Research Station, Muzaffarnagar (Lat. 29°28' N, Long. 77°44'E) and Government Horticulture Research Institute, Saharanpur (Lat. 29°58'N, Long 77°33'E). The values of QA and n/N for these stations were computed and using the formula $Q/Q_A = 0.23 + 0.58n/N$, the values of Q, the total solar radiation received during the day for the different months were calculated as given in Table 6. These values will prove useful for agricultural and various other practical purposes.

6. Acknowledgements

I wish to record my grateful thanks to the Director, Agricultural Meteorology, Poona, for providing the sunshine data of the Agrimet. observatories established under the Co-ordinated Crop Weather Scheme. I am also grateful to Dr. L. S. Mathur, Deputy Director General of Observatories (Instruments) for providing facilities for the work and to S/Shri H. Mitra, S. S. Sinha and S. Raghavendran for their interest and encouragement in the work.

REFERENCES

Angström, A.

Black, J. N., Bonython, C. W. and Prescott, J. A.

Cowan, M. J.

Fritz, S. and McDonald, T. M.

Glover, J. and McCulloch, J. S. G.

List, R. J.

Mani, A., Chacko, O. and Venkiteshwaran, S. P.

Mooley, D. A., Bedekar, V. C. and Raghavan, S.

Ramdas, L. A. and Yegnanarayanan, S.

Smith, G. W.

- 1924 Quart. J. R. met. Soc., 50, p. 121.
- 1951 Compendium of Meteorology, p. 29.
- 1954Quart. J. R. met. Soc., 80, p. 231.
- 1959 Quoted by Smith in Quart. J. R. met. Soc.,
- 1960 Č 85, 86, pp. 429 and 415 respectively.
- 1958Smithsonian Meteorological Tables, 6th Rev. Ed., p. 440.
- 1958Quart. J. R. met. Soc., 84, p. 56.
- 1958 Smithsonian Meteorological Tables, 6th Rev. Ed., p. 418.
- 1962 Indian J. Met. Geophys., 13, 3, pp. 338, 351, 357.
- 1962 Ibid., 13, 4, p. 512.
- 1954 Solar energy in India—Proceedings of Symposium on wind and solar energy, Arid Zone Research Committee of the UNESCO, New Delhi.
- 1959 Quart. J. R. met. Soc., 85, p. 429,

1960 Ibid., 86, p.415,