Correlation between mean annual rainfall and its standard deviation

V. N. ANTARKAR

Meteorological Office, Poona

(Received 14 December 1961)

ABSTRACT. The hypothesis that linear relationship exists between mean rainfall and its standard deviation is tested in case of Rajasthan by obtaining correlation coefficient between them and developing linear regression. It is seen that high correlation exists and that the observed differences between the estimated and actual standard deviation are not, on the basis of Standard Error of estimate, significant. Relative error in the estimate is also generally small.

1. It is an observed fact that Coefficients of Variability CV generally varies inversely with rainfall (particularly in case of mean annual rainfall). Hence, we may have as a first approximation,

$$CV = a + b/x$$
,

where x is the mean rainfall of a station and a and b are constants. But by definition CV = s/x, where s is the standard deviation.

 $\therefore s/x = a + b/x$ or s = ax + b

That is a priori, linear relationship between x and s is suggested.

2. This hypothesis was tested in case of Rajasthan for which values of s for over 190 stations are easily available (Rao 1958). For purposes of this study, Rajasthan has been divided into two regions—(1) the region R_1 , containing stations with mean annual rainfall of less than 22" and (2) the region R_2 , with stations having mean annual rainfall of 22" and over. These two regions roughly correspond to the meteorological sub-divisions of west Rajasthan and east Rajasthan. The number of stations, considered here, is 87 in R_1 and 106 in R_2 .

3. The correlation coefficient r and the regression equation for each region were obtained considering values of x and s for each station. Standard Error, E_s , of the estimate s_e was also calculated from —

$$E_{s} = \sigma_{s} \left(1 - r^{2}\right)^{\frac{1}{2}},$$

where σ_s is the standard deviation of the s values. These equations and values are as follows —

For Region R₁

$$s_e = 0.310x + 2.51$$

$$r = 0.85, F_{\bullet} = 1.00''$$

For Region R₂

$$s_e = 0.211 x + 4.77$$

 $r = 0.61 E_1 = 1.60''$

It is interesting to note that both the equations are almost satisfied when $x=22 \cdot 83$ which closely corresponds to the isohyet of 22'' dividing the two regions.

3.1. Estimated standard deviation s_e was calculated for each station from the regression equations. The difference $(s_e - s_a)$ between the estimated and actual standard deviations was obtained. Frequency distribution of this error for each region is given in Table 1 in terms of the standard error. On the basis of the normal distribution of this error, we could expect it to lie between

 $\pm 0.67 E_s$ in case of 50% of the stations,

 $+1.0 E_s$ in case of 68.2% of the stations,

 $\pm 2.0 E_s$ in case of 95.5% of the stations, and $\pm 2.58 E_s$ in case of 99% of the stations.

TABLE 1

$E_{\rm rror}$ $(s_e - s_a)$		$R_1(E_g)$	= 1.00")	$\begin{array}{c} \mathbf{R}_{2}(E_{g} = 1.60'') \\ \hline \\ \hline \\ \mathbf{Actual Per cont} \end{array}$		
	<-2.58	38	43.7	45	42.5	
	-2.58	37	42.5	43	40.6	
	-2.50	37	42.5	42	39.6	
ions with error within E_s times	-2.25	37	42.5	42	39.6	
	-2.00	37	42.5	42	39.6	
	-1.75	36	$41 \cdot 4$	41	38.7	
	-1.50	33	$37 \cdot 9$	35	33.0	
	-1.25	31	35.6	32	$30 \cdot 2$	
	-1.00	26	30.0	27	25.5	
	-0.75	20	$23 \cdot 0$	22	20.8	
	-0.62	19	21.8	22	$20 \cdot 8$	
	-0.50	17 .	19.5	17	$16 \cdot 0$	
Estat	-0.25	7	8.0	9	$8 \cdot 5$	
er ol	0	0	0	0	0	
daun	0.25	10	$11 \cdot 5$	17	$16 \cdot 0$	
nge n	0.50	21	$24 \cdot 1$	29	$27 \cdot 4$	
cente	0.67	29	$33 \cdot 3$	39	$36 \cdot 7$	
per	0.75	29	33.3	43	$40 \cdot 6$	
and	$1 \cdot 00$	35	$40 \cdot 2$	49	$46 \cdot 2$	
ctua	$1 \cdot 25$	40	$46 \cdot 0$	57	$53 \cdot 8$	
A	1.50	45	$46 \cdot 0$	58	$54\ 7$	
	1.75	48	$55 \cdot 2$	60	$56 \cdot 6$	
	$2 \cdot 00$	49	$56 \cdot 3$	60	$56 \cdot 6$	
	$2 \cdot 25$	49	$56 \cdot 3$	61	$57 \cdot 5$	
	2.50	49	56.3	61	57.5	
	2.58	49	56.3	61	57.5.	

The number of stations falling within these limits is also indicated in the table. The following extract from Table 1 indicates how closely these expectations have been realised—

Actual and percentage number of stations

with error within							
	0.67 E ₈	$1 \cdot 0 \; E_g$	$2\cdot 0~{E_8}$	$2.58 E_g$			
Actual	48	61	86	86]			
%	$55 \cdot 2$	70.1	98.9	98.9) R1			
Actual	61	76	102	104)			
%	57.5	71.7	96 2	$98 \cdot 1$			

The relative percentage error $100 (s_e - s_a)/s_a$ was also calculated for each station. Table 2 gives the distribution of stations according to the relative error.

4. Next, the stations in each region were grouped according to convenient and small rainfall intervals — range of each interval being 0.75'' in case of R_1 and 1.00'' in case of R_2 . The mean rainfall for each interval was obtained to give the area-mean rainfall for the area covered by each interval. The best estimate of the standard deviation for this mean spatial rainfall was obtained as

$$\stackrel{\wedge}{s} = \left(\begin{array}{c} k \\ \Sigma \\ 1 \end{array} n_i \quad s_i^{*} \middle/ (N-k) \right)^{\frac{1}{2}}$$

where n_i is the number of years of data of a station *i* used for getting S.D., s_i of that station, $N = \sum_{k=1}^{k} n_i$ and *k* is the number of stations. Tables 3 and 4 give these values. Maldistribution of raingauge stations is also incidentally brought out. The correlation coefficients between *x* and *s*, the standard errors and the regression equations were obtained and are given below—

Region R₁

$$\hat{e}_{e}^{\wedge} = 0.343x + 2.06$$

 $r = .94, E_{s}^{\wedge} = 0.68$

10

MEAN ANNUAL RAINFALL AND STANDARD DEVIATION

T	A	B	L	Ð	2
_		_			_

Actual and percentage number of stations with relative % error between

		the second se							
Sec.	010	11—20	21—30	31—40	4150	5160	61—70	71—80	81—90
Actual	48	23	9	4	1	1	0	0	17
%	$55 \cdot 2$	26.5	10.3	4.6	1.1	$1 \cdot 1$	0	0	$1 \cdot 1 \int_{-\infty}^{-\infty} K_1$
Actual	64	31	9	1	1				Jp
%	60.4	29.2	8.5	1	1				$\int N_2$

TABLE 3 Region R₁

TABLE 4 Region R₂

Rainfall range (cents)	No. of stations	Mean rainfall x (cents)	$\stackrel{\wedge}{s}$ (cents)	Rainfall raage (cents)	No. of stations	Mear rainfall x (cents)	∧ ∦ (cents)
326→ 400	1	349	195	2201-2300	13	2251	1025
401-475	4	450	207	2301-2400	7	2339	1001
476- 550	3	520	400	2401-2500	7	2442	979
551-625	3	596	417	2501-2600	11	2539	1042
626-700	2	676	555	2601-2700	9	2644	971
701-775	6	737	517	2701 2800	6	9760	000
776-850	3	798	525	2701-2800	0	2109	900
851-925	3	907	482	2801-2900	4	2807	1058
926-1000	2	935	527	2901-3000	5	2948	1094
1001-1075	5	1053	585	3001-3100	5	3079	1271
1076-1150	7	1120	685	3101-3200	4	3154	1360
1151-1225	3	1201	632	3201—33 00	3	3258	1300
1226-1300	1	1233	560	3301-3400	5	3356	1306
1301-1375	2	1362	703	3401-3500	6	3469	1375
1376-1450	5	1422	708	3501-3600	1	2552	1900
1451 - 1525	4	1498	776	3601-3700	3	9644	1200
1526-1600	4	1548	819	9701 9900	0	0500	1214
1601 - 1675	5	1634	757	3701-3800	6	3739	1254
1676 - 1750	2	1734	831	38013900	. 4	3870	1305
1751-1825	3	1780	865	3901-4000	3	3955	1240
1826-1900	6	1863	898	4001-4100	0	-	-
1901-1975	3	1966	765	4101-4200	1	4111	1335
1976-2050	4	2017	801	4201 - 4300	1	4237	1618
2051-2150	3	2076	866	4301-4400	1	4305	1312
2151-2200	3	2180	935	4401-4500	1	4443	1502

443

TARLE 5

Actual and percentage number of intervals with % error between								
<u></u>	0—10	11-20	21-30	31-40	4150	51—60	61—70	71-80
Actual	17	5	1	0	0	0	1	1]
%	68	20	~ 4	- 0	0	0	4	4 R_1
Actual	19	3						۔ ۲
%	86.4	$13 \cdot 6$						\mathbf{B}_{2}

Region R.

$$\overset{\wedge}{s_e} = 0.224x + 4.72$$

$$r = 0.84, \overset{\wedge}{E_s} = 0.95$$

Here again, both the equations are almost satisfied by $x=22\cdot35$, which closely corresponds to the isohyet of 22", dividing the two regions.

4.1. In this case also, estimated standard \bigwedge^{Λ} deviation s_e was calculated for each interval (representing a uniform rainfall region because of narrow isohyetal boundaries). The difference $(s_e - s_a)$ between the estimated and actual standard deviations was obtained.

Table 6 gives the distribution and shows how closely the expectations indicated in para 3.1 have been realised.

The relative percentage error 100 ($\stackrel{\wedge}{s_e} \stackrel{\wedge}{-s_u}$)/

 s_a was also calculated. Table 5 gives distribution of intervals according to the relative error. It is seen that although the estimated standard deviation $\stackrel{\wedge}{s}$ may be out by more than one E_s^{\wedge} in case of about 30% of the intervals

TABLE 6 Actual and percentage number of intervals with error within

	$0.67 E_s^{igwedge}$	$1 \cdot 0 E_s^{(\wedge)}$	$2 \hspace{0.1 cm} 0 E_{\mathcal{S}}^{\bigwedge}$	$2 \cdot 58 E_s^{\wedge}$		
Actual	12	17	24	25]		
%	48.0	68.0	96.0	$100 \cdot 0 \int^{\mathbf{R}_{1}}$		
Actual	12	15	21	22		
%	54.5	68.2	95.4	$100 \cdot 0 \int^{R_2}$		

the relative error is quite small being generally less than 20%.

5. Wide variations of standard deviation from observed values could be attributable to (1) peculiarities of orography and / or defective exposure conditions, apart from meagreness of data in some cases. Nevertheless, the study has shown that a fairly close relationship exists between rainfall and its standard deviation for individual stations as well as for regions of homogeneous rainfall (bounded by isohyets at narrow intervals); and the observed differences are not statistically significant. Hence, isohyetal map of any region can be used as a map giving distribution of standard deviation.

REFERENCE

Rao, K. N.

1958 /

Indian J. Met. Gcophys., 9, 2, p. 99.