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ABSTRACT. The paper presents the results of a theoretical investigation on the
oceurrence of mountain waves on the lee of Western Ghats. The average E-W vertical
cross-section of the ghats is represented by a mathematical expression and the expressions
for vertical velocity and displacement of streamlines are established for a two-dimensional
motion making appropriate approximation in the lecewave equation. Computation has
been made for six cases for the winter season when the wind is more or less westerly and the

atmosphere is dry. It appears wave lengths less than 25 kmn are not im

rtant for the

Western (hats, It is only the longer waves that give appreciable amplitudes. The various
cases are discussed in terms of the distribution of wind speed and stability.

1. Introduction

The mountain wave phenomenon or better
known as the lee wave associated with a
mountain has been the subject of theoretical
investigations by many workers. The classical
investigations in this field are due to
Rayleigh (1883) and Kelvin (1886) who
studied waves in a stream of water set up by
an obstacle on the bed or near surface. Lyra
(1943) and Queney (1947) studied waves in
the stratified atmosphere and gave solutions
for air stream having uniform velocity and
stability, It was Scorer (1949, 1953) who first
infroduced the variation of stability and
wind speed with height. His simplified
perturbation equation is —
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where ¢ is the stream function of the
disturbance, and
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Bis the stability parameter (1/6) (d8/dz), 8 the
potential temperature, /' the undisturbed
wind speed assumed to be a function of 2z
only and g, the acceleration due to gravity.
k is the wave member.

Scorer showed from equation (1) that no
lee wave can occur with 2=constant. This
notion led Scorer to introduce the concept
of interface in the air stream dividing it into

two or three layers in each of which /2 has a
constant but different value and he found
that in order that lee wave should occur, I2
must decrease upwards,

Sawyer (1960) studied the numerical
solution of the wave equation (1) with the
aid of an electronic computer which enabled
him to take various forms of [2,

Palm (1958), Palm and TFoldvik (1960),
Foldvik and Palm (1957, 1959) were
the first to represent the * profile by an
analytical function of the form

-2z
f@=foe

A similar method was also adopted by Digs
(1958, 1961, 1962) independently. However,
while Dgis approximated the B-profile by a
single exponential function for the entire
atmosphere, Palm and Foldvik divided the
atmosphere into 2 or 3 layers and replaced
I* in each layer by a different appropriate
expression, constant or exponential. It must,
however, be recognised that the main em-
phasis by Palm and Foldvik was given to
longer waves which necessitated them to
take mean wind and stability at higher levels
than that recorded by sounding balloons. It
was again shown by Palm and Foldvik
(1960) as well as by Corby and Sawyer (1958)
and Sawyer (1960) that the moticn in the
lower troposphere (5 to 6 km) i3 independent
of the behaviour of f(z) above the level where
f(2) attains its minimum value. The real
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distribution of f (2) in the stratosphere may.,
therefore, be represented by an artificial
distribution for simplification. Accordingv,
Palm and Foldvik (1960) approximated the
observed values of f(z) by an exponential fir-
ction and considering the motion inthe lower
troposphere this function was chosen to
Tepresent f(z) in the entire atmosphere.
Foldvik (1962) applied it further for rapid
calculation of wavelensth and  vertical
velocity fora symmetrical mountain profile,

A similar method has been applied in the
present paper for the investigation of nonn-
tain waves in the Western Ghats,

2. The lee-wave equation

We consider the two-dinensional motjon
in the vertical plane with z-axis vertical and
the z-axis directed along the undisturbed
current U which is assumed to be a function
of height only. The air stream blows perpendi-
cularly to the mountain ridge which is con-
sidered to have an infinite extent along the
N-S direction,

We assume (i) that the undisturbed
quantities are functions of z ouly; (i7) that
the perturbation quantities are small so that
their product and higher order terms may be
neglected compared to the undisturbed quan-
tities; (!H) that the motion is NON-VIiseous
and laminar. Condensation and earth’s
rotation are neglected.

How far the neglect of ecarth’s yotation is
justified can be seen from the following con-
sideration. If u is the perturbation velocity,
the acceleration due tocorioliz effecl jx fu,
f being the coriclis parameter. Acceloration
arising from the advective changes in cross-
mountain motion is U/(du/ézx), where U is the
stream velocity. The advective acceleration is
of basic importance in the mountain offeet,
The coriolis acceleration can be neglected
compared to the advective acceleration if
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where L is the horizontal wavelength. Thus
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for an Indian latitude and for a stream veloci-
tv of U=10 m sec, the coriolis acceleration
will be less than 116G of the advective accele-
ration if L<Z150 km. It will be seen later that
in all our cases studied, the \\';t\'u.‘lcl‘.grh 18
less than this limit which justifies the neglect
of coriolix force,

We also assume that the motion is steady.

The hasic equations are — two equations of
motiot. the equation of continuity, the equa-
tron of state and the adiabatic equation,
Starting with these equations and after
linearisation and elimination we get for i,
the vertical perturbation velocity, the fol-
lowing differential equation —
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(3)

f 15 the gas constant for unit mass. +»* is the
adiabatic lapse rate, dry or moist, 7' is the
undisturbed temperature, and v = —(d7"/dz)
i> the actual lap.e rate in the undisturbed
atmosphere, g is the acceleration due to gra-
vity.

In equation (3) we can with very good
approximation negleet U2 in  comparison
to C* whether the air is dry or moist.
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Equation (3) then reduces to
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Again the second term in the coefficient
of @w/@2 can be neglected compared to the
first one. For, the lapse rate is always less
than 10°C/km, the maximum wind shear
in the examples that we shall consider will
never exceed 20 kt per km, i.e,, 10 m/sec
per km and the maximum wind speed will
not exceed 100 kt, .., 50 m/sec. With these
extreme values the ratio of the second to the
first term will be less than 1/10, so that equa-
tion (4) further reduces to—
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We now introduce the new dependent varia-
able W defined by —

w=W;. exp (%;—?i z) (6)

Now as the quantity (9 — Rv)/2RT ~
(33°8—v)/2T per km varies little with height,
we can disregard its variation with height
when we differentiate equation (6) with res-
pect to z. Equation (5) then becomes
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iquation (7) is the lee-wave equation.,
3. Solution for Western Ghats

We now solve the equation (7) for the
ground profile of the Western Ghats. The
Western Ghats extend for about 1500 km
in the N—8 direction. In the west to east
direction its height gradually rises to 0-8 km
in a distance of 65 km and then ends in a
plateau of average height 0-6 km. The
average W—H vertical cross-section of the
ghats is given in Fig. 1 and it can be repre-
sented by the equation —
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where I, (z) is the elevation of the ground
surface at the level z==—%h with the numerical
values, h=0-26 km, =18 km, b=0-52 km,
and o' = (2/n) X 0-35 km. The axes =
and z are shown in Fig. 1. In equation (9)
the ridge {; = a®h/(a® - #?) has been combined
with the plateau edge I,—a' tan-! (z/a) =0
as to get the appropriate profile of the
Western Ghats,

We now solve the lee-wave equation (7)
for the ground profile given by equation(9).

For an analytical solution the function

[ (2) defined by equation (8) is to be replaced

by an analytical expression. For this Palm
and Foldvik have considered only the first two
terms. Scorer also, in his numerical computa-
tion, neglected the last three terms of (8) as
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they were scarcely comrarahle with the firt
two. We have computed for six ca-es during
the winter season when the wind i< nire or
less westerly and the air is dry. We can, there-
fore, at this stage replace v* by the drv 2dia-
batic lapse rate vy in which case y hecomes
the ratio ¢, /e, = 1+4 of specific heat at
constant pressure tospecific heat at constant
volume. The typical numerical values taken
are g=10—2  km/sec?, y=1-4, and
=29 X10—5 km?sec degree.

Comparison of the different terms of f(z)
shows thot the last two terms are neg'igible,
the second and the third terms are compar-
able to each other, the first term heine the
dominating factor. We have, accordingly,
retained the first three terms. With there
approximations, we have represented the
observed f(z) distribution below the tropos-
pheric wind maximum by the exponential
funetion,

f@)=foe—n

where f; and A are constants and this
function was chosen to represent f(z) in the
entire atmosphere. As mentioned earlier, this
will not affect the motion at low levels.

(10)

To solve the equation (7) we follow the
usual procedure of assuming that the ground
profile issinusoidal, and thereafter we gene-
ralise the solution by Fourier integrals for
an arbitrary mountain. For this we write

W, = W. gtz (11)
Equation (7) then, with (10) and (11) reduces
to the Bessel equation -
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The solution of the equation (12) is —
W=Adu (1) + B Yo (n)
=d4J, (Be—":2)+ BY, (Be—*3:2) (14)
with e = (2 A) &
where J,, (9) and Y, (y) are the Bessel func-

tions of the first and second kind respectively
of real order s and real argument 7.

The expression for vertical velocity is thus

g— Ry

w (r, z) = exp ( BRI

:)exp(-ik:r) X

X [Ad (B e—222) 4 BY,, (B e—n22)] (15)

The constants . and B are to bhe found from
the following boundary conditions —

(7) As the upper boundary condition we
require that the energy of the wave remains
finite at grent heights, To fulfil this we use
the condition —

w(r,z) >0asz - w
The condition requirves that in (15) B==0.
Sinee the Bessel function of the second kind

with real order —» — oo as its argument
-0, 7.e, as 2 - . We thus have —

(16)
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We use this particular solution of the wave
equation for the profile (9).

(i) At the lower boundary we require that
the flow is tangential to the surface. For the
profile (9) this condition is

A

w(z, —h) =U (L) o L (2)

So that the linearised lower boundary con-
dition is —

o [ —u
w (z,—h) =U (—h) o je X
0
al

X (ab cos kx - 7 sin I'cr:) dk (17)

The solution satisfying this conditionis —
g—Rv
3RT °
—Ry
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2
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—r.2/2
 Im (B2 o

Tm (Be™h2) (18)

After integration, the displacement of the
streamline at a level z above its original
undisturbed level is —

g—ARv
U(—h “P\2RT z)
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Tt should be noted here that the integral
in equations (18) and (19) is an improper
integral as the Bessel function J,, (Be"/2)
may vanish for real values of £. The improper
integral is interpreted as the Cauchy Princi-
pal value of the integral. Accordingly we
perform the integral in equation (19) by
Cauchy’s integral method along the con-
tour shown in Fig. 2 in the complex A-plane.
For this we put

o
v[e—mﬁ (ah cos kr 4 a' mk = ) X

c

J:m (B e — :‘;2)
jm (Berh2)

=Iicje—“".ef"z(ab—d i) %

* dk

k

(2

I (B e— 212)

T (B e 172) dk, when z >0

and = R, J‘G—“’“.e—f“(ab-{-é% ) X

Jm (ﬁe—l.:;:’.)

I (8 éTb'rZ) dk, whenz <0 (20)

where ¢ is .the path of integration and R,
is the real part and i=(—1)%. It can be seen
that the order of Bessel function m = (A/2)k
can assume complex values in the process
of integration. The zeros of J,, (B e#/2)
regarded as a function of m, are real for posi-
tive values of the argument Be* /2, The in-
tegrand in (20) ha:, therefore, poles for only
real values of m, ¢.e., of k, so that the path
of integration has indentations along the real
axis of the complex k-plane, It is the routs
of Ju (fe*h2) = 0 that determine lee-
waves, The integral along the circular are
tends to zero as its radius & tends to infinity.
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Fig. 2. Paths for contour Integration

It may be mentioned here that the solu-
tion is not unique when the motion is
assumed stationary and free waves exist.
Such a difficulty does not arise when the
problem is considered as an initial value
problem, Different methods have been devised
to render the solution unique, when the
motion 1s assumed stationary. Rayleigh
(1883) rendered the problem unique by intro-
ducing the small frictional forces proportional
to veloeity. In the final solution these forces
were put equal to zero. Kelvin (1886) devised
another method to make the problem deter-
minate from the physical reasoning that all
waves should vanish at large distance up-
stream from the region of disturbance. His
method, accoullngl\ consists of adding free
waves Wlt]] such amplitudes and wav olvnul hs
that there will be no waves m{ion(lmg to
infinity upstream. We have here made uce
of this method.

Perfﬂrming the integrations as above
and making the radii of the indentations tend
to zero and the radius of the circular arc I
tend to infinity and applying Kelvin's mono-

tony (nndition we find that the solution
cf £ (z, 2) can be adequately divided into
two parts { and {, as follows —

t ('r'.! :} = Cp -+ ‘:r

where,

(21)
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where I means the imaginary part.

(A/2) En

fy is given by m,

m,’s being the roots of J,, (Be* -M2)=0 (22)

Similarly, for the vertical velocity we
w (@, 2) = W, + w,
where,
ex ( i z) ]
wy = O, — BT
exp.( SRT )z__h

o
% I f e—ak g—kz (gbk—a’) X
0
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Equations (21) and (23) are the final solu-

tions giving waves downstream only.

Tor ease of computation we put {, and
w, in the following simplified forms —

g—Rv
U-h) =P ( 9RT '”’)
b= T ( 5
exp.

2RT z),h;.
N
X2m X e A(k,).

n=1

'{'f’n (B.e—*-22) %
25 Tm(B.017)
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o ( ﬂz)
"\ 2RT
wy = — U(-h). 7 X
g—Rv
oxe. (7).
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X2 Z e—akn A (ky). k,. me
n=1

7 Im (B. e -hj2)

z>0

21
]
) |

In (21) and (23) ¢ and w, consist of
a sum of harmonie lee waves and constitute
the real wave motion. It is seen that £, = 0
at z = —h (ground) and discontinuous
at #= 0. Therefore {, satisfies the boundary
condition at # = — % and has the same
kind of singularity as that of , for 2 =0
in order to make the complete solution
analytic. It is thus clear that ¢, or wp is
important near the mountain and this
term dies away very rapidly at a rate e —2%
per wavelength as |z| increases, In the

X 08 (kb + ot ); (24b)

where, A(k) = (a.2 b 4

o == tan—]( —
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TABLE 1
Case Date _fi”)u“ | p MR/ Wavelength
No. (time) km™ km~ v

1 5 March 1962 960 0-50 13-3 26-2
(00 Z) 7.3
4.4
2-8

2 6 December 1960 5:21 034 14:0 25-1
(12 Z) 10-0
5-9
3-9
3 21 January 1959 815 0-45 13-4 26.2
(12 Z) 8-3
4-9

3.
4 4 January 1959 79 0-44 12:5 62-8
(12 %) 10-8
56
35
5 14 December 1960 17:11 0-47 18:7 69-7
(“U Z) 10-6
5-6
36
2.6
1-9
6 26 December 1960 11-96 0-46 15:5 78-5
(122) 2
5-7
36
2-5

present paper we are primarily interested
in the wave set up by the mountain and
have, therefore, computed only ¢, and w, ,
The results will not, therefore, be strietly
valid near the mountain.

3.1. Determination of wave length — We
have approximated the observed f (z) pro-
file from 1 km (to avoid friction layer) to
the tropospheric wind maximum by an
exponential function. According to Palm
and Foldvik (1960) this representation will
give a good approximation of the solution
obtained when the real distribution of f (z) at
higher levels is considered provided the follow-
ing conditions are satisfied —

(?) fy = 2-5 f; where f, and f, are the
maximum and minimum values of f (z). This
condition is satisfied for all the cases
have examined.

wie

(17) Exclusion of wave numbers for which
2 < /i from the solution of the equation
I (B*42) = 0. In other words, wave-
lengths greater than the critical wavelength
L, determined by the minimum value of
[ (2) should not be considered,

However, Foldvik (1962) has shown that
the one-layer model gives good approxima-
tion even in the region IP<f,, i.e., even
for wavelengths greater than the ecritical
wavelength. In the cases studied by him
waves have actually been observed of lengths
near to the computed long waves for which
k* < fi. This is also in consistence with
the results of investigation of Eliassen and

alm (1961) in the reflection of wave energy
m atmosphere. They found that in the
region k*> fy almost all the energy - was
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Fig. 3 (a). Wind and temperature of Santacruz
of 5 March 1962 (00Z)

reflected from above and that even in
the region A* < f; a considerable
amount of energy was reflected. Thus for
the 3-layer model described by Palm and
Foldvik (1960) reflected part of wave energy
is 82 per cent for k* = f; = 0-05/km?
(Ls=26 km) and 65 per cent when k=0-1/
km (L=63 km). The solution for which
k* < f, should, therefore, not be rejected
but be considered as an approximation to
the correct wavelength. Accordingly, we
have taken all the solutions of the equation
(22) irrespective of whether &% > or < f,.
It is seen that in all the cases except one, the
computed longer waves are greater than their
corresponding critical wavelengths and it is
found that the Western Ghats being very

2 3 4 3
f(z)inKm

Fig. 8(b). f(z) profile of 5 March 1962 (00Z)

broad, it is only these waves that give recog-
nisable displacement and vertical velocity
and the shorter waves do not practically give
any effect.

3.2. Numerical computation — For selecting
cases for numerical study of mountain waves
over Western Ghats one is handicapped with
having no observation on mountain wave
phenomenon. Accordingly, from an exa-
mination of wind and temperature data we
have taken few cases that are normally
believed to be favourable for the occurrence
of mountain-waves. For the undisturbed
wind and temperature we have taken the data
of Santacruz which is a sea level station on
the wind-ward side of the Western Ghats af
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Fig. 4(a). Wind and temperature of Sanfacruz
of 6 December 1960 (12Z)

a distance of 64 km from the peak., The
wind and temperature distribution and the
corresponding f (z) distribution are given in
Figs. 3—8. The actual distribution of wind
and temperature are represented by cireles
and crosses respectively and the corres-
ponding smoothed distributions by dashed
lines and continuous lines respectively. The
actual distribution of f (2) is shown by erosses
and continuous line shows exponential appro-
ximation. The parameters f,, A, Be MAf2
and computed wave length L for the different
cases are shown in Table 1. We now discuss
the different cases,

I (2) profile in Fig. 3 (h).
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Fig. 4 (b). f(2) profile of 6 December 18680 (00Z)

Case No. I — 3 Mavel, 1962 (00 GMT)
The wind and temperature distributions
are given in Fig, 3(a) and the corresponding
I The wind increases
linearly from 2-7 m/sec to 25 m/sec at 10-km
level with an average wind shear of 2-2
m/see/km. The atmosphere is stable through-
out.  But the stability is more at low
levels than at higher levels. The lapse rate
increases from 3-8°C/km at 1-km level to
9-1°C/km at 10 km. The exponential re-
presentation of f(z) is good except at
1-km level where the difference is of the
order of 2-5/km?® The lee-wave equation
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Fig. 5 (a). Wind and femperature of Santacruz
of 21 January 1959 (12Z)

gives four roots, the corresponding wave-
lengths being 26:2, 7-8, 44 and 2-8 km.
The longest wavelength is the only impor-
tant wave for the Western Ghats, The other
short waves do not contribute to the wave
motion. The variation of amplitude of
streamline displacement with height for
this wave is represented in Fig. 9 (a) and
the variation of vertical velocity with height
is shown in Fig. 10 (a). We have represented
these variations up to 8 km for, the solution
as mentioned earlier, may not be strictly
valid above this level. It is seen that there
are three reversal of phases below 8 km
indicating the presence of at least three
cellular motions below the motion of ex-
ternal type above. The maximum ampli-

MOUNTAIN WAVES ON WESTERN GHATS

-2
fez)in Km

Fig. 5_(b). f(z) profile of 21 January 1959 (12Z)

tude is 100 m and the maximum vertical
velocity is 0-4 m/sec at a height of 8 km.
Values above 10 km could not be computed
because of lack of data.

Case No.II—6 December 1960 (12 GMT)
—TFigs. 4a, 4b

The wind speed increases from 5 m/sec
to 47 m/sec at 14 km. The shear increases
with height and above 7 km it is of the
order of 4 to 5 m/sec/km. TLapse rate al-
through is of the order of 6-25°C/km. The
exponential approximation of f(z) is good
above 2 km, The lee-wave equation gives
four roots, the corresponding wavelengths
being 25-1, 10:0, 5-9 and 3-9 km. The
longest wave length is the only important




-3

—
i

a
o

\ o
N\ ’
’
| \\ 7/
\/
~ ar- _b:\
E /
L"4 [ ¥l N
~ 7
-
x & 2 // A
ot ’ oY
g B Qs %
ol \%
4— Y, 23
£+
’o %)
/
T
2‘_ X
o/ *
o |/
|
ol g 1| 11 1 == ke
200 220 240 260 280 300
TEMPERATURE (°A )
e o e = | i . - 1 |
o 5 0 15 20 25 30 35 40 45 S50

WIND SPEED(M/Sec)

Fig. 6(a). Wind and temperature of Santacruz
of 4 January 1959 (12Z,

one in our case. There are three reversal
of phases within 8 km. (Figs, 9a, 10a). Tt
will be seen from these ficures that within
8 km  the maximuon amplitude is 50 m
and maximuwm vertical velocity is 02
m/sec. The vertical \'l']n(‘ii}‘_ Liowever, s
maximum at 12 km and the value is 04
m/sec,

Case No. I1I — 21 Janvary 1959 (12 GIT)
— Figs. 5a, bbh

The wind speed increases from 5 m see
to 44 m/sec at 12 km, Below 6 ko the wind
shear is less than 3 m sec'km. The shear
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Fig. 8(b). (.} profile of & January 1859 (12Z)

inereases gradually and is of the order of
Dto 6 10 km.
The temperature lapse rate above 2 km is
about 6°C'km and
from 4 to 5°C km. The exponential re-
presentation of f(z) 18 good except at 1 km,
The lee-wave equation gives four roots,
the corresponding  wavelengths heing 26-2,
S+3, 49 and 3-1 Tkm.

leneth only is important

m'see’km in the levels 8

helow 2 km it varies

'l‘llt' !llll_'_"t'\f wWave-
l From Figs. 9{a)
and 10(a) it will be seen that the maximum
;lllLEl'iTTltlv il veloeity

vertical within 8

and 0-5 m see respectively,
The vertical veloeity within 12 kn

mion at 10 :.‘:!. tie

km oare 1200m

1S 1Maxi

value heing 0-6 m see.
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Fig. 7(a). Wind and temperature of Santacruz
of 14 December 1960 (00Z)
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Case No. IV —4 January 1959 (12 GMT)
—Figs. 6a, 6b

The wind speed increases from 4-1 m/sec
to 49 m/sec at 14 Jan. The wind shear
above 3 km varies from 3 to 4 m/sec/km,
The lapse rate is of the order of 5°Ckm up
to 6 km above which it 18 of the order of
6°C/km.  The exponential representation
of f(z) is fairly good except at 1 km. The
lee-wave equation gives four solutions, the
corresponding wavelengths heing 62-8, 10-8,
5-6 and 35 km. The longest wavelength
only is important. It is seen from Figs.
9(b) and 10(b) that within 8 lkm there are three
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=3

Fig. 9(b)
Figs. 9 (a) and 9 (b). Variation of amplitude [for «sin (kr-a@)=1] with height

reversal of phases indicating at least three
cellular motions below the motion of ex-
ternal type above. The amplitude of the
displacement of streamline is considerably
more. The maximum displacement is 1200 m
at 2 km (Fig. 9b) and maximum vertical velo-
city is 1-9 m/sec at 8 km (Fig. 10b). The
velocity increases still higher up and becomes
maximum at 15 km where the value is 4-8
m/sec.

Case No. V — I4 December 1960 (00 GMT)
— Figs. 7a, Th

The wind speed increases from 2:5 m/sec
to 45 m/sec at 13 km, Upto 7 km the wind
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Fig. 10(a)

Fig. 10(b)

Fig=. 10 (a) and 10 (b). Variation of vertical velocity | for cos (k- a)=1] with height

shear is of the order of 2 m/sec/km. Above
8 km the shear varies from 5 to 6 m/sec/km.
The lapse rate is of the order of 7°C/km.
The exponential approximation of f2)
is very good throughout. The Iee-wave
equation gives six-roots, the corresponding
wavelengths being 69-7, 10.6, 5-6, 3-6,
2:6and 1-9 km. Tho longest wave only is
mmportant. Figs. 9(b), 10(b) show that there are
four reversal of phases within 8 km. Within
8 km the maximum displacement is 600 m
at 6 km and the maximum vertical velo-
city 18 16 m/sec at 6 km. At higher levels
the velocity is more and maximum velocity
i8 52 m/sec at 14 km above which data
are not available.

Case No.VI — 26 December 1960 (12 GMT)
— Figs. 8a, 8b

The wind speed increases from 3 m/sec to
40 m/sec at 12 km. The wind decreases
thereafter to 30 m/sec at 15 km which we have
not considered for computation of f(2).
This will not affect the solution, as mentioned
earlier. The shear is small below 5 km but
in the layer 5-10 km the shear is of the order
of 4 to 5 m/sec/km. Temperature lapse
rate is about 7° C/km at low levels, Tn the
layer 5-9 km, the lapse rate is about 5°C//km.
The exponential representation of f(z) is
very good. The lee-wave equation gives
five roots, the corresponding wavelengths
being 785, 112, 5-7, 3-6 and 2:5 km. The
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Fig. 11(a). Variation of amplitude (for sin kz=1) with
height for second wave (£,=11"2 km) on 26 Decem-
ber 1960 for small mountain. T —a®b (0* %) with
b=—0-1 km and « having values 1, 1-5, 2 and 3 km

longest wavelength only is important.  With-
in 8 km, there are three reversal of phases,
the maximum displacement is 2200 m at 3
km and the maximum vertical veloeity is
1-3 m sec at 6 lkm (Figs. 9b, 10bh). .T]u-
velocity is more at higher levels and the
maximum value 5+7 m'sec oceurs at 15 km
above which value cannot be computed be-
cause of lack of data. The streamlines at
the levels 2, 4, 6 and 8 km for the longest
wave are shown in Fie. 13/a). The stream-
lines consisting of only one wave are sinu-
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Fig. 11(b). Variation of amplitude (for sin kz==1) with
height for third wave (£,=5'7 km) on 26 December
1960 for small mountain. T=«*h/(«* -a%) with
h=0'1 km and ¢—=1km

soidal.  The reversals of phases ave distinet
from the diagram. As the term which is
important near the mountain has not been
considered, the streamline pattern as shown
in this figure will not strietly be valid in the
\'i«'illil’}' of the mountain.

3.3. The shorter waves We have men-
tioned earlier that the shorter waves of
lengths bhelow 20 lan are not important,

This is, perhaps, due to the fact that Western

Ghats mountain is very broad. In order to
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Fig. 12(a). Variation of vertical velocity (for cos ki=
1) with height for the second wave (/,=11'2 km)
on 26 December 1960 for a small mountain.
C=a?b/(a*-{-«*) with =01 kmand e
having values 1, 1:5,2 and 3 km
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Fig. 13(a), Sireamlines at levels 2, 4, 6 and 8 km for
the longest wave L,=T8-5 km on 26
December 1960 (12Z)
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Fig. 12(b). Variation of vertical velocity (for cos iz
=1) with height for the third wave (L;=5"T km)

on 26 December 1960 for a small mountain.
C=u?/(a*+a*) with b=0-1 and =1 km
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Fig. 13(b). Streamlines at levels 2, 4, 6 and 8 km for
the two waves L,=78-5 km and L,=11-2 km on
26 December 1960 (12Z) for the superposed
ridge. {=a®/(a*+2*) with a= 8 km and

b=0-1 km on the Western Ghats
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examine the point in detail we consider the
second and third waves of 26 December
1960 (Case No. VI). These waves are of
lengths L,=11-2 km and L,=5'7 km res-
pectively. For these waves we have com-
puted the amplitudes and vertical velocities
for some narrow symmetrical ridges { =(a?)
(@* + a?), (b is the height of the ridge
and « is the half width). For wave length
11:2 km we have computed for four case,
viz., a=3-2,1:5 and 1 km and 5=0-1 km
and for wave length 5- 7 km we have comput-
ed for one case, viz.,, o =1 km, b=0-1 km.
The changes of amplitudes and vertical
velocities with height are given in Figs. 11(a),
11(b), 12(a), 12(b). It will be seen from these
diagrams that these amplitudes and vertical
velocities are not negligible.  For the wave-
length 11-2 km, there are three reversal of
phases (Figs. 11a, 12a) within 8 km indicat-
ing at least three cellular motions below the
motion of external type above. The maxi-
mum amplitude for this case is 65 m at 3 km
and the maximum vertical velocity is 0-36
m/sec at 7 km. For the third wave of
length 5-7 km there are two reversal of
phases (Figs. 11b, 12b) within 8 km. The
maximum amplitude is 37 m at 2 km and
the maximum vertical velocity is 028 m sce
at 4 km. It is thus elear that the shorter
waves which were found unimportant for a
broad mountain like Western Ghats give
appreciable displacements of streamlines
for narrow mountains.

In order to see how the streamlines will
look like when the first two waves (L;=78-5
km and L,=11-2 km) are superposed we
have superposed the narrow mountain
¢ =(a%) | (a® + 27), (a==3 km, b=0-1 km)
at the origin on the Western Ghats profile.
By this superposition the Western Ghats is
slightly changed. The peak which was at a
distance of 4 km from the origin now shifts
to the origin and the maximum height
mereases from 08 km to 0-87 km and the
rest of the profile is practically not changed,
The superposed streamline field (for the
waves only) for the new profile is given in
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Fig. 13(b). The contribution of the longest
wave L,=T78'5 km for the narrow ridge
{ = (a® b)/(a*+2?) is about one-tenth of the
contribution for the original Western Ghats
profile and the contribution of the second
wave Ly,=11'2 km due to the ridge
{=(a® b)/(a®+=?) is still less. A comparison of
this Fig. 13(b) with Fig. 13(a) will show that
the regular sinusoidal pattern of the stream-
line field is only slightly changed due to this
superposition.

4. Discussion of the results

We have seen that only the longer waves
are mmportant for the Western Ghats. So
our discussion will be only for these waves.
As will be seen from the Figs, 3—8 that the
cases studied are not such as to enable one
to discuss the effect of variation of tem-
perature distribution and of the wind
profile separately. For the comparative
discussion, we group together cases 1—3 in
group A and cases 46 in group B. Cases
1—3 in Group A have wavelengths 262, 25-1
and 26-2 km respectively.

Comparison of case 1 and case 3 shows that
up to 7 km both wind speed and stability
are slightly more in case 1 and that above 7
km they are less in case 1. It appears that
more wind speed and stability below and
less stability and less wind speed above are
so adjusted that the f (z) profile in two cases
are same giving same wavelength,

Comparison of cases 2 and 3 shows that
wind speed and wind shear is practically
same throughout for both. The tempera-
ture distribution is also more or less similar
with the result that the wavelengths are
near to each other. They differ by only
1-1 km, which is very small considering the
approximations made in computation.

(ases 4 — 6 in group B have the wavelengths
62-8, 69-8 and 78+5 km respectively.

Comparison of cases 4 and 5 shows that in
case 4, wind speed is more throughout. The
stability is same in both the cases up to 4
km above which stability is more in case 4.,
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It seems more wind speed and more stability
in case 4 were responsible for making the
wavelength shorter by 6-9 ki than case 5.

Comparison of case 4 and case 6 also leads
to the same inference.

Comparison of cases 5 and 6 is not easy.
The wind speed was same up to 3 km. The
wind speed was more up to 10 km in case 6.
But the wind shear is considerably more in
case 5 from 7 km above. The stability is
moz¢ at least up to 8 km in case 5. Perhaps
in this case the stability and the wind shear
rather than the wind speed played the domi-
nant role in determining the wavelengths.

It is difficult to compare the groups A and
B. But in general it appears both wind speed
and stability are more in group A than in
group B.

5. Conclusions

We can draw the following conclusions
from the present study —

(7) The air stream of winter season has
the favourable stable stratification for
producing mountain waves over the Western
Ghats.

(17) The Western Ghats being very broad
do not give appreciable amplitude for shorter
waves., Only the waves of lengths 25 km and
more are important.

(747) For these waves three or more ccllular
motions exist below the motion of external
type above.
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() Amplitude of waves increases with
wavelength, For waves of length 26 km
the maximum amplitude within 8 km is
120 m, whereas the amplitude ranges from
1200 to 2200 m for waves of lengths 62-8
to 78-5 km.

(v) In the range of wavelengths 25—78-5
km, the maximum vertical velocity increases
with wavelength. The maximum vertical
velocity for a wave of length 26-2 km is
0+6 m/sec, whereas for waves of lengths 62-8
to 78-5 km, the vertical velocity varies from
4-8to 5-6 m/sec.

(vi) The wvertical velocity has maximum
at a height which appears to increase with
wavelength.

It must, however, be recognised that the
one-layer model from which we have made
all the computations is not strictly valid at
higher levels, From which level the model
will not be valid is difficult to say.
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