551.524.3: 551.581 (54)

Seasonal Oscillations of daily mean Maximum Temperature in India and neighbourhood

A. K. BANERJEE and K. K. SHARMA Regional Meteorological Centre, Nagpur (Received 4 January 1965)

ABSTRACT. The mean daily maximum temperatures of 124 selected observatories have been subjected to harmonic analysis. The annual oscillations are observed to predominate over the other harmonic oscillations. The amplitudes of annual oscillation are highest in northwest of India and least over the west coast. Half-yearly oscillation amplitudes are highest over central India more towards northern latitudes. The close proximity of the dates of onset of SW monsoon and amplitude maxima of the annual oscillations over a major part in northwest India and adjoining area is striking.

The regression coefficients of the first and second harmonic amplitude with latitude, longitude and elevation have

been worked out and discussed.

1. Introduction

The predominant features of Indian rainfall as revealed by Fourier Analysis have been presented by Lettau and White (1964). Earlier, Jagannathan and Khambete (1963) had discussed the important characteristics of the seasonal oscillations of the diurnal range of temperature in India and adjoining regions. In the present paper, the mean daily maximum temperatures at 124 stations in India and adjoining regions have been subjected to harmonic analysis and study on the same lines as was done by Jagannathan (1957). The data have been taken from the Climatological Tables of Observatories in India (1953). The stations have been grouped into four regions and the mean values of latitude, longitude and elevation are given in Table 1 (Also see Fig. 2, dotted lines). In Region I, the stations are not so uniformly distributed, therefore, the results in this region (values of coefficients) may not be so representative.

2. Analysis

In the present study, the first five harmonic components of the variations of mean daily maximum temperature have been obtained.

$$A_t = A_0 + \sum_{n=1}^5 A_n \cos\left(\frac{2\pi nt}{T} - \phi_n\right)$$

where,

 $A_t = \text{Resultant amplitude of the wave at time}$ t reckoned from t = 0 as 15 January

 $A_0 = \text{Mean amplitude (Annual mean)}$

 $A_n = \text{Amplitude of the } n^{\text{th}} \text{ harmonic}$

 ϕ_n = Phase angle of the n^{th} harmonic

T = Periodic time, i.e., 12 months.

The first three harmonic components of the mean daily maximum temperature variations at Nagpur are illustrated in Fig. 1. The first and second harmonics with maximum amplitudes and their phases with dates of maxima are given in Table 2 for all the stations.

3. Discussion

3.1. Annual oscillation

The spatial distribution of the amplitude maxima in the annual oscillation and the corresponding dates of incidence of these maxima are shown in Figs. 2 and 3 respectively.

The amplitude of the first harmonic generally being predominant over all other harmonics, is a reflection of the main summer. It is seen from Fig. 2 that the amplitudes A are least over the coastal belts (particularly over the west coast) and gradually increase inland attaining very high values over the Kashmir area and adjoining West Pakistan and Baluchistan. It is seen from Aviation Climatological Tables (India met. Dep. 1944), that during summer season, except for a limited area in north India and adjoining places where the low cloud amount is less than 1/10th of the sky (shown in the inset of Fig. 3), the rest of India remains partly to fairly clouded.

The close resemblance in the run of the I.T.C.Z. (northern limit of SW monsoon), the isophase lines for 150° (i.e., 15 June) and 180° (i.e., 15 July), and the gradual shift of the area of least clouding from May to July is striking (shown in Fig. 3 and in its inset).

3.2. Relationship of the amplitudes of the annual oscillations with latitude, longitude and elevation

To examine the extent to which the amplitudes of the annual oscillation are dependent on latitude, longitude and elevation, the correlation coefficients, regression coefficients, and their standard errors along with multiple correlation coefficients are given in Tables 3(a) and 4 (a).

The origin of co-ordinates has been taken at 6°N and 65°E and mean sea level. The units for latitude and longitude are minutes and for altitude feet, Amplitudes are in °F.

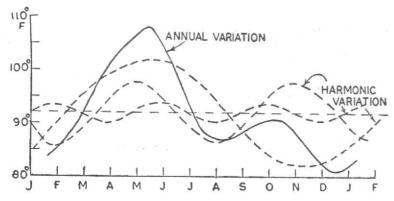


Fig. 1. Annual variations of mean daily maximum temperature and its first three harmonics at Nagpur

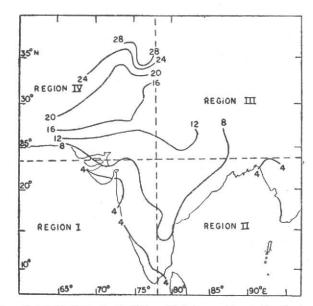


Fig. 2. Distribution of A_1 (°F) — First harmonic amplitudes in °F

TABLE 1

Region No.	Specification	Position of centroid			
	эрсегиенной	Latitude (N)	Longitude (E)	Elevation (ft)	
I	29 stations in the western half of the Peninsula, bounded in the north by the tropic of Cancer and in the east by $78^{\circ}\rm E$ meridian	17° 25′	73° 40′	1670	
II	32 stations in the eastern half of the Peninsula, bounded in the north by the tropic of Cancer and in the west by $78^{\circ}{\rm E}$ meridian	17° 46′	82° 00′	602	
Ш	32 stations in northeast India (including East Pakistan) to the north of tropic of Cancer and to the east of $78^\circ\mathrm{E}$ meridian	25° 41′	85° 14′	1175	
IV	31 stations in northwest India (including West Pakistan) to the north of tropic of Cancer and to the west of $78^\circ E$ meridian	29° 25′	73° 29′	2589	

TABLE 2

0	State	A_0		Annual oscill	ation		Half-yearly os	cillation
Serial No.	Station	(°F)	$\overline{A_1}$	φ	D_1	A_2	φ	d ₁ *
			1 114	REGION	TI.			
1	Bhuj	91 · 1	6.8	150	15 Jun	6.6	197	24 Ap
2	Jamnagar	89.4	5.9	155	20 Jun	5.1	220	5 Ma
3	Rajkot	92.9	6.4	135	30 may	0.8	162	6 Ap
4	Bhavnagar	93.5	6 · 7	137	2 Jun	5.6	202	26 Ap
5	Veraval	85.1	0.6	243	18 Sep	2.8	223	7 May
6	Surat	91.5	3.3	92	17 Apr	4.7	196	23 Ap
7	Ahmedabad	94.5	7.7	128	23 May	6.4	207	28 Ap
8	Akola	93.3	9.7	108	3 Мау	6.1	199	25 Ap
9	Bombay	86.8	1.1	158	23 Jun	$3 \cdot 1$	227	9 Ma
10	Indore	88 · 2	8.1	122	17 May	6.5	205	28 Ap
11	Mahabaleshwar	74.5	7.3	58	13 Mar	5.0	211	1 Ma
12	Ratnagiri	86.9	1.5	20	5 Feb	2.9	233	12 ma
13	Marmagoa	84.8	1.5	26	11 Feb	2.0	276	4 Ju
14	Ahmednagar	89.7	6.9	103	28 Apr	4.9	192	21 Ar
15	Poona	89.4	6.7	79	4 Apr	5.4	190	28 Ap
16	Belgaum	84.7	7.5	63	18 Mar	4.9	183	16 Ap
17	Aurangabad	90.4	7.3	103	28 Apr	5.3	198	24 Ap
18	Bangalore	84.0	5.6	98	23 Apr	3.3	164	7 Ap
19	Mangalore	87.3	3.1	41	26 Feb	1.6	215	3 Ma
20	Cochin	85.5	2.9	44	29 Feb	1.1	210	1 Ma
21	Trivandrum	85.7	2.4	50	5 Mar	1.0	159	5 Ap
22	Mercara	76.1	6.1	50	5 Mar	3.4	171	10 Ar
23	Ootacamund	66.0	5.1	74	29 Mar	2.2	172	12 Ap
24	Kodaikanal	63.8	3.0	100	25 Apr	1.5	203	26 Ap
25	Hassan	83.8	5.7	67	23 Mar	3.8	166	8 Ap
26	Bellary	92.9	6.9	105	30 Apr	4.9	171	10 Ap
27	Amraoti	92.0	8.7	110	5 May	6.1	200	25 Ap
28	Bidar	88.6	8.1	109	4 May	4.2	195	22 Ap
29	Hoshangabad	89 8	9.1	120	15 May	6.9	206	28 Ap
				REGION	П			
1	Jessore	87.6	6.9	145	10 Jun	4.4	187	18 Ap
2	Calcutta	88.5	4.7	139	4 Jun	4.3	173	12 Ap
3	Balasore	88.7	6.5	134	30 May	3.9	180	15 Ap
4	Puri	86 1	3.9	171	6 Jul	2.3	174	12 Ap
5	Cuttuck	90.9	6.2	130	25 May	4.7	179	15 Ap
6	Gopalpur	86.3	4.1	163	28 Jun	2.6	211	1 Ma
7	Jabalpur	88.3	9.9	132	27 May	6.7	203	26 Ap
8	Nagpur	92.1	9.9	117	12 May	5.9	204	27 Ap
9	Raipur	90.3	9.4	120	15 May	6.2	199	25 Ap
10	Chanda	92.6	9.5	113	8 May	5.8	197	24 Ap
11	Nizamabad	92.0	8.7	103	28 Apr	4.3	199	25 Ap
12	Hyderabad (Begumpet)	90.4	7.7	103	28 Apr	4.4	195	22 Ap
13	Negapatam	90.0	7.7	162	27 Jun	0.8	200	25 Ap
14	Madras	92.2	7.5	143	8 Jun	1.1	194	22 Ap
15	Cuddapah	95.3	8.1	123	18 May	2.7	166	8 Ap
16	Kurnool	93.7	7.5	107	2 May	3.6	184	17 Ap
17	Nellore	.93.4	8.7	144	9 Jun	2.0	181	15 Ap
18	Masulipatam	90.1	6.9	146	11 Jun	2.1	208	30 Ma
19	Cocanada	89.3	6.4	128	23 May	3.1	187	18 Ap
20	Vizagapatnam	86.9	4.9	159	24 Jun	1.8	181	15 Ap
21	Pachmarhi	80.1	8.7	120	15 May	6.1	203	26 Ap

 D_1 =Date of maximum of annual oscillation, d_1 =Date of maximum of half-yearly oscillation * Second maximum occurs after six months

TABLE 2 (contd)

Serial No.	Station	A_0		Annual oscillation		Half-yearly oscillation		
		(°F)	A_1	ø .	D_1	A_2	φ	d_1^*
				REGION	II — contd			
22	Akyab	85.5	$2 \cdot 4$	131	26 May	3.4	176	13 Ap
23	Colombo	$85 \cdot 3$	1.4	67	22 Mar	0.5	213	2 Ma
24	Chaibasa	89.7	$9 \cdot 3$	141	6 Jun	5.6	189	21 Ar
25	Gondia	90.7	9.4	117	12 May	6.2	206	28 A _I
26	Sironcha	93-1	9.0	107	2 May	4.6	199	24 A _I
27	Pendra	84-4	9.6	132	27 May	5.6	201	25 Ar
28	Jagdalpur	87.6	8-1	107	2 May	5.1	186	18 Ar
29	Madura	92.6	6.3	143	8 Jun	1.9	147	29 Ma
30	Cuddalore	88-3	7.7	161	26 Jun	0.7	220	5 Ma
31	Rentichintala	$94 \cdot 3$	7 - 7	123	18 May	3.6	180	15 Ar
32	Calingapatam	88.3	5.3	145	10 Jun	2.4	159	5 Ap
				REGION	V 111			
1	Dibrugarh	$81 \cdot 2$	7.7	188	23 Jul	1.8	178	14 Ap
2	Tezpur	83.7	$7 \cdot 3$	182	17 Jul	2.4	157	4 A _I
3	Silchar	86.1	5.2	180	15 Jul	2.3	167	9 Ap
4	Bogra	86.5	6.9	151	16 Jun	3.6	227	9 Ma
5	Jalpaiguri	84.6	6-6	170	5 Jul	3.3	175	13 A ₁
6	Hazaribagh	84.6	10.3	133	28 May	5.8	193	21 A _I
7	Daltonganj	89.4	11.7	213	18 Aug	6.3	201	25 Ap
8	Patna	87.6	10-6	150	15 Jun	6.1	189	20 Ap
9	Gorakhpur	87.9	10.9	151	16 Jun	6.3	189	20 Ap
10	Banaras	89-6	11.9	147	12 Jun	6.7	196	23 Ap
11	Allahabad	90.1	12.3	146	13 Jun	6.3	203	26 Ar
12	Lucknow	89.7	12.5	147	12 Jun	6.2	203	26 Ap
13	Agra	90.5	12.9	157	22 Jun	7.1	204	27 Ap
14	Bareilley	87.6	12.7	157	22 Jun	6.5	199	25 Ap
15	Dehra Dun	81 · 4	12.3	160	25 Jun	5.6	205	27 Ap
16	Nowgong	89.7	12.4	144	9 Jun	7.2	201	25 Ap
17	Cherrapunji	63.9	5.7	182	17 Jul	2.9	175	13 Ap
18	Gauhati	84.7	7 · 1	100	25 Apr	1.5	203	26 Ap
19	Shillong	69.9	7.3	171	6 Jul	2.7	160	5 Ap
20	Asansol	89.7	9.3	137	2 Jun	5-8	181	15 Ap
21	Satna	88.4	11.3	140	5 Jun	6.9	204	27 Ap
22	Comilla	86.4	$4 \cdot 7$	151	16 Jun	3.8	169	9 Ap
23	Dharbanga	86.9	8.5	153	18 Jun	5.3	185	18 Ap
24	Gaya	89.0	$12 \cdot 2$	145	10 Jun	4.6	196	22 Ap
25	Purnea	86.7	8.0	155	20 Jun	5.0	177	13 Ap
26	Naya Dumka	87.9	9.0	142	7 Jun	5.8	183	18 Ap
27	Mainpuri	90.6	12.8	155	20 Jun	7.1	205	27 Ap
28	Saugor	87.9	9.7	132	27 May	7.7	193	21 Ap
29	Katmandu	77.7	9.8	168	3 Jul	4.0	174	12 Ap
30	Mukteshwar	62.0	10.7	172	7 Jul	3.9	208	13 Ap
31	Gonda	88.7	10.8	151	16 Jun	5.1	182	16 Ap
32	Kanpur	89.0	12.8	152	17 Jun	7.0	202	26 Ap
02				REGION				ao mp.
1	Delhi	88.8	13.8	165	30 Jun	6.6	203	26 Apr
2	Ambala	88.2	14.9	167	2 Jul	6.3	203	26 Ap
3	Ludhiana	88.1	16.7	169	4 Jul	6.2	202	26 Ap
4	Lahore	89.2	16.7	174	9 Jul	5.6	201	25 Ap
5	Sialkot	86.9	17.1	173	8 Jul	5.7	209	1 Ma
6	Rawalpindi	84.0	18.5	178	13 Jul	4.5	215	3 Ma
	Multan	90.1	17.7	173	8 Jul	5.1	197	24 Ap
,	ALA MA VIVIA	5.5			- 2 064	~ .	201	** VI

 D_1 =Date of maximum of annual oscillation, d_1 =Date of maximum of half-yearly oscillation,

* Second maximum occurs after six months

TABLE 2 (contd)

	Station	A_0	Annual oscillation			Half-yearly oscillation		
Serial No.		(°F)	\bigcap_{A_1}	φ	D_1	A_2	φ	d ₁ *
				REGION	IV—contd		-7	
8	Dras	48.2	29.5	192	27 Jul	0.9	173	12 Apr
9	Leh	54.9	23.0	186	21 Jul	$2 \cdot 3$	159	5 Apr
10	Gilgit	72.2	24.0	182	17 Jul	1.5	133	22 Mai
11	Drosh	72.2	25.3	188	23 Jul	1.0	160	5 Apr
12	Kargil	59.3	29.7	190	25 Jul	2.5	184	17 Apr
13	Peshawar	85.0	20.1	180	15 Jul	2.5	222	6 Ma
14	Quetta	73.8	21.6	184	19 Jul	1.4	185	18 Apr
15	Jacobabad	95.5	18.3	171	6 Jul	5.1	201	25 Apr
16	Kalat	72.1	20.8	183	18 Jul	0.9	201	25 Ap
17	Lyallpur	88.7	17.0	181	16 Jul	4.8	202	26 Ap
18	Manora	84.1	5.7	181	16 Jul	2.9	220	5 Ma
19	Fortsandeman	79.7	17.7	173	8 Jul	5.1	197	24 Ap
20	Khanpur	93.6	17.2	173	8 Jul	5.0	202	26 Ap
21	Kabul	67.7	26.3	189	24 Jul	2.3	191	20 Ap
22	Sriganganagar	90.8	17.8	175	10 Jul	5.7	205	28 Ap
23	Bikaner	92.0	16.1	158	23 Jun	6.1	203	26 Ap
24	Jodhpur	91.7	11.2	160	25 Jun	6.4	205	28 Ap
25	Jaipur	89.9	12.1	160	25 Jun	6.9	206	28 Ap
26	Aimer	88.2	9.8	152	17 Jun	6.5	204	27 Ap
27	Kotah	91.9	11.0	148	13 Jun	6.8	207	28 Ap
28	Deesa	94.4	7.3	140	5 Jun	7.1	210	1 Ma
28	Simla	62.4	12.5	175	10 Jun	3.7	214	2 Ma
30	Mt. Abu	75.8	6.7	143	8 Jun	6.3	210	1 Ma
31	Guna	88-9	9.9	136	1 May	6.9	211	1 Ma

 D_1 =Date of maximum of annual oscillation, d_1 =Date of maximum of half-yearly oscillation, * Second maximum occurs after six months

TABLE 3

Correlation coefficients between the amplitudes of (a) the annual oscillation A_1 , (b) the half-yearly oscillation A_2 , of mean daily maximum temperature with latitude, longitude and elevation

D .	Correlation coefficient with					
Region	Latitude	Longitude	Elevation			
	(a)					
I	•4242	•3081	·1878			
п	•2531	 ⋅5413	•5765			
ш	•2779	8592	 ∙0487			
IV	•8418 —·0596		•5738			
	(b)					
I	· 6 368	0479	 ⋅1308			
11	-8117	•0208	•6621			
m	— ·1089	8570	2133			
IV	 ⋅6385	•3608	6452			

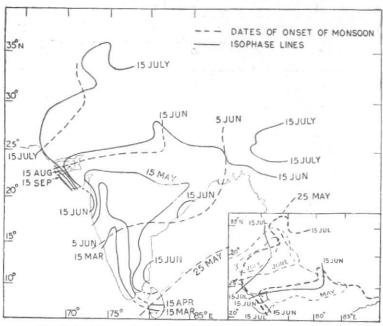


Fig. 3. First harmonic — Dates of incidence of annual maximum

Inset

- Thin dotted lines represent areas where low clouding (in the afternoon) is 1/10 or less of the sky in the respective month indicated
- Thick lines (continuous) represent I.T.C.Z. (northern limit of monsoon)
- 3. Thick dotted lines are the iso-phase curves of annual maxima (A_1) for 15 June and 15 July

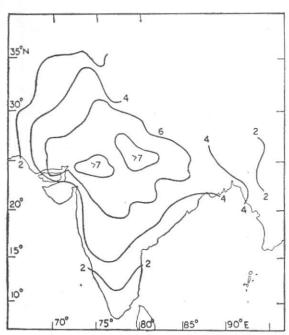


Fig. 4. Distribution of A_2 — Second harmonic in ${}^{\circ}{\bf F}$

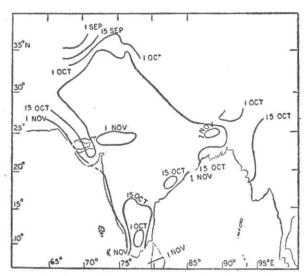


Fig. 5. Second harmonic — Dates of incidence of half- yearly maxim a

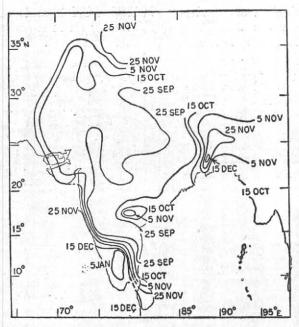


Fig. 6. Third harmonic - Dates of incidence of 4-monthly maxima

TABLE 4 Regression coefficients of the amplitudes of (a) the annual oscillation A_1 , (b) the half-yearly oscillation, of mean daily maximum temperature with latitude, longitude and elevation

		Partia	l regression co	efficients and	standard error	s	Multiple
Region	Latitude R.C. (S.E.)		Longitude		Elevation		correlation
			R.C.	(S.E.)	R.C.	(S.E.)	
		Mer W	(a)				
I	.0087	(-0010)	.0119	(.0025)	.00032	(.0002)	.83
II	.0036	(.0008)	0053	(.0016)	·00007	(.0001)	.79
III	.0010	(.0018)	0074	(.0031)	00002	(-0004)	.88
IV	.0255	(.0014)	0044	(.0029)	0001	(.0003)	.92
			(b)				
1	.0068	(.0001)	.0057	(.0004)	-00007	(-0002)	-89
II	.0035	(.0003)	0012	(.0003)	$\cdot 00042$	(.0003)	-87
III	0088	(.0007)	0043	(.0002)	— ⋅000005	(.00004)	.91
1V	- ⋅0092	(.000€)	.0065	(.0005)	00031	(.00036)	.90

The important features brought out by regression coefficient are —

- (i) Elevation has no effect on the amplitude A,
- (ii) The amplitudes increase northwards at the rate of 6°F for 10° of latitude. In Region III the value is insignificant,
- (iii) The amplitudes increase eastwards in Region I (which comprises of the west coast of the Peninsula), decrease eastwards in Regions II ad III and in Region IV, there appears to be no dependence with longitude.

3.3. Half-yearly oscillation

The amplitudes and phases of the half-yearly oscillations are shown in Figs. 4 and 5 respectively. It is seen that the maximum amplitudes occur over a limited area in central India during October and November.

3.4. Relationship of the half-yearly amplitude with latitude, longitude and elevation

The correlation coefficients, regression coefficients and their regression errors and multiple correlation coefficients of half-yearly amplitude A with latitude, longitude and elevation are given in Tables 3 (b) and 4 (b).

Here also, like the annual oscillation amplitude, the elevation has no effect on the amplitude except in Region IV where the amplitude decreases upwards at the rate of $0.3^{\circ}F$ per 1000 ft. Over the Peninsula, the amplitudes increase northwards at the rate of $3^{\circ}F$ for every 10° of latitude, while over north India they decrease at the rate of $5^{\circ}F$ in Regions III and IV. In the western half of the Peninsula, the amplitudes increase towards east at the rate of $3^{\circ}F$ whereas in the eastern half they increase at the rate of only $1^{\circ}F$ towards west. There is an increase at the rate of about $2^{\circ}F$

in Region III towards the west, while Region IV records an increase at the rate of about 4°F from west to east.

The third harmonic amplitudes are small in magnitude (all of the order of 1°F). The iso-phase lines of the third harmonic wave (Fig. 6) has a well marked and narrow nodal zone in the southern parts of India, which may perhaps have some bearing on the orographic features of that region. Such nodal zones were also observed by Lettau and White (loc. cit.) in the third harmonic phase diagram for rainfall analysis of India.

REFERENCES

Jagannathan, P.	1957	Indian J. Met. Geophys., 8, 2, pp. 155-168.
Jagannathan, P. and (Mrs.) Khambete, N. N.	1963	Ibid., 14, 4, pp. 389-402.
Lettau, K. and White, F.	1964	1bid., 15, 1, pp. 27-38.