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On the propagation of spherical waves
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ABSTRACT. Theory of calculating the displacement in a general viscoelastic medium, generated by an arbitrary
pressure applied on the surface of a spherical cavity have been developed. In particular, three types of pressures
have been considered and the corresponding displacements in Maxwell as well as Voigt type viscoelastic media have
been derived. As special cases, the results of earlier authors in elastic medium have been deduced and compared. The re-
sults obtained have been discussed.

1. Introduection

Spherical wave propagation in an elastic medium was studied by various authors (Jeffreys
1931, Sharpe 1942 and Blanke 1952). It is quite well known that carth is not a perfect -elastic
body. A wide variety of earth materials such as silts, clays, sands and shales do not show perfect
elastic behaviour under any kind of loading. The non-elastic behaviour of the earth results in
attenuation of seismic signals with distance and attenuation of free oscillations with time. Although
the effect of non-elastic behaviour is relatively small for earthquake waves, but quite pronounced
for explosion generated high frequency waves (Ewing, Jardetzky and Press 1957).

In this paper we have studied the problem of wave propagation when different types of pres-
sures were applied on the surface of a spherical cavity in a general viscoelastic medium. Mattice
and Lieber (1954) and Chakrabarty (1961) considered this problem in Voigt type viscoelastic
medium. Horton (1959) argued that Voigt solid is not a satisfactory representation of the elastic
properties of the earth and he proposed a modification of Voigt solid. Since no satisfactory model
representing the viscoelastic behaviour of earth for all frequencies is available, it is felt necessary
to study the problem in a general viscoelastic medium. Detailed analysis of the problem in
Maxwell as well as Voigt media has been presented. As special cases the results of Blanke
(1952) and Jeffreys (1931) in elastic medium have been deduced.

2. Equation of motion and boundary condition
The stress-strain relations in a general viscoelastic medium are given by—
PSu(t) = 20 eu(l) 1)
in case of pure shear stress and
Po@) = 3Q <) @)

in case of pressure-volume changes, where P, @, P’ and ' are operators given by —
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Po =Py = 1. Stress oy (¢) and strain ey (¢) are

o = Su@®) + duo(l), | ,
€ = ey (1), + Odmel(d (3)
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where,
U auy
ar = Mo 4 22, .
3%y Tk
o = %oy + op + 033),
€ = %(511 -+ €92 -+ 533) s
-

w (1;, 1y, U ) being the displacement vector.

Using (1), (2) and (3) the equatikon of motion is given by (Newman 1951, Alfrey and Gurnee 1956)

, 3247 . 4 Al g
I’P(p Stg) = V.V(EP’Q + PQ)u —~ VXV XPQu (4)

In the further analysis spherical coordinates (r, 6, ¢) with origin at the centre of cavity will be used.
The boundary condition is —
= P(t) (6)

— aﬁ‘

=0

‘¢’ being the radius of the cavity. Assuming the medium to be homogeneous, isotropic and -infinite,
the boundary condition shows that the motion is spherically symmetrical. The radial displacement
u, may be supposed a —

uw — 2%
ar
The equation of motion (4) then becomes —
, P(rg) 1 (4, ) 92 (rd)
v SR - (e e ) B ®

3. Solution
Taking
1 .
$ =) exp (—iwt)

the equation (6) becomes —

w? Z_’pj(»«’[w)j ij'(—iw)j
Ffe _ 0 0

12 » m n

‘}T[%Zopj'(“""”j qu(—m)" -’rim‘(-—iw)” ”qu"‘“"“”j |

fr) = exp [ LioXr]

JFe) (7

so that,

where,
m m h %

Z?j(~?7w)j ij'(-—iw)j
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L —‘;Z g(—iw)’ /imww)w :Zq,-'(—-m)j / mz P (—iw)’

Considering u, vanishes when 7 is infinite, the solution of (6) is —

2

b= oxp [~ (r—a)] exp [—iw{ t—B(r—a)}]

(7a)
where,
Y= olmX]|,
B = ReX

The sum of the right hand side of (7) multiplied by functions independent of r and ¢ also remains solution
of (6). Thus —

¢ = 27” f fA(w P(€) exp [ —7 (r —a)] exp [ —iw{t—B (r—a)— & }] dwdé 8)
The boundary condition (5) can be written as —
—on| = PO W
= ? P(w) exp (—iwt) do
1 cor .
= f [ #®) osp 1—io (¢~ dwaz ©)
where,
P(w) = 1;; f P(£) exp (iwf) df
Using (1) and (2) we note that—
oo & o (dy, ,(du | 2,
pPp Opp — g PQ( dr - “"“) -+ Q ( —+ ‘”7;““) (10)

Hence using (10) and (8), the boundary condition (9) gives —

1 4; m , . . i ) . r 3 3y 3 5 : o
o f f A(w) ['gZﬁ’j(—zw)J Egj(._my i:ﬁ + 1w g Y 2By wrp )

~0 =0

d tTeT T T
+§% —iw) Zq (—io)? {2 2B P 2 exp (it} o
0
= —-;}f f [2%“*’“” im——ew) | P exp i (1~ ) do
L4 |

0



556 S, N. BHATTACHARYA axp 8 N. CHATTERJEE

which gives—

. —1
Alw) = z o) | T i , .]]r ]
gj( e |1 4 1w f l ' 4 Og,——zw) O%(M(Lw) ] Y2 2wfY 2B
4 —L 5 ey~ s — - — r
m i@ a? a* ‘ |3 m ;oo a a @ |
Z pi(—iw)” | | Zp(—iw) Zpf(—iw) 1
L J ot v L J
(11)

Substituting A(w) from (11) in (8) the expression for the displacement 'pnt,entiai ¢ for a general

viscoelastic medium can be obtained.

We shall consider three types pressures at the surface of the cavity »r = a.

Case 1
P) = Pyexp (—Xt) , 150
= 0 , t<<O0 ‘ (12
Then (8) gives —
¢ = 217)::. f A(w) exp [—Y(r—a)] oxp [—iw {{—B(r—a)}] dw f exp { i (w |- idg)¢ } dé
- 00 » 0
P [ Aw )
:_...?2172 Wf >w/~(1— 2,)‘0 exp [—7Y(r—a)] exp [ —tw {{—B(r—a)}]do (13)
Case 11
Py = Pyt exp (— ) , 150
= 0 , 1<0 (14)
Then, -
= —2- f A(w) exp [—7 (r—a)] exp [—1w {tF«B(r-—m)ﬂ dw f §>exp {i(w+12,) €} d¢
-0 1] -
2W f , 0xp [—7Y(r—a)] exp [—iw {{—B(r—a)}] do (15)
Case 111
| Po = Pody) - (16)
Then,
~ Do [ ) o [y O—o o [—io —p—aMldo )

4, Particular models

Tn this section we shall consider displacement pdtential and displééeinent,A,in Maxwell and Voigt
media.
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4.1, Mazwell medium
Here the operators P, @, P’ and @ are—

- 3
P == L ’ = —
i + at ¢ =¢ 3¢
G 3 3
P = o 9 o 9
7 + at ¢ a¢
Hence X is given by —
2 = P
X 4 —Gio — G
3@ T
— =W - = lw
Y] 1
= P
1 "1
Colir i) e (1)
3 nw 7w
~ P , neglecting higher orders of G/y and G'['
Fara)- (L@ @ |
s0r6) =555 + )
o 1 —
@2
w

! 7
1 7 d2 T3 1 i
“?[1“3 02] ?[1-}-; 2¢?
Thus,
1
F=3 (182)
and
a2
Y=o (18b)
A(w) isTgiven-given by, |
—1
A(w) = g ; 7
ol L e LT
E__z‘w Ia?» a? a? +<3,(_’____wa - —iw ia e @ ¢
J L ]
— — 1w
. G\[(1 14 ) Y - y2 2iwBY w? B2
— —— e c— e 2 2 e —
4G (Zw+v))(a3 -+ P a2)+p(c o) —{—d)(a ~ - )
e 1
NN AY 46 (1 &
© +(‘;w; T )"" '7(;% + "2?;)

where higher orders of Gfn, G'[v', Gla+/y lave been neglected.
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Hence;
a 1
A(w) = — : : 1
@ =7 o (—id, — B To—(—id; + B)] (19)
where,
R
17 acp c?

4G [ 1 2 26 d2\27%
By = [T(—cﬁ T 2¢3a ) B (acp T —Cg) ]
We shall assume B, to be real positive quantity so that both the singularities of 4(w) lie in the lower
half of the real axis in the complex w-plane. In the case when B; is imaginary we have Im 4, > Im B,

and two singularities still lie in the lower half, but on the imaginary axis. Hence the following results can
be easily evaluated for the latter case by supressing B, and giving a new value to 4.

Case I

Substituting (19) in (13) the displacement potential ¢ for the pressure prescribed in (12) at the
surface of the cavity is given by —

. d? 3
1 Pya exp [ iy (r— “)] J exp [ —iwr] do
- (

b= Gmpr o B [0 — (—idy —B)] [0—(—ids + Bl

(20)

Where, r=1t— (r—a)/c. When >0 , performing integration of (18)in the complex w-plane

along a contour C consisting of,
(¢) real axis from o= 4R to w=—R
(77) lower half of the semi-circle |w| = R asshown in Fig. 1(p. 562), we get —

exp [—twr]dw
(o + dg) [w‘—(“'iA1“B1 )] [w“—(““?;Al + Bl)]

R
:I exp [ —iwr]| dow o
4 @+ id) [o—(=idy— By} [o—(—idy -+ B)] :

. fr exp [—1+R exp (¢0)] iR exp (:0) df
J TEop (60) + ] R oxp (16) — (— i, — B)] [R exp (i0) — (—id, + B)]

Il

Il + 12’ (Say)

= 9mi & residues.

Since, as R—>o , I,—~0 , we get from (20)

2
Pya exp[ ~ 5@ (r—a)]

= [ exp (—AT)
pT §—idg + (14y + B} { —dg—(—1dy B))}
exp {i(ids + Bt} exp {i(iAl*“Bl)f}_]
2Bl(""‘?‘Al'—B1 + ?:Ao) 231(_{‘41 + Bl + ?:AU)



PROPAGATION OF SPHERICAL WAVES IN VISCOELASTIC MEDIUM 559

_ q2
Pya exp[ — 98 (r———a)]
pr

[__ exp (—2Ag7) exp { ©(14; + By)r}
(Ad1—A)2 + By? 2B, {1 (4;— X)) +B;}

_ GXP‘{@'("'Al—Bl)T} ]
2B, § v(4;—2)— B}

12
Pya exp[ — 7_;,5 (r—w)}
T (4 — A+ By [" exp (—do7) +

+ »\/{(Al*")\o)z 4 BIZ} exp (-A1'r) sin (Bl‘r + tan” 1 B )] (21)
2 -y

When r <0, on integrating in the complex -plane along a semi-circular contour on the upper
half of real axis we get—

$ =0
Thus for 7> 0 the displacement w, is given by —
y 2
ar
P,a ex [ - ('r’——a)]
_ P 2 ) {L oxp (—A T)Mi\/{(Al—?\.]P%—Bﬁ"} oxp (— Ay) X
ol A B L TP T B, P
B, 1 [ 42
e SN TRNTR I [ A —
X sin (Bl'r -+ tan” 4 ) | vo (2(;2 )\0) exp (—Ay7) +
'\/{(Al""'Ao) + B} \/ f 2
Blcl L A_] ) +-Bl 19XP(“‘AT)><
B, B
; 1 —tanl — %
Xsm(Bu--}-tan y = tan A—ﬁ)] 22)
1 2¢?
Elastic case
In elastic case 7 = 5’ = o, modulus of rigidity, ¢ = g, and bulk modulus ¢' = k, 8o
thet d2 = 0 and displacement potential ¢ in (21) becomes,

= Pya _ — , — X
d’ - PT[(Al_A0)2+Bl2][ QXP( A0 )+9XP( Al )< 1+( ‘B1 ) }

X €08 (Bﬁ-—tan'l —‘4—11—;—1‘&9—)] (23)

where angular frequency is—
—J e 2 » P
B M—\/ p a2 wzc~p~) 'L p (1 /\—{—2;;,)
_\/ \/(/\-{-—p,) _ ¢ (1—2}

1/4 1
R k = — (A 2
c p( #"f‘) p(—i—u),

¢ 1—0a ? 24
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A=k—%p and o is the Poisson’s ratio given by ¢ = A2 + p) and damping is-=
% % ¢ 1—2
4 = — = = = - 25
Y acp ay/[p(A -+ 2p)] a l—o (25)

The expression (23) for the displacement potential ¢ in elastic case is exactly similar to that obtained
by Blanke (1952).

The displaceient potential ¢ and the radial displacement w, for a step function of pres-
“sure at the surface of the cavity can be obtained by putting Ag =0 in (21) and in (22). Thus —

o?

- — 1 L (B ¢ e (— s s L) | @)
¢ = pr (4% 4+ By?) 1+ '(L 1 4 ( Bl) J} exp (— 4, 7)sin (Blf + tant Al)

and

U, =

1 1 ., . L4 B
";.? — 2 ,[))1 '\/[Alz J[‘ Bl“] exp (“—'1111') S1 (.Blf ’+‘ tan 171—)"{*

1 @ 42+ B 2
g (e ) e

, B B
— L i an=1 —L __ an~1 e SN -]
X exp (— ;) sin ( B+ -4 tan 1, tan o & L @
Ady = é—c; J
In elastic case, (26) gives —
Pya? ) 7
¢ = 4;‘” [——1 + exP(—-A1'r)) cos Byr + —— B1 sin Blr}] (28)

where, By and 4, are given by (24) and (25) and may be written also in the forms—

2 v,
B1 = 'Upz — ’Uaz
a Vp

22
aVp

A].:

where, v, = 4/[plp] and v, = ¢ = /(X + 2u)/p]

The displacement u, in this case, from (27) after simplification reduces to -

U, = %‘%[712- — ;12—-exp ( — 23“;;—){ cos By r - \/(vpuv— D) sin Byt } -+
* v @ (=) (G vir =)

= -41:—3‘3-——5;32—[7]; — -;32* exp ( _ 2;211){008 Byr + \/(vpvs-—-v 5 sin By v } +

-+ —71— ex? (— iv;if){(j;);z cos B+ - -—1— sin By r ) —

Vg 20,2 . B
— T ( s S Byr— Tk cos By )}] (29)
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The expressions (28) and (29) give the expressions of the displacement potential ¢ and the displace-
ment u, deduced by Jeffreys (1931) for a step function pressure pulse in elastic medium.

Case 11
For the pressure prescribed in (14) we have,

oL

.,__M,Ii“ @ . JL exp [ — I.wT‘] dw ]
P T e “"P[ 23 ")1 f (4 ido)? [o—(—idy — BY)] [w—(—id, + B))] (50)

o

When 7> 0, we shall integrate (30) in the complex w-plane along a oontour as in Fig. 1. Here we
may note tht the point w = —, is a pole of 2ndorder. Thus pelformlnrf ﬂlGlIltGlTlath]l we have —

Pya exp [ — j;%— (r~~a)]
$ = rp By {(4; —A)? + B2)? [{T([Al_h"]z + B.%) — 2(4;—2)} exp (—dy7) —

—{(— L4y —DoF + B2 sin Byr — 28, (4, g 003 By} oxp (—y )|

7‘)
Pya exp [ — = (¥ a)]

pri{(d, w/\o)a + B2}

204, —2,
[{T Py _(_)\O)z ﬁL)B >}0XP (—%7) —

1 - 2B, [4 2] ;
— 7}: sin (Blu-——tan 1 — 1;_*)1\0]2 B 2) exp (—d;7) J (31)

When =<0, on Integrating in the complex w -plane along a semi-circular contour on the
upper hdlf of the real axis we get —

v ¢ =0
Thus for 7> 0, the displacement u, is given by —
P @
u:‘oanP['*—Q‘Ef(Tf—a)] [m_ﬂ A4 —) }eX -
i p (4, — )2 + B?] 2 (4, —X)? + B2 P 07) +
1 2B, [4,—)]
B A (Bl Tt Blz) exp (— 4y 7) +
L d? 24, —x) )
i W(A““%?){’”_ (=7 + B O () =
WS e P
Blrc 2(=z + 1 Fexp (—d;7) X
5 sin |Byr—tant — 201l —A]  — tan“—w—%—d—z (32)
' —[dL—XF + B dy— o
Case I11

For a pressure prescribed in (16) we have —

a2
Foa exp [—‘ 26 (r—a) ] T exp [ —iwr ] dw

¢ = [0 — (—14; — B))] [w — (—i4, + B)]

2mpr

—
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w PLANE

Fig. 1. Contour showing the path of integration

Choosing the contour as Fig. 1 with singularities at « = — (4, + By), —id; + B; and per-
forming integration we have —
_ Pya [ 1 a7 . B p ,
¢ = o1 B, exp —-{Lf‘l—}——;‘;z&—(‘l—-(b)j' sin (By7), for v >0 (33)
and as earlier,
¢ =0 , for 7 <<0
Hence, for 7> 0 the displacement u, is given by —
Py [ d2
1 1 [( d2 . 1
X [——— sin (B, 1) — p” L(—26—2~ — 4, ) sin (Byr) - cos By 7 J"]
Pya [ { ] l
= e — 4 r—a — — sin (By7)—
Pl o | =4 rit g (=0} [ (B, )
1 [ d2 2 1 . B
—_— — - - B2 i P D
o _{L( 92 . ) 4+ By I} sin [ By -+ tan pE (34)
a4
4.2, Voigt medoum
Here the operators P, @, P', @ are given by —
b 3
= 1 = L
P =1 ) Q=0G+n o
d
4 — 1 ’ — 1',__ I__ .
P 3 W= G+
In this case,
X2 = T 1 — 1 )
’; [—5— (G—-—lw‘r]) + (G — oy ] 2 —wh? (89)

1 (4 , 1(4
where, 02=7(~§G+G)and h2~—~(3 n—i—n).

*
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Neglecting higher orders of 42 [c®, (35) gives —

B = —(1; (36a)
and
w2 h2
y =" (36b)
From (11) we have,
Alw) = —!
w) — 7 . .
. 1 N Y ’lwﬁ o . re 2’le‘y (u?' ﬂ2 (37)
s—ion) (5 + L ) e (7 - S0 - )

Substituting the values of B and y from (36) and neglecting the higher orders of nfc?, 7'[c? and
nlac, (37) gives — ‘

1
Alw) = —— : : 38
@) = 0 To—(—id,— By [o—(—id T By %)
where, i
47 2Gh?
Ca=1+ —(;c_,; T ac®p
2 G 7
4= pCy (E * “'2)
_ 2v(Gp) [ G 2
> apC, e2p acp acdp |’

It may be noted that both 4, and B, are positive since the negative quantities are small.,

Case 1
For the pressure prescribed in (12) the displacement potential, after performing integration as earlier,
is given by (for r > 0)—
4= Pya
prCy [(4e— M) + Bdfl

[B2— 4202 1 o ( . A, Boh? - B,
X exp( — A4, {’r+ “_M‘ZAac‘ﬁ ~ 1 a,]j) sin {By7 3 [f—f-a]+tan1 y — )]

V{(43—X)? + Bg%} %
B,

2

[——exp {—8 (r—a)—2X7} +

Pya
- 9702[(‘42—0‘)\0)2 + B2 [“eXP {—8(—a)—dm2+
+ Vs —A) + B?} exp D, sin J F, + tan™t By }] ,for +>0 (39)
Bg l. Az"‘“‘)\o
and 6 =0, for + <0
where,
722
b= 203
— 1 2 . A2 B
D2~—P—A2[t—‘{wc~ T B4, (By Az)}(T a)]

: 1 124,
F, =_Ba[t'"{; + ”“Cg‘g“j‘ (7’*'*“)]
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The corresponding displacement is given by (for > 0) —

= P {(A2-A0)2 -+ Bzz}

.

Pya l _1__

; 2

_ _1A '\/{(Az - )\0)2 + 322}
72 B,

2

exp ), sin (F2 4+ tan—1 \? )___

9
2

A
_ % (—31 n TO)eXP{—-s1 (r—a)— A7} +

1 4/{(dy— )2 -+ B2 12 4y \2 U *
o V{(4y—N)? -+ B2} \/{ B22(1+ &Cz"/}ﬁ—ﬁz(l” b [322_A22]) }x

Byc 2c2 4,
2 -
f B ]32(1—5;42) 17
% exp D, Singl Py 4 tan-1 ~—;-2-/\—w —tan~l — 7 ¢ IL | (10)
Ly 0 . A
kL : Ag( T= 2¢2 4, LB2— 4,7 ) Jl 4

In elastic case, n = %" == 0, ¢ = p and (" — &, so that 22 == 0 and the displacement potential
¢ in (38) becomes (for = > 0) —

Pya [ A {(Ay— )2 -+ By2} o Ay—2)
- - e @XD ((— A A e P2 8 axp (— A, 7) c08d B —tan-172 70 ]

P e B O R B, o () "{ S
(41)

where angular frequency,

S ) 2 )

_ e A/(1—2) R
B Fr G A

The expression (40) for the displacement potential ¢ is same as (23) and also similar to that
obtained by Blanke (1952).

" The response for step function of pressure at the surface of the cavity can be obviously obtained by

substitutin =~ 2y = 0 i (39) and (40). The corresponding response in eclastic case obtained
by Jeffreys (1931) may also be easily deduced putting 5 =" =0, @ = poand G'=Fk, -



PROPAGATION OF SPHERICAL WAVES IN VISCOELASTIC MEDIUM 565

Case 11

For the pressure prescribed in (14) we have,

_ Pya [ ae Ady—d) N o e
P v O (A — ) + B [< T e U g By TP T e el —a)—
1 T i 2B,(4,—%) ] ~
~ g s1n<LF2——tan1 - +B2}-expD] for >0 42)

and

=10 , for +<<0.

The corresponding displacement is given by (for » > 0) —

. Pya 1 f Ay h2 2(4,—Ap) 1
" O (207 + B [“ AT e T T G gy Bg J R her =)
1 . f 2B,(Ay—Ay) 1
o —tan-1 2 0
4+ B sin {L Fy—tan A+ BE S Fexp Dy ++
1 LAWY (A A2 h2 ( /\071 2[4y — 2] '
to (G ) e (M) (= - S ) b
] 1 ) hrd, \2 2 " )20
X BX‘p {"’A“ ’T""S(? - )}1‘ *[}2‘7(—. (‘\/{ Bg ( 1 + ??’) “‘— A2 (] "“9’5‘2‘;‘-; [Bzz—-—«Ag“]) J> X
‘ . .
! 2B, (45— ) m1+ 706242 ) |
% exp D, sind F, — tan-1 22— tanl :
1 E — (Ay—Ag)2 + B2 {' !
IL 4| 1 )2A Sz i P "Azz])J .[
(43)
Case 111
For the pressure preseribed in (16) we have —
. _Pon : :
d) == m‘ oxXp D2 sm F2 y for = > 0 (44)
=0 , for +<0
and the corresponding displacement is (for = > 0) —
_ Poa sin Fy 2 72 4. \2)
w= e 0, = S e (- i [1322—-/122]) + B (10 550 ) 1

X sin (Fz——ta‘n" {Bz(lw—_ Z’fgféw) /A2 (1 02,4 [B2— 4] )})] (45)
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5. Summary and Discussion

The integral form of the displacement potential in a general viscoelastic medium is given by (8)
and (11) together. For any arbitrary time dependent pressure on the surface of a cavity, inversion of
the Fourier transformation in equation (8) may be performed after choosing a particular model
to be investigated. If the exact inversion is not possible it can be evaluated by numerical integ-
ration. The theory developed is particularly important in deriving the viscoelastic behaviour
of the material when the type of source and displacements are known.

In further analysis three types of pressures have been considered for which displacement
potentials are given in (13), (15) and (17). For Maxwell medium displacements v, have been derived in
(22), (32) and (34) where as that for Voigt medium in (40), (43) and (45) respectively.  The
displacement , in each of these media consists of two terms-— one depending on 1/r and other
on 1/r. TFor pressures of cases I and II each of these terms again consists of two parts —one is
non-oscillatory and other oscillatory; the non-oscillatory terms contain the exponential decay of the
Forcide function; these terms decreases exponentially with distance. In case III only oscillatory terms
are present.

It may be mentioned that the pressures of cases I and II may be considered in a generalised form
as—

L m
Py = 2 X Pyt exp (—Aji) , >0
i=0 j§=0
= 0 , t<<0
and the displacement may be obtained in a similar manner.
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