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सार –  इस शोध पत्र का मख् यु  उÙदेæ य लैपलैस ट्राÛ सफोमर् (आकितृ ) तथा एडोिमयन अपचयन िविधयɉ का उपयोग 

करते  हए वायमंडलीय  िवसरण समीकरण ु ु (ए डी  ई)  के  Ùवारा  वाय प्रदषण की सघनता की गणना करना  है।  इसका ु ू
समाधान भंवर िवसरणशीलता प्रोफाइल (K) और उ× सजर्न è थान की पवन गित (u) पर िनभर्र करता है। हमने लैपलैस 
ट्राÛ सफॉमर्  िविध का  उपयोग करते  हए  वायमंडलीय  िवसरण समीकरण ु ु (ए  डी  ई)  दो  डायमेÛ शस म  िवæ लेɅ िषत करके 
िनकाला है और इसे लैपलास िवæ लेषण के िवपरीत पाया है तथा एडोिमयन अपचयन िविध का प्रयोग करते हए इसका ु
संख् या× मक Ǿप म िनç कɅ षर् िनकाला है, अंत म हमने अपने पिरणामɉ की तलना पे्रिक्षत डटेा से की है।Ʌ ु  

 
ABSTRACT. The objective of this paper is to calculate the concentration of air pollution, by solving the 

Atmospheric Diffusion Equation (ADE) using Laplace transform and Adomian decomposition methods. The solution 
depends on eddy diffusivity profile (K) and wind speed at the released point (u). We solve the ADE analytically in two 
dimensions using Laplace transform method and get the inversion of Laplace analytically and solving it numerically 
using Adomian decomposition method, then, compared our results with observed data.   

 
Key words – Crosswind integrated concentration, Eddy diffusivities methods.  
  
 

 
1.  Introduction 
 
 Analytical solution for the Eulerian and Lagrangian 
particle models are usually obtained just for stationary 
conditions and by assuming strong assumptions on the 
wind speed profiles and turbulent parameters. In the 
analytical solutions of the diffusion - advection equation, 
authors  assumed constant wind velocity  along the whole 
Planetary Boundary Layer (PBL) or following a power 
law wind velocity  (van Ulden and Hotslag, 1978; Pasquill 
and Smith,  1983; Seinfeld, 1986; Tirabassi et al., 1986; 
Sharan et al., 1996). The advection and diffusion of 
emitted pollutants from area sources are one of very 
important problems because of bearing its direct effect on 
calculating dispersion of containment of urban area. Air 
dispersion model based on its analytical solution had 
several advantages over numerical models because all of 
the parameters are explicitly expressed in mathematical 
form. Where the mathematical techniques can properly 
predict dispersion and transport of atmospheric pollutants 
are an essential element in the development of warning 
and control strategies, proper forecast of atmospheric 
boundary - layer height and its vertical mean wind speed 

which provide a basis for predictions of air concentrations 
under meteorological conditions that vary horizontally and 
vertically. 
 
 Analytical solutions are useful in examining           
the accuracy and performance of the numerical         
models through studies of the analytical solution that 
allows valuable insight to be gained regarding                 
the behaviour of a system [Essa and El-Otaify, (2005)].  
 
 The Adomian decomposition method (ADM) has 
been applied to wide class of stochastic and deterministic 
problems in many interesting mathematics and physics 
areas (Adomian, 1994). Adomain gave a review of the 
decomposition method in (Adomain, 1988). Wazwaz 
(2001) found the numerical solution of sixth order 
boundary value problem by ADM, Abdel - Aziz and El-
Sayed (2003) compared between Adomians 
decomposition method and wavelet - Galerkin method for 
solving integral - differential equations. El-Gamel (2007) 
compared between the Sine - Galerkin and the modified 
decomposition methods for two - point boundary - value 
problems. 

 (785) 
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 Here, advection diffusion equation is solved in two 
dimensional space (x, z) using Laplace transform and 
Adomian decomposition method to obtain the normalized 
crosswind integrated concentration employing analytical 
and numerical forms respectively. Two models forms of 
the eddy diffusivities as well as the wind speed at the 
released point were used in the solution. Two calculated 
models were compared with observed data measured at 
Copenhagen in Denmark by using statistical technique.  
 
2. Analytical method 
 
 The atmospheric advection - diffusion equation is on 
the form (Essa and El-Otaify, 2005): 
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 Equation (1) is subjected to the following boundary 
condition. 
 
 
(a).  It is assumed that the pollutants are absorbed at the 
ground surface, i.e.,   
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where, vg is the deposition velocity (m/s). 

 
(b). The flux at the top of the mixing layer can be              
given by:  
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(c).  The mass continuity is written in the form: 
  
 u cy (x, z) = Q δ(z - h) at x = 0                   (iii) 
  
 where, δ is Dirac delta function, Q is the source 
strength and h is mixing height. 
 
(d).  The concentration of the pollutant tends to zero at 
large distance of the source, i.e., 
  
    cy(x, z) = 0     at  z = ∞                                            (iv) 
 
 Applying the Laplace transform on equation (1) to 
have: 
 

    zc
k

u
zsc

k

us

z
yy ,0,~

2

2














                               (2)                                            

  Substituting from equation (iii) in equation (2), we 
obtain that: 
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 where, c˘y (s, z) = LP{ cy(x, z) ; x→s} and  LP is the 
operator of the Laplace transform  
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 The non-homogeneous partial differential equation 
has a solution on the from: 
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 From the boundary condition (iv), we find c1= 0. 
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  Using the boundary condition (iii) after taking 
Laplace transform, we get:  
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 Substituting from equation (6) in equation (5), we 
get:  
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 Taking the inverse Laplace transform for the               
eqn. (7), we get the crosswind integrated concentration in 
the form: 
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 Numerical method 
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 where, 
k


u

A  

 
 Equation (9) can be solved using Adomian 
decompositions method as follows: 
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 Multiplying both sides of this equation                     
by  (inverse) 1
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 Assuming that: 
 
 Co = M (x) + z N(x)                                               (12)                           
  
 where, M and N are unknown function which will be 
determined from boundary condition using equation (12) 
to get the general solution in the from: 
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 Assuming the solution has the form: 
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 By differentiating the equation (15) with respect to z 
and multiplying by kz, we obtain: 
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TABLE 1 
 

Estimates of the power (p) in urban areas for six stability classes  
based on information by Irwin (1979) 

 
Stability
Classes

Very 
Unstable 

(A) 

Moderately
Unstable 

(B) 

Slightly 
unstable 

(C) 

Neutral 
(D) 

Slightly 
stable  

(E) 

Moderately 
Stable (F) 

Urban p 0.19 0.21 0.32 0.30 0.36 0.46 
 
 

 
 Using the boundary condition (i) at z = 0, we obtain 
 

    xMvxNk
z

W
k gzz 


 1  

 

        xN
v

k
xMxM

k

v
xN

g

z

z

g 


                   (17)   

 
 Using the boundary condition (ii) at z = h, we obtain 
that:     
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 Integrating equation (18) from 0 to x, we obtain: 
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 Using the boundary condition (iii), we get: 
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 Substituting equations (18) and (19) in equation (12), 
we obtains: 
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 where, B = k /vg     
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TABLE 2 
 

Values of wind speed at 10 m and 115 m and downwind distance                
through  unstable and neutral stabilities at northern  

                                         

part of Copenhagen 
 

Run   
no 

Stability u 10   
(m/s) 

U115    
(m/s) 

Distance (x)  
(m) 

1 Very unstable (A) 2.1 3.34 1900 

1 Very unstable (A) 2.1 3.34 3700 

2 Slightly unstable (C) 4.9 10.71 2100 

2 Slightly unstable (C) 4.9 10.71 4200 

3 Moderately unstable (B) 2.4 4.01 1900 

3 Moderately unstable (B) 2.4 4.01 3700 

3 Moderately unstable (B) 2.4 4.01 5400 

5 Slightly unstable (C) 3.1 4.93 2100 

5 Slightly unstable (C) 3.1 4.93 4200 

5 Slightly unstable (C) 3.1 4.93 6100 

6 Slightly unstable (C) 7.2 11.45 2000 

6 Slightly unstable (C) 7.2 11.45 4200 

6 Slightly unstable (C) 7.2 11.45 5900 

7 Moderately unstable (B) 4.1 6.85 2000 

7 Moderately unstable (B) 4.1 6.85 4100 

7 Moderately unstable (B) 4.1 6.85 5300 

8 Neutral (D) 4.2 8.74 1900 

8 Neutral (D) 4.2 8.74 3600 

8 Neutral (D) 4.2 8.74 5300 

9 Slightly unstable (C) 5.1 11.14 2100 

9 Slightly unstable (C) 5.1 11.14 4200 

9 Slightly unstable (C) 5.1 11.14 6000 
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(14), we obtain that: 
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 where, 
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 Similarity, we get    
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 The general solution: 
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 We can obtain the wind speed at source height 115 m 
as follows (Hanna et al., 1982).    
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 where,  
 
 U115 is the wind speed at 115 m, 
 
 U10 is the wind speed at 10 m height, 
 
 z is the physical   height and 
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TABLE 3 
 

Comparison between Observed, and different analytical, numerical normalized crosswind-integrated concentrations Cy/Q (10-4 sm-3) 
  

Cy/Q *10-4 (s/m3) 
Run no. Stability Down distance 

(m) Analytical model 1 Analytical model 2Numerical model 1 Numerical model 2 Observed

1 Very unstable (A) 1900 4.48 8.95 3.59 2.08 6.48 

1 Very unstable (A) 3700 3.37 4.64 4.93 3.79 2.31 

2 Slightly unstable (C) 2100 1.29 6.28 7.36 4.03 5.38 

2 Slightly unstable (C) 4200 1.02 3.14 2.04 1.27 2.95 

3 Moderately unstable (B) 1900 5.08 10.92 1.05 1.32 8.2 

3 Moderately unstable (B) 3700 3.17 6.30 8.94 3.40 6.22 

3 Moderately unstable (B) 5400 1.80 8.30 1.20 6.25 4.3 

5 Slightly unstable (C) 2100 4.64 9.47 1.18 3.55 6.72 

5 Slightly unstable (C) 4200 1.80 9.01 1.69 8.75 5.84 

5 Slightly unstable (C) 6100 0.91 12.19 3.76 1.53 4.97 

6 Slightly unstable (C) 2000 1.56 5.30 2.02 2.83 3.96 

6 Slightly unstable (C) 4200 0.98 2.53 1.44 7.24 2.22 

6 Slightly unstable (C) 5900 0.60 1.98 5.31 1.18 1.83 

7 Moderately unstable (B) 2000 2.12 8.11 1.81 2.63 6.7 

7 Moderately unstable (B) 4100 1.64 3.96 1.46 6.09 3.25 

7 Moderately unstable (B) 5300 1.33 3.06 1.01 8.62 2.23 

8 Neutral (D) 1900 2.83 10.31 5.14 7.11 4.16 

8 Neutral (D) 3600 1.30 5.45 9.14 1.50 2.02 

8 Neutral (D) 5300 0.66 4.37 4.32 2.42 1.52 

9 Slightly unstable (C) 2100 1.22 6.86 5.97 3.50 4.58 

9 Slightly unstable (C) 4200 0.94 3.43 1.05 7.70 3.11 

9 Slightly unstable (C) 6000 0.72 2.40 1.60 1.18 2.59 

 
 
 
 p is a parameter estimated by Irwin (1979),             
which is related to stability classes, is given in                   
Table 1.            
 
 
 In the present model we used two methods                 
for the calculation of the eddy diffusivity depends             

 The data set used was observed from the atmospheric 
diffusion experiments conducted at the northern part of 
Copenhagen, Denmark, under unstable conditions 
(Gryning and Lyck, 1984; Gryning et al., 1987). The 
tracer sulfur hexafluoride (SF6) was released from a tower 
at a height of 115 m without buoyancy. The values of 
different parameters such as stability, wind speed at 10 m 
(U10), wind speed at 115 m (U115), and downwind distance 
during the experiment are represented in Table 2. 

on  the  downwind  distance  (x).  The  first method k takes 
in the from k1(x) = 0.04 ux and in the second method are 
referenced to where k takes in the form:  
  Comparison between analytical model 1, 2 and 

observed normalized crosswind integrated concentration 
shows that analytical model 2 agrees with observed data 
than analytical model 1 (Table 3). Comparison between 
numerical model 1, 2 and observed normalized crosswind 
integrated concentration shows that numerical model 1 
agrees with observed data than numerical model 2.  
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 σw is the standard deviation vertical velocity     
(Arya, 1999). 
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Fig. 1.  Comparison between analytical, observed normalized crosswind integrated 

concentration and downwind distance 
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TABLE 4 
 

Comparison between different models according to standard statistical performance measure 

 
Models NMSE FB COR FAC2 

Analytical model 1 0.79 0.71 0.71 0.48 

Analytical model 2 0.30 - 0.40 0.78 1.56 

Numerical model 1 0.66 0.04 - 0.11 1.19 

Numerical model 2 0.79 0.19 - 0.08 1.09 
 
 
 
 
 Fig. 1 shows that the variation of analytical and 
observed  normalized  crosswind  concentration  data with 
down distance. Fig. 2 shows that the variation of 
numerical and observed normalized crosswind 
concentrations data downwind distance. One find that 
analytical model (1) and (2) and numerical model (1) have 
points agreeing with the observed data, while the others 
points are over predicted. 
 
 Fig. 3 shows that analytical model (1) under 
predicated with observed data, while analytical model (2) 
have most points within factor of two with observed data. 
On other hand numerical model 1 has most data within a 
factor of 2 (FAC2). While numerical model (2) has most 
points over predicted with observed data. 
 
3.  Statistical method 
 
      Now, the statistical method and comparison among 
analytical, statically and observed results will be present 
(Hanna, 1989). The following standard statistical 
performance measures characterize the agreement 
between model prediction (Cp = Cpred/Q) and observations 
(Co = Cobs/Q) (Table 4): 
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 where, σp and σo are the standard deviations of Cp 
and Co respectively. Here the over bars indicate the 
average over all measurements (Nm). A perfect model 
would have the following idealized performance: 
 
 NMSE = FB = 0 and COR = FAC2 = 1.0 
 
     From the statistical analysis, we find that the four 
models are within a factor of 2 with observed data. 
Regarding NMSE, the analytical models (1), (2) and 
numerical model (1) are better than numerical model (2). 
The analytical model (2) and numerical model (1) are also 
the best regarding FB.  
 
4.  Conclusions 
 
 We have used an analytical and numerical solution 
of two-dimensional atmospheric diffusion equation by 
Laplace transform and Adomian decomposition methods 
respectively to calculate normalized crosswind 
concentrations for continuous emission of sulfur 
hexafluoride (SF6). In this model the vertical eddy 
diffusivity depends on the downwind distance and is 
calculated using two methods (k1= 0.04 ux and                    
k2 = 0.16(σw

2/u) x) it is observed that analytical model 2 
and numerical model 1 have most points within a factor of 
two with the observed data. The other two models over 
predicted. From the statistical analysis, we find that the 
four models are within a factor of 2 (FAC2) with observed 
data, regarding NMSE, the analytical model 2 and 
numerical model 1 are better than the other model. Also 
the analytical model 2 and numerical model 1 are the best 
regarding FB. The correlation of analytical model 1 and 
analytical model 2 are 0.71 and 0.78 respectively which 
are stronger with the observed data than the correlation of 
numerical model 1 which equals 0.11. 
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