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सार — इस शोध प� म�, सवंहन-�वसरण समीकरण (ADE) के �कसी एक आयाम कालाि�त और �स्र अवस्ा के तीन 

आयाम� को वायमुडंलीय सीमा परत (ABL) म� सां�ता का अनमुान लगाने के िलए �व�ेषणातमक रप से हल �कया गया है, इस 

अवधारणा को धयान म� रखते हुए �क ABL ऊंचाई (h) को उप-परत� म� �वभा�जत �कया गया है और डाउन�वडं दरू� को भी अतंराल म� 
�तयेक आयताकार के� म� �वभा�जत �कयागया है, पवन  क� गित और भवंर �सार के औसत मान को धयान म� रखकर लॉपलास 

�ांसफ़ॉमर �विध का उपयोग करके ADE आकिलत �कया गया है। �सता�वत मॉडल, गॉिसयन पलूम मॉडल और पवूरवतत शोध कायर  
(Essa et al., 2019) क� तलुना आयोड�न-135 क� �े�कत सां�ता से क� गई है �जसे िम� के परमाणु ऊजार �ािधकरण, परमाण ु

अनसुधंान �रएक्र, इंशास, का�हरा, िम� म� मापा गया ्ा। सां�खयक�य �व�ेषण से पता चलता है �क सां�ता के �सता�वत और 

�ायोिगक मलूय� के बीच अच्ा सबंधं है। 
 
ABSTRACT. In this paper, one dimension time-dependent and the steady state three dimensions of an advection-

diffusion equation  (ADE) has been solved analytically. To estimate the concentration into the atmospheric boundary 
layer (ABL) taking into account the assumption that the ABL height (h) is divided into sub-layers and the downwind 
distance is also divided into intervals within each rectangular area. The ADE is estimated by using the Laplace transform 
method assuming that the mean values of wind speed and eddy diffusivity. The proposed model, Gaussian plume model 
and previous work (Essa et al., 2019) was compared with the observed concentration of Iodine-135 which was measured 
at the Egyptian Atomic Energy Authority, Nuclear Research Reactor, Inshas, Cairo, Egypt. The statistical analysis shows 
that there is a good agreement between the proposed and experimental values of concentration. 

 

Key words  – Gaussian plume model, Gradient Transport (K), Turbulent Diffusion. 
 
1.  Introduction 

 
The classical Gaussian of diffusion models are 

mostly used in effecting the impacts of finding and 
proposed source of air contaminants on local and urban air 
quality Arya (1999). The lateral and vertical dispersion 
parameters, respectively σy and σz, represent the turbulent 
parameterization in this approach, once they contain the 
physical ingredients that describe the dispersion process 
and, consequently, shows the spatial extent of the 
contaminant plume under the effect of the turbulent 
motion into the Planetary boundary layer (PBL) Abdul-
Wahab (2006).  

 
The atmospheric advection-diffusion equation has 

long been used to know the transport of pollutants in a 
turbulent atmosphere was investigated by Seinfeld (1986). 

An analytical dispersion model for source into the 
atmospheric surface layer with dry deposition to the 
ground surface has been made by Kumar and Sharan 
(2016). Also, the variation of eddy diffusivity on the 
mimics of behavior of the advection-diffusion equation 
was investigated by Essa et al. (2018). Essa et al. (2020) 
used the advection-diffusion equation with variable 
vertical eddy diffusivity and wind speed by using Hankel 
transform to get the crosswind integrated concentration. 
Essa et al. (2021) obtained the solution of the advection-
diffusion equation in three dimensions by using Hankel 
transform, Essa et al. (2022). 

 
In this work, one dimension of time-dependent and 

the steady state three dimensions of the advection-
diffusion equation (ADE) has been calculated analytically. 
To estimate the concentration into the atmospheric 
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boundary layer (ABL) taking into account the assumption 
that the ABL height (h) is divided into sub-layers and the 
downwind distance is also divided into intervals within 
each rectangular area. The ADE is estimated by using the 
Laplace transform method assuming the mean values of 
wind speed and eddy diffusivity. The proposed model, 
Gaussian plume model and previous work (Essa et al., 
2019) was compared with the observed concentration of 
Iodine-135 which was measured at the Egyptian Atomic 
Energy Authority, Nuclear Research Reactor, Inshas, 
Cairo, Egypt. The statistical analysis shows that there is a 
good agreement between the proposed and experimental 
values of concentration. 

 
2. Turbulent diffusion 

 
Three-dimensional turbulent motions are 

characterized by a rather wide range of scales, its 
description faces all the problems and difficulties that is 
associated with turbulence. 

 
2.1. Mean Diffusion Equation  
 
The diffusion equation must be solved 

simultaneously with the Navier-Stokes equation of 
motion. These equations are nonlinear and their complete 
numerical solution has not yet become possible for large 
Reynolds number flows, such Large-eddy simulations 
(LES) using state-of-the-art computers are probably the 
most sophisticated, but also, the most expensive numerical 
models of turbulence and diffusion [Deardorff (1972); 
Lamb (1982); Nieuwstatt and Walk (1987)]. The large-
eddy simulations (LES) are based on analytical solutions 
of the mean diffusion equation that is obtained by 
Reynolds averaging of the instantaneous equation. 
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where, C is an average concentration, u, v and w are 

the components of wind speed, and M is molecular 
diffusion and the last three terms are turbulence mass 
fluxes. molecular diffusion terms can be neglected 
because turbulence dominates the diffusion process. The 
mean diffusion equation for a uniform mean flow is 
reduced as follows: 
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This can be solved if the terms on the right-hand side 
can be specified in terms of the mean concentration field 
as follows: 

 

x
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∂
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Substituting from Eqn. (3) in Eqn. (2) yields: 
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2.2. Continuous source 
 
For an elevated continuous point source of an 

effective height "H" above a reflecting ground surface, the 
method of images yields: 
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where, σy and σz are the dispersion parameters in 

crosswind and vertical directions of the plume, Q is the 
emission rate, uvxe /− is the radioactive decay for isotope, 
υ=2.9 × 10-5 s-1 for Iodine-135. 

 
H is the effective stack height; hhH s ∆+= , hs is the 

stack height and h∆  is the plume rise, u is the mean wind 
speed, and y, z are the crosswind and vertical coordinates, 
respectively. 

 
( ) DuwhhhH ss /3+=∆+=                                 (7) 

 
where, w is the exit velocity of the pollutants and D 

is the internal stack diameter. 
 
The ground level concentration (G. L.C.) at the 

plume 's centerline is given by: 
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Also, the maximum concentration is: 
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Crosswind and vertical dispersion parameters for 

convective conditions are taken from Lidiane et al. (2008) 
into the form: 
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where, ( )
( )im

im

fn
fu

zn *
*

;5.1'= is the reduced frequency 

of the convective spectral peak into the form ( ) .*

h
zf im =

The advection diffusion equation in two dimensions can 
be written as follows: 
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where, Cy (x, z)is the crosswind integrated 

concentration of pollutants, u is the wind speed (m/s) and 
Kz is vertical eddy diffusivity (m2/s). One can solve the 
advection-diffusion equation for non-homogeneous 
turbulence by the Laplace transform technique. A 
stepwise approximation has been performed on these 
coefficients discretizing the height h of the PBL into N 
sub-intervals in a manner of inside each sub-region, k(z) 
and u(z), assuming the following average values: 
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Then, Eqn. (12) becomes: 
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For n=1:N. 
 
Applying the Laplace transform on “x” under the 

boundary conditions: 
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where, hs is a stack height and “h” is a mixing height. 
 
Then the equation (9) can be written as: 
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Integrating and substituting into the equation (14), 

one gets: 
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Applying the boundary condition (i), one gets: 
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Now applying Laplace transform on z then: 
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Substituting condition (ii), equation (17) becomes: 
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where, 
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The inverse of Laplace transform on “z” is taken i.e.,
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Applying the boundary condition (ii) one gets: 
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Substituting equation (25) for equation (22) then one 

gets: 
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By using the Gaussian quadrature formulas, one gets 

the concentration in three dimensions as follows: 
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velocity and ur is the reference wind speed. 
 
2.3. Results and discussion 
 
The observed data of I135 isotope concentration was 

obtained from dispersion as experiments conducted in 
unstable conditions air samples which were collected 
around the Egyptian Atomic Energy Authority. The 
vertical height is 0.7 m above ground from a stack height 
of 43 m, for twenty-four hours working, where the air 
samples were collected for half an hour at a height 0.7m 
with a roughness length of 0.6 cm. The values of “p” and 
‘n’ are functions of air stability are taken from Hanna        
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TABLE 1 
 

Power-law exponent “p” and ‘n’ are functions of air stability in urban area 
 

 A B C D E F 

p 0.15 0.15 0.20 0.25 0.40 0.60 

n 0.85 0.85 0.80 0.75 0.60 0.40 
 
 
 

TABLE 2 
 

Meteorological data of the nine convective test runs at Inshas site in March and May 2006 
 

Run no. Working hours of 
the source Release rate (Bq) Wind speed           

(ms-1) 
Wind 

Direction(deg) W*(ms-1) P-G stability 
class 

h                         
(m) 

Vertical 
distance (m) 

1 48 1028571 4 301.1 2.27 A 600.85 5 

2 49 1050000 4 278.7 3.05 A 801.13 10 

3 1.5 42857.14 6 190.2 1.61 B 973 5 

4 22 471428.6 4 197.9 1.23 C 888 5 

5 23 492857.1 4 181.5 0.958 A 921 2 

6 24 514285.7 4 347.3 1.3 D 443 8.0 

7 28 1007143 4 330.8 1.51 C 1271 7.5 

8 48.7 1043571 4 187.6 1.64 C 1842 7.5 

9 48.25 1033929 4 141.7 2.1 A 1642 5.0 
 
 
 

 
et al. (1982) and presented in Table 1. The meteorological 
data during the experiments are taken from Essa and El-
Otaify (2008) and presented in Table 2. The observed 
concentration of  I135 isotope, the predicted concentrations 
of Eqns. (6, 10, 11) and (27) below the plume 's centerline 
are also presented in Table 3. A comparison between 
predicted and observed concentrations of radioactive 
I135 via downwind distance in unstable conditions at 
Inshasis shown in Fig. 1, also, the relation between 
predicted and observed concentration data is shown in  
Fig. 2. 

 
From the two figures, one finds that the best model is 

obtained from Eqn. (27) because of the vertical eddy 
diffusivity as a function of the power law into the vertical 
height than the Gaussian plume model. The predicted 
models achieved 99%. Also, the Gaussian model (6, 10, 
11) gives a good result and achieved 79% because of the 
strongest of the dispersion parameters (10, 11). 

 
2.4. Statistical Technique of continuous source 
 
Comparing between the Gaussian, predicted and 

observed concentrations was introduced by (Hanna, 
1989).  

Where, NMSE is the normalized mean square error, 
FB is the fraction bias, COR is the correlation coefficient 
and FAC2 is a factor of two. 

 
One can easily see from Table 4, the statistical 

technique shows that the entire proposed model inside a 
factor of two with observed concentration data. Also, the 
statistical shows that the predicted model Eqn. (27) is the 
best for NMSE, FB, COR and FAC2 than, the Gaussian 
model Eqns. (6, 10, 11) for homogeneity.  

 
3. Instantaneous source 

 
For an instantaneous point release at an effective 

height H above the reflective ground surface. The 
coordinates of the real and image source are (0, 0, H) and 
(0, 0, -H), respectively. Then the concentration field due 
to both the real and an image source in an infinite medium 
is given by: 
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TABLE 3 
 

Observed, Gaussian and predicted concentrations for Run 9 experiments 
 

Test Downwind distance (m) Observed conc.(Bq/m3) Gaussian conc. Eqns. (6,10,11) (Bq/m3) Predicted conc. Eq.(27) (Bq/m3) 

1 100 0.025 0.039975 0.027 

2 98 0.037 0.03302 0.025 

3 136 0.091 0.082803 0.086 

4 135 0.197 0.166257 0.182 

5 106 0.272 0.274148 0.271 

6 186 0.188 0.107066 0.234 

7 165 0.447 0.216606 0.367 

8 154 0.123 0.151414 0.111 

9 106 0.032 0.044721 0.041 

 
 

 
 

Fig. 1. Explains the relation between the Gaussian, predicted model 
and observed Concentrations (Bq/m3) via downwind 
distances 

 

 
 

Fig. 2. Shows that the achieving between the Gaussian, predicted 
concentrations with observed concentration 

TABLE 4 
 

Comparison between the Gaussian, predicted and observed 
concentrations in unstable conditions 

 
 NMSE FB COR FAC2 

Gauss. Eqn. (6, 10, 11) 0.35 0.23 0.84 0.79 

Pred. Eqn. (27) 0.04 0.05 0.98 0.99 

 
 
where, vte− is the radioactive decay for isotope, 

υ=2.9 × 10-5 s-1for I135 and the effective height “H” is 
taken the form: 

 
( )DuwhhhH ss /3+=∆+=                                   (c) 

 
where, w is the exit velocity of the pollutants, and D 

is the internal stack diameter. 
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where, xukk zy *4.0==                                          (e) 
 
where, u* is the friction velocity. 
 
The advection diffusion equation can be written as 

follows: 
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,,                                    (29) 

 
where, C(t, z) is the one-dimension time-dependent 

concentration of pollutants, and Kz is vertical eddy 

0.0

0.1

0.2

0.3

0.4

0.5

10615416518610613513698100

 
 

Co
nc

en
tra

tio
ns

 (B
q/

m
3)

 

downwind distances (m)

 observed
 Gaussian
 Predicted

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

G
au

ss
ia

n,
 P

re
di

ct
ed

 C
on

ce
nt

ra
tio

ns
(B

q/
m

3)
 

Observed Concentration(Bq/m3)

 Gaussian
 Predicted



 
 

ESSA and TAHA : GAUSSIAN PLUME MODEL AND THE GRADIENT TRANSPORT (K)  

669 

diffusivity that is taken as a function of the power law of 
vertical distance. One can solve the advection-diffusion 
equation for non-homogeneous turbulence by the Laplace 
transform technique, A stepwise approximation has been 
performed on these coefficients discretizing the height h 
of the PBL into N sub-intervals in a manner of inside each 
sub-region, k (z) assuming the following average values: 

 

( )dzzk
zz

k
n

n

z

znn
n ∫

+

−
=

+

1

1

1
 

Then, Eqn. (29) becomes: 
 

( ) ( ) ( )
2

,
2

,

z

c
zk

t
c ztyn

n
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∂

∂
=

∂

∂
                                    (30) 

 
For n=1:N. 
 
Applying the Laplace transform on “t” under the 

boundary conditions as follows:  
 

( ) ( )snnyn hzQzC −= δ,0                                         (a) 
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z

c
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n ==
∂

∂
at0, (b) 

 

( ) ( ) ( ) 0at0,, ==
∂

∂
ztcv

z
c

zk ynd
ztyn

n                  (c) 

 
where, “h” is a mixing height and vd is the deposition 

velocity equals 0.01m/s for Iodine-135. 
 
Then the equation (30) can be written as: 
 

( ) dte
z

c
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t
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n
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              (31) 

 
Integrating and substituting into the equation (31), 

one gets: 
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Applying the boundary condition (a), one gets: 
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Now applying Laplace transform on z then: 
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Substituting condition (b), equation (34) becomes: 
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where, 
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The inverse of Laplace transform on “z” is taken, 

i.e., 
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Applying the boundary condition (ii) one gets: 
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Substituting equation (42) for equation (40) then one 

gets: 
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(43) 

 
 

Fig. 3. Shows that the relation between the Gaussian, previous 
work, predicted model and observed Concentrations (Bq/m3) 
via downwind distances 

 
 
 

TABLE 5 
 

Observed, the Gaussian, Previous work and predicted 
concentrations for Run 9 experiments 

 

Test 
Downwind 

distance 
(m) 

Observed 
conc.(Bq/m3) 

Gaussian 
conc.Eqns. 
(28, c, d, e) 

(Bq/m3) 

Previous 
workEssa et 

al., 
2019(Bq/m3)  

Predicted 
conc. 

Eq.(44) 
(Bq/m3) 

1 100 0.025 0.049 0.0558 0.02408 

2 98 0.037 0.046 0.0334 0.034 

3 136 0.091 0.129 0.0809 0.1 

4 135 0.197 0.252 0.2609 0.2217 

5 106 0.272 0.303 0.2373 0.255 

6 186 0.188 0.162 0.1757 0.1907 

7 165 0.447 0.236 0.3888 0.484 

8 154 0.123 0.060 0.0609 0.163 

9 106 0.032 0.045 0.0082 0.0265 

 
 

By using Gaussian quadrature formulas, one gets: 
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Fig. 4. Shows that the achieving between the Gaussian, previous 
work, predicted concentrations with observed concentration 

 
 

TABLE 6 
 

Comparison between the Gaussian, predicted and observed 
concentrations in unstable conditions 

 
 NMSE FB COR FAC2 

Gaussian Equations (28, c, d, e) 0.28 0.096 0.81 0.91 
Pred. Eqn. (44) 0.02 -0.06 0.99 1.1 
Previous work 0.05 0.08 0.96 0.92 

 
 
The observed concentration of I135, the predicted 

concentrations of Eqns. (28, c, d, e), previous work (Essa 
et al., 2019) and Eqn. (44) below the plume 's centerline 
are also presented in Table 5. A comparison between the 
Gaussian, previous work, predicted and observed 
concentrations of radioactive I135 via downwind distance 
in unstable conditions at Inshas are shown in Fig. 3, also, 
the relation between the Gaussian, previous work, 
predicted and observed concentration data are shown in 
Fig. 4. 

 
One finds that the best model when we use Eqn. (44) 

and the previous work because of the vertical eddy 
diffusivity as a function of the power law of the vertical 
height also, the predicted, previous work (Essa et al., 
2019) and the Gaussian plume model of Eqns. (28, c, d, 
e)lie inside a factor of two. The predicted, the previous 
work and the Gaussian plume model achieved 100%, 
0.92% and 91% respectively. 

 
3.1. Statistical Technique of instanteous source 
 
Comparing between the Gaussian, predicted and 

observed concentrations was introduced by (Hanna, 
1989).  

where, NMSE is the normalized mean square error, 
FB is the fraction bias, COR is the correlation coefficient 
and FAC2 is a factor of two. 

 
One can easily see from Table 6,the statistical 

technique shows that the entire proposed models and the 
previous work are located inside a factor of two with 
observed concentration data. Also, the statistical shows 
that the predicted model Eqn. (44) and the previous work 
are the best for NMSE, FB, COR and FAC2 than the 
Gaussian model Eqns. (28, c, d, e) which acts a good 
model. 

 
4. Conclusions 

 
In this work, one-dimension time-dependent and 

three dimensions of the advection-diffusion equation 
(ADE) of the steady state has been solved analytically. To 
get the concentration into the atmospheric boundary layer 
(ABL) taking into account the assumption that the ABL 
height (h) and the wind speed are divided into sub-layers 
intervals within each rectangular area the ADE is 
estimated by using the Laplace transform method 
assuming the mean values of wind speed and eddy 
diffusivity. The proposed model, the Gaussian plume 
model and previous work (Essa et al., 2019) was 
compared with the observed concentration of Iodine-135 
which was measured at the Egyptian Atomic Energy 
Authority, Nuclear Research Reactor, Inshas, Cairo, 
Egypt.  

 
From the three dimensions of the advection-diffusion 

equation (ADE) of the steady state in continuous source, 
we get the best model when uses Eqn. (27) than the 
Gaussian plume model, because of the vertical eddy 
diffusivity as a function of the power law into the vertical 
height. The predicted models achieved 99%. Also, the 
Gaussian model using Eqns. (6, 10, 11) gives a good result 
and achieved 79% because of the strongest of the 
dispersion parameters (10, 11). 

 
Also, from one-dimension time-dependent the 

advection-diffusion equation in instantaneous source, one 
finds that the best model when we, use Eqn. (44) and the 
previous work (Essa et al., 2019) because of the vertical 
eddy diffusivity as a function of the power law into the 
vertical height, also, the predicted, previous models and 
the Gaussian lie inside a factor of two. The predicted 
model, the previous work and the Gaussian model 
achieved 100%, 92% and 91% respectively. 

 
Also, the statistical analysis shows that there is a 

good agreement between the proposed, the previous work 
(Essa et al., 2019) and experimental values of 
concentration than the Gaussian plume model. 
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