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ABSTRACT. In this paper, one dimension time-dependent and the steady state three dimensions of an advection-
diffusion equation (ADE) has been solved analytically. To estimate the concentration into the atmospheric boundary
layer (ABL) taking into account the assumption that the ABL height (h) is divided into sub-layers and the downwind
distance is also divided into intervals within each rectangular area. The ADE is estimated by using the Laplace transform
method assuming that the mean values of wind speed and eddy diffusivity. The proposed model, Gaussian plume model

and previous work (Essa et al., 2019) was compared with the observed concentration of lodine-135 which was measured
at the Egyptian Atomic Energy Authority, Nuclear Research Reactor, Inshas, Cairo, Egypt. The statistical analysis shows

that there is a good agreement between the proposed and experimental values of concentration.

Key words — Gaussian plume model, Gradient Transport (K), Turbulent Diffusion.

1. Introduction

The classical Gaussian of diffusion models are
mostly used in effecting the impacts of finding and
proposed source of air contaminants on local and urban air
quality Arya (1999). The lateral and vertical dispersion
parameters, respectively o, and o,, represent the turbulent
parameterization in this approach, once they contain the
physical ingredients that describe the dispersion process
and, consequently, shows the spatial extent of the
contaminant plume under the effect of the turbulent
motion into the Planetary boundary layer (PBL) Abdul-
Wabhab (2006).

The atmospheric advection-diffusion equation has
long been used to know the transport of pollutants in a
turbulent atmosphere was investigated by Seinfeld (1986).
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An analytical dispersion model for source into the
atmospheric surface layer with dry deposition to the
ground surface has been made by Kumar and Sharan
(2016). Also, the variation of eddy diffusivity on the
mimics of behavior of the advection-diffusion equation
was investigated by Essa et al. (2018). Essa et al. (2020)
used the advection-diffusion equation with variable
vertical eddy diffusivity and wind speed by using Hankel
transform to get the crosswind integrated concentration.
Essa et al. (2021) obtained the solution of the advection-
diffusion equation in three dimensions by using Hankel
transform, Essa et al. (2022).

In this work, one dimension of time-dependent and
the steady state three dimensions of the advection-
diffusion equation (ADE) has been calculated analytically.
To estimate the concentration into the atmospheric
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boundary layer (ABL) taking into account the assumption
that the ABL height (h) is divided into sub-layers and the
downwind distance is also divided into intervals within
each rectangular area. The ADE is estimated by using the
Laplace transform method assuming the mean values of
wind speed and eddy diffusivity. The proposed model,
Gaussian plume model and previous work (Essa et al.,
2019) was compared with the observed concentration of
lodine-135 which was measured at the Egyptian Atomic
Energy Authority, Nuclear Research Reactor, Inshas,
Cairo, Egypt. The statistical analysis shows that there is a
good agreement between the proposed and experimental
values of concentration.

2. Turbulent diffusion

Three-dimensional turbulent motions are
characterized by a rather wide range of scales, its
description faces all the problems and difficulties that is
associated with turbulence.

2.1. Mean Diffusion Equation

The diffusion equation must be solved
simultaneously with the Navier-Stokes equation of
motion. These equations are nonlinear and their complete
numerical solution has not yet become possible for large
Reynolds number flows, such Large-eddy simulations
(LES) using state-of-the-art computers are probably the
most sophisticated, but also, the most expensive humerical
models of turbulence and diffusion [Deardorff (1972);
Lamb (1982); Nieuwstatt and Walk (1987)]. The large-
eddy simulations (LES) are based on analytical solutions
of the mean diffusion equation that is obtained by
Reynolds averaging of the instantaneous equation.
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where, C is an average concentration, u, v and w are
the components of wind speed, and M is molecular
diffusion and the last three terms are turbulence mass
fluxes. molecular diffusion terms can be neglected
because turbulence dominates the diffusion process. The
mean diffusion equation for a uniform mean flow is
reduced as follows:
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This can be solved if the terms on the right-hand side
can be specified in terms of the mean concentration field
as follows:

c'u'= —kX£
OX
. oC
c'w'= —kzg
0z
Substituting from Eqn. (3) in Egn. (2) yields:
o _oC o, oC) o, oC
—+tU—=—ki— |+—| ky—
ot oX  oOXx ox ) oy oy
_ (4)
0 oC
+—| ky—
oz oz

2.2. Continuous source

For an elevated continuous point source of an
effective height "H" above a reflecting ground surface, the
method of images yields:

H
2
z
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where, o, and ¢, are the dispersion parameters in
crosswind and vertical directions of the plume, Q is the

emission rate, e ™'V is the radioactive decay for isotope,
v=2.9 x 10" s for lodine-135.

(6)

H is the effective stack height; H = h, + Ah, his the
stack height and Ah is the plume rise, u is the mean wind
speed, and y, z are the crosswind and vertical coordinates,
respectively.

H =hg + Ah=h, +3(w/u) D @)

where, w is the exit velocity of the pollutants and D
is the internal stack diameter.

The ground level concentration (G. L.C.) at the
plume 's centerline is given by:
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Also, the maximum concentration is:

Q
C = 9
max 7ZU_EGyO'Z ©
2k X
o, = kax,a =./]——,and o, = 2K,
u y u u

Crosswind and vertical dispersion parameters for
convective conditions are taken from Lidiane et al. (2008)
into the form:

1
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where, n':—*zn; (fm)i is the reduced frequency
“(fm)i

z

of the convective spectral peak into the form(fn’; )

The advection diffusion equation in two dimensions can
be written as follows:

oC,(x,z oC,(x,z

u—y( )2 kz—y( ) (12)
X oz 0z

where, C, (x, z)is the crosswind integrated

concentration of pollutants, u is the wind speed (m/s) and
K, is vertical eddy diffusivity (m?s). One can solve the
advection-diffusion equation for non-homogeneous
turbulence by the Laplace transform technique. A
stepwise approximation has been performed on these
coefficients discretizing the height h of the PBL into N
sub-intervals in a manner of inside each sub-region, k(z)
and u(z), assuming the following average values:
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Then, Eqgn. (12) becomes:

oc

oc

_ Olyn(xz) \ “yn(x.z)
Uy = — 2 =ka(2) =2 (13)
For n=1:N.

Applying the Laplace transform on “x” under the
boundary conditions:

Cyn(o’zn):g5(zn _hs)

n

(M)

 (2) 5t g

atz,=0,h
oz
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where, hy is a stack height and “h” is a mixing height.

Then the equation (9) can be written as:

b

Integrating and substituting into the equation (14),
one gets:

ac %c
Uy, a—)y("e’s"dx = kn(z)J0 aT;'”e’sxdx
n

00

(14)
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Applying the boundary condition (i), one gets:

- Q
~ = 5(z, —h
- 2 (2, 1)

(16)

Now applying Laplace transform on z then:
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Substituting condition (ii), equation (17) becomes:
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c,. (s, p):cyn (s,0)F (s, p)—ge‘phSG(s, p) (19

where,

F(s, |0):(Lu

The inverse of Laplace transform on “z” is taken i.e.,
1= ~
L [cy(s,p),z]z ¢, (s.2)
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Applying the boundary condition (ii) one gets:
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— Q cosh [Rn(h_hs)]
"R, R,sinh(R,h)
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Substituting equation (25) for equation (22) then one

Cy,(

Y 5.0)=
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gets:
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a
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n

(26)

By using the Gaussian quadrature formulas, one gets
the concentration in three dimensions as follows:

werd- e al8)

[pu
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where, u(z) = 0.16*(%] *2P and

(27)

r
W
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u

2
J * 2" where w- is the convective vertical
.

velocity and u, is the reference wind speed.

2.3. Results and discussion
The observed data of I'* isotope concentration was
obtained from dispersion as experiments conducted in
unstable conditions air samples which were collected
around the Egyptian Atomic Energy Authority. The
vertical height is 0.7 m above ground from a stack height
of 43 m, for twenty-four hours working, where the air
samples were collected for half an hour at a height 0.7m
with a roughness length of 0.6 cm. The values of “p” and
‘n’” are functions of air stability are taken from Hanna
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TABLE 1

Power-law exponent “p” and ‘n’ are functions of air stability in urban area

A B C D E F
p 0.15 0.15 0.20 0.25 0.40 0.60
n 0.85 0.85 0.80 0.75 0.60 0.40
TABLE 2

Meteorological data of the nine convective test runs at Inshas site in March and May 2006

Working hours of Wind speed

Wind

P-G stability h Vertical

Run no. the source Release rate (Bq) (ms™) Direction(deg) W(ms™) class (m) distance (m)
1 48 1028571 4 301.1 2.27 A 600.85 5
2 49 1050000 4 278.7 3.05 A 801.13 10
3 15 42857.14 6 190.2 1.61 B 973 5
4 22 471428.6 4 197.9 1.23 C 888 5
5 23 492857.1 4 181.5 0.958 A 921 2
6 24 514285.7 4 347.3 13 D 443 8.0
7 28 1007143 4 330.8 151 C 1271 75
8 48.7 1043571 4 187.6 1.64 C 1842 75
9 48.25 1033929 4 141.7 21 A 1642 5.0

et al. (1982) and presented in Table 1. The meteorological
data during the experiments are taken from Essa and EI-
Otaify (2008) and presented in Table 2. The observed
concentration of 1** isotope, the predicted concentrations
of Eqgns. (6, 10, 11) and (27) below the plume 's centerline
are also presented in Table 3. A comparison between
predicted and observed concentrations of radioactive
I'* via downwind distance in unstable conditions at
Inshasis shown in Fig. 1, also, the relation between
predicted and observed concentration data is shown in
Fig. 2.

From the two figures, one finds that the best model is
obtained from Eqn. (27) because of the vertical eddy
diffusivity as a function of the power law into the vertical
height than the Gaussian plume model. The predicted
models achieved 99%. Also, the Gaussian model (6, 10,
11) gives a good result and achieved 79% because of the
strongest of the dispersion parameters (10, 11).

2.4. Statistical Technique of continuous source
Comparing between the Gaussian, predicted and

observed concentrations was introduced by (Hanna,
1989).
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Where, NMSE is the normalized mean square error,
FB is the fraction bias, COR is the correlation coefficient
and FAC2 is a factor of two.

One can easily see from Table 4, the statistical
technique shows that the entire proposed model inside a
factor of two with observed concentration data. Also, the
statistical shows that the predicted model Eqgn. (27) is the
best for NMSE, FB, COR and FAC2 than, the Gaussian
model Egns. (6, 10, 11) for homogeneity.

3. Instantaneous source

For an instantaneous point release at an effective
height H above the reflective ground surface. The
coordinates of the real and image source are (0, 0, H) and
(0, 0, -H), respectively. Then the concentration field due
to both the real and an image source in an infinite medium
is given by:

ip

c(y,z,t):(zﬁT

Q ex yz
P - 2
0,0, 20,

et ol

(28)
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TABLE3

Observed, Gaussian and predicted concentrations for Run 9 experiments

Test  Downwind distance (m) Observed conc.(Bg/m?) Gaussian conc. Eqns. (6,10,11) (Bg/m®)  Predicted conc. Eq.(27) (Bg/m®)
1 100 0.025 0.039975 0.027
2 98 0.037 0.03302 0.025
3 136 0.091 0.082803 0.086
4 135 0.197 0.166257 0.182
5) 106 0.272 0.274148 0.271
6 186 0.188 0.107066 0.234
7 165 0.447 0.216606 0.367
8 154 0.123 0.151414 0.111
9 106 0.032 0.044721 0.041
05 : : : : : TABLE 4
. Comparison between the Gaussian, predicted and observed
0.44 “ = observed i concentrations in unstable conditions
& —e— Gaussian A
= —A— Predicted NMSE FB COR FAC2
0.3 i
% a Gauss. Egn. (6, 10, 11) 0.35 0.23 0.84 0.79
c /
2 / x‘ . Pred. Eqn. (27) 0.04 0.05 0.98 0.99
8 0.2+ w/ \ i\ :
IS 3 "
2 . N
é 0.1 / o/ \ . vt
' /l \ where, € " is the radioactive decay for isotope,
;\é!/ ] v=2.9 x 10° s™for I'® and the effective height “H” is
00 " T " T T . T taken the form:
100 98 136 135 106 185 165 154 106
downwind distances (m) H =h, + Ah=h, + 3(W/ U)D ()
Fig. 1. Explains the relation between the Gaussian, predicted model . . .
and observed Concentrations (Bg/m®) via downwind where, w is the exit velocity of the pollutants, and D
distances is the internal stack diameter.
040 T T ,) T T
) ) s/ L)
€ 035+ J/ . o, =42k, t,o, =.,/2k,t and o, =4/2k,t d
E 1| = Gaussian S X X y y z z (d)
@ 0304 | @ Predicted / 7
9 . ,/ ]
8 025 ° ] where, k, =k, =0.4u.x (e)
c 7 L]
8 ,/ n
S 0.20- . e . . .
3 . where, u~ is the friction velocity.
@ 0.154 o /_,—"' i
S S The advection diffusion equation can be written as
= ’ u ,—/ -
i follows:
§ 0054 _,,/"/ i
2 M oclt.z)_ o[, ocltz) 29
O 0.00-f= T T T T T T T T T - z ( )
0.0 0.1 02 03 04 05 ot oz oz
Observed Concentration(Bg/m3)

Fig. 2.

Shows that the achieving between the Gaussian, predicted
concentrations with observed concentration

where, C(t, z) is the one-dimension time-dependent
concentration of pollutants, and K, is vertical eddy

668
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diffusivity that is taken as a function of the power law of
vertical distance. One can solve the advection-diffusion
equation for non-homogeneous turbulence by the Laplace
transform technique, A stepwise approximation has been
performed on these coefficients discretizing the height h
of the PBL into N sub-intervals in a manner of inside each
sub-region, k (z) assuming the following average values:

K =#j k(2)dz

n
Zna — L, z,

Then, Egn. (29) becomes:

ac o%c
yn(t,z) —k (7 yn(t,z) 30
i) i 7)) @)
For n=1:N.

Applying the Laplace transform on “t” under the
boundary conditions as follows:

Cyn(0.2,)=Q0(z, ~hy) (@)
Cyn(t2) _ _

kn(2) o0 at z=h(b)
Cyn(.2)

Kn (Z)T =V4Cy,(t0) at z=0 ()

where, “h” is a mixing height and vy is the deposition
velocity equals 0.01m/s for lodine-135.

Then the equation (30) can be written as:

w OC w OC
yn —It _ yn —It
jo —e olt_kn(z)j0 Ee dt (31)

Integrating and substituting into the equation (31),
one gets:

a%¢c, 1,
e, 0.2)416, 86.2) k2D (e
n n azn
Applying the boundary condition (a), one gets:
o%c, (,z) o)
yn L ~
T_Ecy" (I,z):—Eé(zn —h,) (33)

Now applying Laplace transform on z then:

ac, (1.0)
™

(34)

Eyyn(l,m)— cyn(I,O)Im N vdcyn(l,(:)
=) W)
nh n (35)
Qe ™™

Ey"(l,m)=cy"(I,O)H(I,m)—kge‘thG(l,m) (36)

n

where,

The inverse of Laplace transform on “z” is taken,
L‘l{léy[l,m],z“: ¢, (I.2)

T, F
¢, (I.z)= Sy 1.0) e\/: 4o Vo + 36, 0 (L0)
: 2k,

2

2k, V s
e\/%(PhS) - ei\/%(HS) H(z-h)

/I
LetR, = PR and R, =4Ik,
n

(37)
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N c, (10) ) Vacy (10)
cyn(s,z)=yT(eR"Z+e R“Z)+ZVT

(e Ry(z-h) e—Rn(z—hs))

n
(e Riz , R )_ %

H(z-h;)

a

(38)

¢, (Iz)=c, (I ,O{cosh R,z +2kﬂsinh anj
" (39)
~Q gimn R,(z—hg)*xH(z-h)

a
Applying the boundary condition (ii) one gets:

kn(z)gcyn(l,z):o at z=h then:

%Cyn (1,2)=Rqc, (1,0) (sinh R 2+ 2%/:
Ry 0sh R, (2, JH(z -, )——Lsinh R, (zh,)

a a

0
EH(z—hs)

cosh R, Zj

Q

(40)

c, (I,O{sinh R,z +2Rﬂcosh anj:Rgcosh @)
a a
[Rn(h_hs)H (h_hs)]

Q coshR, (h—hy)

R
é [sinh Rnh+%cosh R,h ]

a

(42)

c, (10)=

Substituting equation (42) for equation (40) then one
gets:

g, (1,2)= i

cosh I—(h—hs) coshR,z +2isinhan
kn kn

(sinhRthrzRvdcoshRnh]

a

- O ginh Ry(z—hg)*H(z-hy)

(43)
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Fig. 3. Shows that the relation between the Gaussian, previous

work, predicted model and observed Concentrations (Bg/m®)
via downwind distances

TABLE 5

Observed, the Gaussian, Previous work and predicted
concentrations for Run 9 experiments

Downwind Gaussian Previous  Predicted
Test distance Observed3 conc.Egns. workEssaet  conc.
(m) conc.(Bg/m®) (28, c, dé e) al., Eq.(443)
(Bg/m°)  2019(Bg/m3) (Bg/m°)

1 100 0.025 0.049 0.0558 0.02408
2 98 0.037 0.046 0.0334 0.034

3 136 0.091 0.129 0.0809 0.1

4 135 0.197 0.252 0.2609 0.2217
5 106 0.272 0.303 0.2373 0.255
6 186 0.188 0.162 0.1757 0.1907
7 165 0.447 0.236 0.3888 0.484
8 154 0.123 0.060 0.0609 0.163
9 106 0.032 0.045 0.0082 0.0265

By using Gaussian quadrature formulas, one gets:

[

t

cosh |-t (h—h,)| cosh Py Do ginn [Piy
t, th, K, t,

sinh_|Pin+ 2V cosn [Pip
kR, t,

2

Qexp(_y - J
20, s
>

C It )=——F——S )
Yn(y ) mgy i=1

(44)
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T T T L T T T
m  GaussianT ,/
e PredictedT /
A Previous J

0.5

02 0.3 0.4
Observed Concentration(Bg/m?3)

T
0.1

0.5

Gaussian, Previous, Predicted Concentrations(Bg/m3)

Fig. 4. Shows that the achieving between the Gaussian, previous

work, predicted concentrations with observed concentration
TABLE 6

Comparison between the Gaussian, predicted and observed
concentrations in unstable conditions

NMSE FB COR FAC2

Gaussian Equations (28, c,d,e)  0.28 0.096 081 091
Pred. Eqn. (44) 0.02 -0.06 099 11
Previous work 0.05 0.08 096 092

The observed concentration of I'®* the predicted
concentrations of Eqns. (28, ¢, d, €), previous work (Essa
et al., 2019) and Eqn. (44) below the plume 's centerline
are also presented in Table 5. A comparison between the
Gaussian, previous work, predicted and observed
concentrations of radioactive 1'* via downwind distance
in unstable conditions at Inshas are shown in Fig. 3, also,
the relation between the Gaussian, previous work,
predicted and observed concentration data are shown in
Fig. 4.

One finds that the best model when we use Eqn. (44)
and the previous work because of the vertical eddy
diffusivity as a function of the power law of the vertical
height also, the predicted, previous work (Essa et al.,
2019) and the Gaussian plume model of Egns. (28, c, d,
e)lie inside a factor of two. The predicted, the previous
work and the Gaussian plume model achieved 100%,
0.92% and 91% respectively.

3.1. Statistical Technique of instanteous source
Comparing between the Gaussian, predicted and

observed concentrations was introduced by (Hanna,
1989).
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where, NMSE is the normalized mean square error,
FB is the fraction bias, COR is the correlation coefficient
and FAC?2 is a factor of two.

One can easily see from Table 6,the statistical
technique shows that the entire proposed models and the
previous work are located inside a factor of two with
observed concentration data. Also, the statistical shows
that the predicted model Eqn. (44) and the previous work
are the best for NMSE, FB, COR and FAC2 than the
Gaussian model Egns. (28, c, d, ) which acts a good
model.

4.  Conclusions

In this work, one-dimension time-dependent and
three dimensions of the advection-diffusion equation
(ADE) of the steady state has been solved analytically. To
get the concentration into the atmospheric boundary layer
(ABL) taking into account the assumption that the ABL
height (h) and the wind speed are divided into sub-layers
intervals within each rectangular area the ADE is
estimated by using the Laplace transform method
assuming the mean values of wind speed and eddy
diffusivity. The proposed model, the Gaussian plume
model and previous work (Essa et al., 2019) was
compared with the observed concentration of lodine-135
which was measured at the Egyptian Atomic Energy
Authority, Nuclear Research Reactor, Inshas, Cairo,

Egypt.

From the three dimensions of the advection-diffusion
equation (ADE) of the steady state in continuous source,
we get the best model when uses Eqn. (27) than the
Gaussian plume model, because of the vertical eddy
diffusivity as a function of the power law into the vertical
height. The predicted models achieved 99%. Also, the
Gaussian model using Eqgns. (6, 10, 11) gives a good result
and achieved 79% because of the strongest of the
dispersion parameters (10, 11).

Also, from one-dimension time-dependent the
advection-diffusion equation in instantaneous source, one
finds that the best model when we, use Eqn. (44) and the
previous work (Essa et al., 2019) because of the vertical
eddy diffusivity as a function of the power law into the
vertical height, also, the predicted, previous models and
the Gaussian lie inside a factor of two. The predicted
model, the previous work and the Gaussian model
achieved 100%, 92% and 91% respectively.

Also, the statistical analysis shows that there is a
good agreement between the proposed, the previous work
(Essa et al., 2019) and experimental values of
concentration than the Gaussian plume model.
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