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सार — भं्रश प्रणाली में भूकंपीय रूप से सक्रिय के्षत्र होते हैं जिनके आस-पास अनेक भूकंप भं्रश होते हैं। इनमें से 
क्रकसी एक में भी संचलन उत् पन् न होने से आस-पास के अन् य के्षत्ररों  में प्रितलल संिचत होने क  प्रकत ित प्रभाितत होती ह।। 
इन परस् पर क्रियांं रर ोो लाातार भूकंपीय टननांं के लीच में ा।र भूकंपीय अति  के ोररान अंतर-भूकंपीय प्रितलल 
के प्रितरूप का अध् ययन करने के िलए ािणतीय मडलल ितकिसत क्रकए िा सकते हैं। प्रस् तुत शो  पत्र में स् ल मंलल- 
स्  ेनो स्   यर प्रणाली को एक रेयीय ‍ यान प्रत् यास्   के आ े स्  ान ाहा  स् पेसद वातारा ोशााया ाया ह।। आ े स्  ान क  
सामग्री में म।क् सतेल रर केजव तन प्रकत ित ोोनरों  क  सामग्री के ाुण होने संभातना ह।। अनुमान ह। क्रक यह प्रणाली कुछ 
ितततानी टननांं वातारा उत् पन् न एक जस्  र अपरूपण प्रितलल के अ ीन होती ह।। पणरणामी सीमा मूव य क  समस् या से 
उत् पन् न ितस्  ापन कुकात रर प्रितलल का समा ान प्रा‍ त करने के िलए इंनीग्रल ्ांस डमा, ग्रीन  क् शन तकनीक रर 
अनुकूलता िसवा ांत का उपयोा क्रकया ाया ह।। भ्रंशरों  में परस् पर क्रियांं क  प्रकत ित का पता लााने के िलए अंक य 
ाणनांं हेतु मडलल प्राचलरों  के उपयुक् त आकलनरों  का उपयोा क्रकया ाया। 

 
ABSTRACT. There are seismically active regions consisting of fault system with a number of neighbouring 

earthquake faults. A movement across any one of them may affect the nature of stress accumulation near the others. 

Mathematical models may be developed to study these interactions and the pattern of interseismic stresses during the 

aseismic period in between two consecutive seismic events. In this paper, the lithosphere-asthenosphere system is being 

represented by a linear viscoelastic half space. The material of the half space is expected to possess the properties of both 

Maxwell and Kelvin type materials. It is assumed that the system is under a steady shear stress generated by some 

tectonic phenomena. For obtaining the solution for displacement, strain and stresses from the resulting boundary value 

problem, Integral transform, Green’s function techenique and correspondence principle have been used. Appropriate 

estimates of the model parameters were used in carrying out the numerical computations for investigating the nature of 

interactions among the faults. 
 

Key words  –  Linear viscoelastic lithosphere-asthenosphere system, Strike slip fault, Aseismic period, Stress 

accumulation, Interseismic stress, Earthquake prediction.  

 

1.  Introduction 

 

Occurrence of an earthquake is a cyclic phenomena, 

two major seismic events are usually separated by a 
comparatively long aseismic periods of the order of a few 

decades or so. To understand the mechanism of 

earthquake process it is necessary to develop models of 

both the earthquake phenomena producing seismic 

disturbance lasting for a short period of time, as well as 

the slow ground deformation observed during the aseismic 

period, which may exist over several tens of years. 

The small ground deformation during the aseismic 

period attracts the attention of the seismologists because 

of the fact that this aseismic period may be looked upon as 

the preparatory period for the next major seismic event. 
Some theoretical models have been developed in the 

lithosphere-asthenosphere syatem during aseismic period 

in a seismically active regions by Savage and Prescott 

(1978); Mukhopadhyay and Mukherjii (1979, 1984, 

1986); Cohen (1980a,b); Cohen (1984) and others. In             

the present paper, we are developing a mathematical              

model  highlighting  the  essential  features of such ground 
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Fig. 1. The faults and the co-ordinate axes 

 
 
deformation and interseismic and post seismic stress 

during the aseismic period which typically precedes and 

follows two major seismic events in a seismically active 

region in the presence of earthquake faults. 

 

Most of the seismically active regions usually consist 

of faults systems comprising of a number of faults which 

are closely located within a specific region. For example, 

in North America, San Andreas fault system, the Hayward 

and Calaveras faults are roughly parallel and are closed to 

the main San Andreas fault. A movement across any one 

of them is likely to affect the pattern of stress 

accumulation near the others. Some theroritical models 

with interacting fault system during aseismic period have 

been developed by Mukhopadhyay et al. (1979c, 1988); 

Mukhopadhyay and Mukherjii (1984, 1986); Ghosh et al. 

(1992); Debnath and  Sen (2014a, 2014b, 2015); Manna 

and Sen (2017). Most of the earlier work dealt with 

elastic/viscoelasticlayer in welded contact with a 

viscoelastic half space or in a viscoelastic half space of 

Maxwell type followings Mukhopadhyay et al. (1978, 

1978a, 1978b, 1979a, 1979b, 1988); Fred (1992). Post 

seismic relaxation effects in a linear viscoelastic Maxwell 

type material was discussed by Pollitz. However, the 

properties of the material in the lithosphere-asthenosphere 

system indicates that different other types of viscoelastic 

material may also be relevant. We therefore introduce 

linear viscoelastic half space in order to represent the 

lithosphere-asthenosphere system featuring the properties 

of both Maxwell and Kelvin-Voigt type.   

 

Stresses are accumulated in the model under the 

action of tectonic phenomena including mantle 

convection. Now by the effects of intersiesmic stress it 

accumulated exceeds the local cohesive and frictional 

forces which keep the fault locked, the fault starts moving. 

Depending upon the local rheological nature of the region, 

the movement across the fault may be sudden in nature 

leading to an earthquake or alternatively, a creeping 

movement across the fault which releases the accumulated 

stress near it. 

In most of the earlier studies the faults were assumed 

to be quite long compared to its depth, so that the problem 

reduced to a 2D model. In view of the fact that there are 

numerous other faults which are not so long compared to 

their depth, a 3D model is imminent. 

 

In view of this we consider two neighbouring strike 

slip faults of finite length situated in a linear viscoelastic 

solid, one of which is taken to be surface breaking while 

the other is buried.  

 

2. Formulation 

 

We are considering two rectangular vertical strike-

slip faults F1 and F2 of length 2L1 and 2L2 (L1, L2 finite) 

supposed to be situated in a linearly viscoelastic half 

space. Let D1 and D2 be their respective widths.  

 

We are introducing a rectangular Cartesian 

coordinate system (Y1, Y2, Y3) is used by the midpoint O of 

the upper edge of the fault F1, which is taken to be 

surface-breaking, as the origin, the strike of the fault as 

the Y1 axis, Y2 axis perpendicular to the fault and Y3 axis 

pointing towards the downwards direction so that the fault 

F1 is given by  1321111 0,0,: DyyLyLF  . For 

convenience, we introduce another rectangular system           

(Z1, Z 2, Z3) for the second fault F2 which is taken to be 

buried as shown in [Fig. 1]. Fault F2 is given by

 2322122 ,0,: DzdzLzLF  , d being the depth 

of the upper edge of F2 below the free surface. The 

relationships between (Y1, Y2, Y3) & (Z1, Z2, Z3) are given by:  

 

z1 = y1,     z2 = y2 – D,     z3 = y3 – d 

 

2.1.  Constitutive equations (stress-strain relations) 
   

For the linear viscoelastic type materials the 

constitutive equations may be taken as: 
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where,   is the effective viscosity and µ is the 

effective rigidity of the material. 

 

2.2. Stress equation of motion 

 

The equation of motion (explained underneath) for 

quasistatic deformation is satisfied by these stresses; but, 

in that case, the inertia terms are neglected. 
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where,  0,0,, 321  tyyy

  

2.3. Boundary conditions 

   

The boundary conditions are assumed as, with t = 0 

representing a suitable instant when the medium remains 

in a seismic state: 
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where, 
1L is the constant stress maintained at the 

tips of the fault along the Y1 axis. It is likely that its 

magnitude will be small enough to exclude the             

possibility of any further extension along the Y1              

direction. 

 

Similarly for the fault F2 :  
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For the stresses we assume: 
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On the free surface  0,,,0 213  tyyy  
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Also, as
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[where,  t  is the shear stress maintained by 

mantle convection and other tectonic phenomena far away 

from the fault]. 
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2.4. Initial conditions 

   

Let

 

          3,2,1,,,,,
00000 jiewvu ijij

 

are the 

values of ijij ewvu ,,,,   respectively at time t = 0.             

They are functions of y1, y2, y3 and satisfy the relations (1) 

to (19). 

 

3. Displacements, stresses and strains in the absence 

of any fault movement 

 

When there is no fault movement, the displacements, 

stresses and strains are assumed to be continuous 

throughout the system. For obtaining displacement, strain 

and stresses, we are introducing Integral transform like 

Laplace transform of (1) to (19) are taken with respect to 

t. On taking inverse Laplace transform we get the 

solutions. 
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From the above expressions we find that as

  1211 ,,
1Lt and all the others stress 

components .0,,, 33232213 
 

However the 

rheological behaviour of the material near the fault F1 is 

assumed to be capable of withstanding stress of magnitude

 
1c  called critical value of the stress where  

1c is less 

than  .  When the accumulated stress 12  becomes large 

enough near the fault and exceeds this threshold value

  ,
1c a sudden slip across   occurs after a time t = T1 and 

thereby releasing the accumulated stress to a lower value. 

Following Debnath and Sen (2013) the magnitude of slip 

is likely to satisfy the following conditions: 
 

(C1) Its magnitude will be maximum near the middle 

of the fault on the free surface. 
 

(C2) Its magnitude will gradually decrease to zero at the 

tips of the fault  13211 0,0, DyyLy   along its length. 

 

(C3) The magnitude of the slip will decrease 

downwards with y3 and ultimately tends to zero near the 

lower edge of the fault  13211 ,0, DyyLy  . 
  

 

If f(y1, y3) be the slip function, it should satisfy the 

above conditions. 
 

It is assumed that the critical value of the stress, say 

  ,
2c  near F2 is greater than   ,

1c so that when F1 slips, 

F2 remains locked. 
 

4. Solutions after the commencement of the                

fault movement across F1 and after the fault slip 

across F2 
 

We consider first the movement across F1, while F2 

remains locked. 
 

Let us suppose that after a time T1, the stress 

component 12 , the main driving force behind the strike-

slip motion of the fault F1, exceeds the critical value   ,
1c  

F1 slips, which is characterized by the following 

dislocation condition: 
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where, 

 

 
1Fu = The discontinuity in u across F1 and 

 1TtH  is Heaviside unit step function. 
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Similarly, we are considering the fault slips 

commence across F2 after time T2 and calculating in a 

similar way. 

 

The resulting boundary value problem can be            

solved by using a modified Green's function technique      

and correspondence principle, following Maruyama 

(1964, 1966); Rybicki (1971) and this technique   has been 

explained by Mukhopadhyay et al. (1980a) and we get the 

final solution for displacements, strains and stresses as: 
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where,  
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Similarly 432 ,,  and 4321 ,,,  are obtained 

from 4321 ,,,   by substituting y1 = z1, y2 = z2 + D,     

y3 = z3 + d and D1 by D2. 

   
5. Results and discussion 

  
Numerical computations have been carried out to 

compute the following quantities:  
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= The strain before the fault movement due to the 

tectonic forces. 
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= The stress due to the fault movement across F1 and 

F2 at some particular point. 
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= Stress contour showing the effect of fault 

movement across F1 at different points near F2. 
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= Stress contour showing the effect of fault 

movement across F2 at different points near F1  
 

(v) Stress contour map after the sudden movement 

across F1 (F2 remains locked) on different planes given           

y2 = -10 km, 5 km, 15 km. 
 

(vi) Stress contour map after the sudden movement 

across both F1 and F2 on different planes given by                    

y2 = -10 km, 5 km, 15 km. 
 

Following  Catlhes (1975); Aki and Richards (1980) 

and the contemporary studies on rheological behaviour of 

crust and upper mantle by  Chift et al. (2002), Karato 

(2010) the values for the model parameters have been 

chosen for numerical computation. 

 

We consider  31, xxf to be  
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which satisfies all conditions (C1) to (C3) stated above. 

 

poise105,dyne/sq.cm105.3 2011    

 

For fault F1 (Surface breaking)  

 

Length 2L1 = 40 km, Width D1 = 10 km 

 

For fault F2 (Buried), length 2L2 = 50 km, 

 

Width D2 = 15 km 

 
D  =  Horizontal distance between F1 and             

F2 = 10 km 

 

 
012  =  20 bar (assumed) 

 

 
p12  =  40 bar (assuming 80% stress released

  
1

of%80 c  
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Fig. 2.  Surface shear strains under the action of tectonic forces in the 

absence of fault movement 
 
 

 

  = 300 bar,  
1c = 200 bar,  

2c = 250 bar 

 

T1  =  The time for fault movement across F1 is 

found to be 47 years. 

 

T2  =  The time for the second fault movement 

across F2 is found to be 79 years. 
 

6. Observations 
 

6.1. Strain at the free surface due to the tectonic 

forces   

 

It is observed from [Fig. 2] that the rate of strain 

accumulation is ~8 × 10
-6

/year initially with a decreasing 

rate and reduces approximates to a value 6 × 10
-6

/year 

which is in conformity with the observations in 

seismically active regions. 

 

6.2. Stress 12 in the medium against time 

  

In [Fig. 3],  
112T have been shown at a point given 

by y1 = 5 km, y2 = 5 km and y3 = 5 km. We observed that 

for 121,0 Tt  increases with a decreasing rate and attain 

the value near 200 bar at t = 47 years (= T1). Due to the 

movement across F1 there is a co-seismic stress drop as 

shown by [Fig. 3]. The stress again increases, but at a 

lower rate until it reaches the value near  
2c  after at a 

time t = T2 when the second fault F2 slips with another co-

seismic stress drop. The stress at the point is found to 

increase further, but with a slow increasing rate and 

reaches the value 265 bar at t = 200 years. 

 
 

Fig. 3. Stress 12  in the medium against time 

 

 
 

Fig. 4. Stress 12 : Effect of fault movement across F1 near F2 

 

 
 

Fig. 5. Stress 12
 
: Effect of fault movement across F2 near F1 
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Figs. 6(a&b). (a) Stress 12
 
: Effect of fault movement across F1 on three different vertical planes given by y2 = (i) -10 km, (ii) 5 km and            

(iii) 15 km and (b) Stress 12 : Effect of fault movement across F2 on three different vertical planes given by y2 = (i) -10 km,       

(ii) 5 km and (iii) 15 km 

(i) y2 = -10 km 

 

(ii) y2 = 5 km 

 

(iii) y2 = 15 km 

 

(i) y2 = -10 km 

 

(ii) y2 = 5 km 

 

(iii) y2 = 15 km 

 

(b) (a) 
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Fig. 7.  Estimation of time gap to the next seismic event near                        
F1 (at y1 = 1 km, y2 = 0.5 km, y3 = 5 km) 

 

 

6.3. Stress 12   effect of fault slip across F1 

 

The stress contour has been shown in [Fig. 4] with              

y2 = 10 km. The magnitude of the stress varies from                

–10 bar to 10 bar concentration of the magnitude of                 

the stress have been found to lie on both sides of the 

middle line y1 = 0 but with opposite direction as is           

evident from [Fig. 4]. 

 

6.4. Stress 12   effect of fault movement across F2 

near F1  

 

It is observed from [Fig. 5] that the effect of fault 

movement across the fault F2 near the fault F1. It is also 

observed that accumulation pattern of stress is much 

distinct in this case and the magnitude of the stress are 

nearly alike to the previous one. 

 

6.5. Stress 12   effect of fault movement across F1 

[Fig. 6(a)] and F2 [Fig. 6(b)] respectively on 

three different vertical planes given by                  

y2 = -10 km, 5 km, 15 km 

 

In the [Figs. 6(a&b)] we find that there are                    

certain areas of stress accumulation and certain other  

areas of stress release. The magnitude of the stress 

depends upon the value of y2. For small y2 the magnitude 

of the stresses is found to be large while for higher values 

of the y2 the magnitudes are found to be comparatively 

smaller.   
 

7. A prediction of the next slipping movement  

across F1 
 

We can used the above result suitably for earthquake 

prediction purposes. In the present work F1 slips after a 

lapse of 48 years when it reaches a value c . The 

movement across fault F1 affects the nature of stress 

accumulation in the regions near it. It is assumed that the 

slipping movement causes 80% of the accumulated stress 

near F1 to be released. This means the initial value  
p

T12  

at the second phase of aseismic period becomes 20% of  

c , that is 40 bars. With the slipping across F1, the stress 

starts accumulating in a different way. [Fig. 7] shows the 

accumulation of stress at a point near the fault F1 given by 

(y1 =1 km, y2 = 0.5 km, y3 = 5 km) during the second 

phase of aseismic state. The pink curve shows 

accumulation of stress under the combined action of    

and the slip across F1, while the blue curve indicates the 

accumulation of stress under the action of   only. The 

figure shows that after a lapse of another 62 years, the 

pink curve reaches the threshold level (200 bars). 

However, in the absence of any movement across F1 the 

red curve would have reached the threshold level after 42 

years. These observations allow us to conclude that the 

next possible seismic event will likely be delayed by about 

20 years due to the movement across F1. Such 

observations may be expected to prove fruitful in 

predicting the next seismic event. 

 

(i) Accumulation of 12
 
during the first phase of the a 

seismic state due to the effect of   with   
012  = 20 bars. 

 

(ii) Accumulation of 12  during the second phase of the a 

seismic state under the action of   only with  
p12 = 40 bars. 

 

(iii)  Accumulation of 12  under the action of   along 

with the effect of the fault movement across F1 during the 

second phase of the aseismic state. 
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