
 
 

 

1039 

 

 

 

MAUSAM 

 

 

 

 

 

 

 

 
 

 

UDC No. 551.509.3131:551.575:004.383.8 

 

Machine Learning Approach in the Prediction of Fog: An Early Warning System 

 
 ANAND SHANKAR#*, ASHISH KUMAR* and VIVEK SINHA** 

 #Department of Electronics & Communication Engineering, National Institute of Technology, Patna, India. 

*India Meteorological Department, Ministry of Earth Sciences, Govt. of India, Patna, India. 

**India Meteorological Department, Ministry of Earth Sciences, Govt. of India, New Delhi, India. 

(Received 09 June 2022, Accepted 17June 2024) 

e mail: anands.ph21.ec@nitp.ac.in 

 

 

 

सार—विमानन क्षेत्र कोहरे के प्रति बेहद संिेदनशील है। इसललए, विमानन क्षेत्र की दक्षिा, विशेष रूप से हिाईअड्डा 
प्रबधंन और उडान समय-तनधाारण के ललए सटीक कोहरे की पिूाानमुान आिश्यक है। संख्यात्मक मौसम पिूाानमुान मॉडल 
और मार्ादशाक प्रणाललयों के साथ भी कोहरे की पिूाानमुान चनुौिीपणूा है। कोहरे के पिूाानमुान की कठिनाई का कारण 
सूक्ष्म पमैाने के कारकों की समझ है जो सीमा परि में कोहरे के बनने, िीव्र होने, बढ़ने और फैलने का कारण बनिे हैं। 
इस अध्ययन का उद्देश्य यह देखना है कक मशीन लतनिंर् (ML) उपकरण भारि के इंडो-र्ांरे्य के मैदानों (IGP) का एक 
प्रतितनधध स्टेशन जय प्रकाश नारायण अिंरााष्ट्रीय हिाई अड्ड े(ICAO इंडेक्स-VEPT) पर कोहरे (दृश्यिा <1000 मीटर) 
और घने कोहरे (दृश्यिा <200 मीटर) का पिूाानमुान ककिनी सटीकिा से कर सकिे हैं। प्रस्िाविि एनसेंबल ML-आधाररि 
मॉडल को 2014 से 2020 िक प्रति घटें के लसनॉप्टटक डेटा का उपयोर् करके प्रलशक्षक्षि ककया र्या और 2021 से 2022 
(ठदसंबर से फरिरी) िक के डेटा का उपयोर् करके परीक्षण ककया र्या। एक बार जब विशेषिाए ंचनु ली जािी हैं और 
पिूाानमुानकिााओ ं के स्थानीय ज्ञान को ध्यान में रखा जािा है, िो प्रस्िाविि ML मॉडल बनाने के ललए शुष्ट्क बल्ब 
िापमान (डडग्री सेप्ल्सयस), ओस बबदं ुिापमान (डडग्री सेप्ल्सयस), सापेक्ष आर्द्ािा (%), बादल की मात्रा (ऑक्टा), हिा की 
ठदशा (सही उत्तर से डडग्री) और हिा की र्ति (नॉट्स) का उपयोर् ककया जािा है। 0000 UTC पर अर्ले ठदन कोहरे 
(दृश्यिा <1000 मीटर) और घने कोहरे (दृश्यिा <200 मीटर) का पिूाानमुान करने के ललए 1500 से 2200 UTC के मौसम 
संबधंी डेटा पर ML एल्र्ोररदम को प्रलशक्षक्षि ककया र्या, प्जसमें दो घटें का अग्रकाल था। 00 UTC पर 4 घटें के 
अग्रकाल के साथ कोहरे के पिूाानमुान के ललए, ML मॉडल को 13 से 20 UTC और इसी िरह के डेटा के साथ प्रलशक्षक्षि 
ककया र्या। यह अध्ययन छह लेिल 0 ML मॉडल में प्राचल ट्यतूनरं् का मूल्यांकन करिा है: वििररि रैंडम फॉरेस्ट 
(DFR), डीप लतनिंर् (DL), गे्रडडएंट बपू्स्टंर् मशीन (GBM), सामान्यीकृि रैखखक मॉडल (GLM), एक्सरीमली रैंडमाइज्ड 
री (XRT), एक्सजीबसू्ट, और लेिल 1 पर स्टैक्ड एन्सेम्बल। प्रदशान मेठरक्स और सांप्ख्यकीय कौशल स्कोर संकेि देिे 
हैं कक SRF और DL मॉडल कोहरे (दृश्यिा <1000 मीटर) और घने कोहरे (दृश्यिा <200 मीटर) के ललए लेिल 0 पर 2 
और 4 घटें के अग्रकाल के ललए अच्छा प्रदशान करिे हैं। लेककन प्रस्िाविि एन्सेम्बल मॉडल लेिल 0 पर सभी बेस मॉडल 
से बेहिर प्रदशान करिे हैं और पटना एयरपोटा पर कोहरे की पिूाानमुान करने के ललए सबसे अच्छे उपकरण के रूप में 
पहचाने जािे हैं। 

 
ABSTRACT. The aviation sector is extremely vulnerable to fog. Thus, accurate fog predictions are essential for 

aviation sector efficiency, particularly airport management and flight scheduling. Even with numerical weather prediction 

models and guiding systems, fog prediction is challenging. The difficulty of fog prediction is due to the inability to grasp 
the micro-scale factors that cause fog to form, intensify, augment and dissipate in the boundary layer. This study looks at 

how well machine learning (ML) tools can predict fog (Visibility <1000 m) and dense fog (Visibility <200 m) at India's 

Jay Prakash Narayan International Airport (ICAO Index-VEPT), a representative station of the Indo-Gangetic Plains 
(IGP). The proposed ensemble ML-based model was trained using hourly synoptic data from 2014 to 2020 and tested 

using data from 2021 to 2022 (December to February). Once the features are chosen and the forecasters' local knowledge 

is taken into account, the dry bulb temperature (°C), dew point temperature (°C), relative humidity (%), cloud amount 
(octa), wind direction (degrees from true north) and wind speed (knots) are used to build the proposed ML models. ML 

algorithms were trained on meteorological data from 1500 to 2200 UTC to predict fog (Visibility <1000 m) and dense 

fog (Visibility <200 m) for the next day at 0000 UTC, with a two-hour lead time. For fog forecasting at 0000 UTC with a 
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4-hour lead time, ML models were trained with data from 1300 to 2000 UTC and so on. This study evaluates parameter 

tuning in six level 0 ML models: distributed random forest (DFR), deep learning (DL), gradient boosting machine 

(GBM), generalized linear model (GLM), extremely randomized tree (XRT), XG Boost and stacked ensemble at level 1. 
The performance metrics and statistical skill scores indicate that DRF and DL models perform well for lead times of 2 

and 4 hours at level 0 for fog (visibility <1000 m) and dense fog (visibility <200 m). But the proposed ensemble models 

outperform all the base models at level 0 and are recognized as the best instrument for predicting fog at Patna Airport. 

 
Key words - Fog prediction, Machine learning algorithms, Indo-Gangetic plains, Ensembling, Aviation services. 
 

 
1. Introduction 

 

Fog is a suspension of microscopic water or ice 

droplets that reduces horizontal visibility on Earth to less 

than one kilometer (World Meteorological Organization 

2018, 2019). Another local setting of the fog indicator is 

relative humidity, which should be 90% or above (IMD, 

Ministry of Earth Sciences, 2021). Fog forms when 

surface temperatures are low, the wind is light, and 

atmospheric conditions are stable, chilling the surface 

layer to near saturation. Other than radiation fog, which 

forms in situ, advection fog can grow on a huge landmass 

and travel to neighboring locations as the wind blows.  In 

the Indo-Gangetic Plains (IGP) regions, the three months 

of the year, namely December, January and February, are 

noted for intense fog spells. Therefore, most of the 

economic losses and mishaps because of low visibility 

usually occur in only these three months. Large-scale fog 

hampers surface, rail and air transportation, causing 

economic loss. Recent fog research in India found 

worrying increases in fog and land pollution in these 

specific months in the IGP, causing socio-economic issues 

(Tyagi et al., 2017). Dense fog causes aircraft delays, 

cancellations, and diversion at airports (Mitsokapas et al., 

2021), suffering passengers and costing airlines money 

(Shankar and Giri, 2024). Low visibility of less than 800 

metres impairs takeoff and landing at major airports in this 

region (Hosea, 2019). Modern airports feature an ILS, but 

pilots still need a visual reference to land. Low visibility 

can severely impair air navigation. The proposed study 

uses ensemble ML approaches to predict fog (visibility 

<1000 m) and dense fog (visibility <200 m) at 0000 UTC 

at Patna airport. The 2014-22 datasets of the foggy 

seasons in the IGP regions (December to February) were 

used to train and test the ML-based ensemble model. For 

proper evaluation and ML model parameter adjustment, 

the statistical characterization of Patna Airport fog is also 

looked into. The study yielded encouraging results that 

could benefit aviation services by tapping the potential of 

an ensemble of ML approaches. The paper is organized as 

follows: The related works are presented in Section 2, the 

explanation of the study areas and datasets presented in 

Section 3, the detailed methodology discussed in Section 

4, the results in Section 5, and the discussion and 

definitive conclusion presented in Sections 6 and 7, 

respectively. 

 

2.  Related works 

 

Most studies on fog have used statistics to describe 

its short- and long-term persistence (Belo-Pereira and 

Santos, 2016; Cornejo-Bueno et al., 2020; Salcedo-Sanz 

et al., 2021), long- and short-term period (Izett et al., 

2019), onset (Steeneveld et al., 2015; Kutty et al., 2019), 

and dynamic process (Haeffelin et al., 2013; Mazoyer et 

al., 2017). Out of this, most of the studies are based on 

conventional regression methods with a limited success 

rate. With the help of local causative factors, data-driven 

ML approaches are showing increasing promise and have 

the potential to revolutionize visibility forecasting. In the 

last decade, ML techniques have been successfully 

applied to predict low visibility and fog-related extreme 

events in some countries (Boudala et al., 2012; 

Jonnalagadda and Hashemi, 2020; Miao et al., 2020). 

Neural networks (Colabone et al., 2015), Bayesian 

decisions (Boneh et al., 2015), support vector regression 

(Cornejo-Bueno et al., 2017), Extreme Learning Machines 

(ELM) (Cornejo-Bueno et al., 2021), and evolutionary 

neural approaches (Durán-Rosal et al., 2018) are 

examples. Airport fog prediction is the focus of several of 

these earlier works. Other research examines fog's 

meteorological causes (Stolaki et al., 2015; La et al., 

2020). Some studies are also using the Decision Tree 

algorithm to forecast fog using NWP model output 

weather data (Bartoková et al., 2015) and synoptic 

weather observed data (Shatunova et al., 2015). Table 1 

lists the major contributions to fog prediction using ML 

approaches. 
 

Despite many studies, understanding complex and 

chaotic atmospheric processes on a short time and domain 

scale remains one of the biggest challenges for location-

specific fog (visibility) forecasts. The NWP model has 

only partially resolved several of these interconnected 

processes (Singh et al., 2018; Pahlavan et al., 2021) with 

limited success. In numerical weather-predicting models, 

fog prediction is sensitive to initial conditions; therefore, 

any error in the initial condition causes a large-scale 

difference between predicted and actual values. Even with 

these drawbacks, NWP multi-rule-based post-processing 

fog prediction is a promising method (Payra and Mohan, 

2014). However, a machine learning-based prediction 

model uses its memory function to identify and match  the  
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Figs. 1(a&b). The geographical location of Jay Prakash Narayan International Airport Patna(a) in India (b) and the capital cities of  

Patna and its airport. 

 
TABLE 1 

 

Important Works Related to the Prediction of Fog. 

  

ML approaches in the prediction of fog Contribution and differences with the previous approaches 

Application of deep learning in airport visibility forecasting  

(Zhu et al., 2017). 

The neural network-based DNN technique is used to forecast the low-

visibility range. The proposed model sometimes shows an error of more 

than 2000 m. However, the innovative deep learning used in visibility 

forecasting has great promise for the future. 

Probabilistic Nowcasting of Low-Visibility Procedure States at 

Vienna International Airport During the cold season  

(Kneringer    et al., 2019). 

The probabilistic forecasting technique is based on ordered logistic 

regression. Used the best viable resources to overcome the visibility of 

the airports, the accuracy and sensitivity of the models are limited. 

Probabilistic Visibility Forecasting Using Bayesian Model 

Averaging  

(Boneh et al.,2015) 

The proposed model is based on the Bayesian decision network. Models 

show great promise but lack robustness in the model outcome. 

 
 

current data set with historical data at multiple levels, 

making the prediction more objective and reducing the 

chance of erroneous data corrupting the process. 

 

3.  Study areas and dataset 

 

3.1. Study areas 

 

This study looks at synoptic weather observations 

made every hour at Patna's Jay Prakash Narayan 

International Airport (JPNI), which can be found at 

25.5947° N, 85.0908° E (Fig. 1). The region surrounding 

the airport is susceptible to frequent occurrences of low-

visibility events, which can be attributed to both local 

geographical characteristics and fog patterns associated 

with western disturbances (WD). Patna Airport is situated 

at a relatively low elevation of 52 metres within the 

alluvial plains of the Ganga basin. From December to 

February, radiation fog and advection fog were common 

in this area because of the Western Disturbance (WD) 

(Badarinath et al., 2009; Sawaisarje et al., 2014). The 

occurrence of dense fog in this particular area often leads 

to the shutdown of airports or substantial delays, resulting 

in wide-ranging economic and social implications. 

Therefore, our research was centered on an airport located 

in the Indo-Gangetic Plain (IGP) region, which is known 

to frequently encounter foggy conditions (as depicted in 

Fig. 1). 

 

3.2. Dataset 

 

In this dataset, the moment (xn) and the previous 

hours (xn-2 to xn-8) are used to predict the target value in 

the hour (yn+2) for a two-hour lead time, the hour (yn+4) for  

(a) (b) 
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TABLE 2 

 

The meteorological parameter of METAR (synoptic hours) is 

optimally used 

 

Meteorological Parameter Code Type Units 

Wind Direction ddd Factor °North 

Wind Speed ff Factor Knots 

Dry Bulb Temperature tt Numeric °C 

Dew Point Temperature td Numeric °C 

Relative Humidity rh Numeric % 

Cloud Cover n Factor octa 

 

 

a four- hour lead time, and so on to predict fog or dense 

fog. ML algorithms to predict fog (surface visibility 

<1000 m) and dense fog (surface visibility <200 m) using 

hourly meteorological parameters such as dry bulb 

temperature dew point temperature, wind speed, wind 

direction, relative humidity, cloud amount, etc. (the details 

are presented in Table 2). These parameters were decided 

based on the feature selection as well as local knowledge 

of the onset and dissipation of fog and dense fog. 

 

For reliable predictions, non-linear prediction models 

are better for this dataset since the specified input factors 

and the current value of the predictive variables (fog or 

dense fog) do not have a direct or linear relationship. The 

linear correlation between variables is only a suggestion 

and should be treated with caution due to the non-linear 

interactions between meteorological variables that 

generate fog episodes. This study used weather data from 

December, January and February of 2014-15 to 2020-21 

(a total of 21 months) to train the models. It then used 

weather data from 2021-22 (3 months) to test the best 

machine learning (ML) approaches (level 0 and level 1). 

Fog/no fog ratios are 140/493 and 43/47 in the train and 

test datasets. In the train and test datasets, the dense 

fog/no dense fog ratios are 51/582 and 11/79. 

 
4. Methodology 

 
The core ideas that underlie all methodologies can be 

distilled into the notion of a dataset (x, y)N  i = 1, where x 

= (x1,...xd) denotes the input of descriptive variables & y 

represents the corresponding response variable label. The 

objective of these estimation approaches is to reconstruct 

the unknown functional relationship between x and y by 

means of estimating the value of f(x). Consequently, the 

value of the loss function Ψ (y, f) is minimized. 

 
 

Fig. 2. Process block diagram of the proposed machine learning 
prediction model. 

 

 

 

𝑓(𝑥)̂=y                                                                    (1) 

 

 

𝑓(𝑥)̂=arg
𝑚𝑖𝑛
𝑓(𝑥)

Ψ(y,f(x))                                           (2) 

 

Equation (1) represents the relationship between the 

function f(x) and the variable y. Equation (2) denotes the 

argument that minimizes the function f(x) with respect to 

the variables y and f(x). 

 

𝑓(𝑥)̂=arg
𝑚𝑖𝑛
𝑓(𝑥)

Ex[EyΨ[y,f(x)]]x]                            (3) 

 
The expression in equation no. 3 demonstrates the 

relationship between the expected loss function and the 

change in the response variable, denoted as Ey (Ψ[y, f 

(x)]). This change is influenced by the observed 

descriptive data, represented by x. The selection of 

response y can be made from a distribution that exhibits 

skewness. There exist a multitude of loss functions that 

have the potential to impact this phenomenon. The 

consideration of binomial loss in classification issues 

becomes straightforward when the response variable 

exhibits dual variance, specifically when it takes on two 

distinct values (y = 0, 1). Fig. 2 illustrates a block 

schematic depicting the comprehensive process via which 

our suggested machine-learning prediction model 

functions. The detailed technique is elucidated in 

Algorithm 1, which is presented below. The algorithms 

described were built using the Python programming 

language with the assistance of the H2O and Anaconda 

software platforms. 



 

 

SHANKAR et al., : MACHINE LEARNING APPROACH IN THE PREDICTION OF FOG 

1043 

The details of the algorithms described in the methodology presented below 

 
 

Algorithm-1: Proposed  stacked ensemble approaches for the prediction of fog (surface visibility <1000 m) and dense fog (surface 

visibility <200 m) for the lead time of 04 hours and  02 hours  

Input: x(n) to xd(n):  Previous 08 synoptic hour’s datasets of the 06 weather parameter 

Output: y(n): Occurrence of fog (visibility <1000 m) or dense fog (visibility <200 m) 

Procedure:  

1) Preprocess the datasets 

2) Feature Selection using principal component analysis (PCA) Co-variance matrix method 

3) Tuning of ML approves at level 0 

  (a.)  

I. GBM: Distribution: “bernoulli”, ntrees=45, max_depth=6, min_rows=15, learn_rate=0.2, fold_assignment =” 

Modulo”, keep_cross_validation_predictions = True. 

II. DRF: ntrees =38, max_depth =20, min_rows = 10, keep_croo_validation = True, fold_assignment = ”Modulo” , 

keep_cross_validation_predictions = True. 

III. GLM : family = binomial, lambda = 0, compute_p_values = True 

IV. XRT  : histogram_type  = (uniformadaptive), fold_assignment =” modulo”, keep_cross_validation = True. 

V. DL (Deep Learning): Distribution: Bernouli, hidden = 50, epochs = 3512 , train_samples_per_iteration = -2 , 

activation = “Rectifier With Dropout”, score_training_samples = 10000 

VI. XGBoost: n_estimators = 55, lambda = 1, gamma = 0, max_depth = 3. 

(b) Ensembling of ML approaches at level 1 (of level 0)  

Stacked Ensemble: Type : binomial ensemble , base_models =   

                   ([GBM , DRF , GLM , XRT , DL(deep learning) , XGBoost]) 

4) Evaluate performance using y(n) and f(n):   

5) Performance comparison of proposed method with various state-of-the-art methods in terms of performance indexes. 

6) Output: {yd(n), Performance indexes} 

End of procedure 

 

4.1. Algorithms 

 

4.1.1. Gradient Boosting Machine (GBM) 

 

This forward-learning ensemble classification 

technique employs boosting to increase performance. A 

decision tree is fitted to the data first. After the first tree is 

evaluated, the second tree is built to cover the difference 

between it and the actual target (Elith et al., 2008). The 

residue is rebuilt. When paired with the prior tree, it 

reduces prediction error. The following tree will repeat all 

the previous ones. Likewise, each tree will ultimately do 

likewise with all others. Each tree optimizes the 

differentiable loss function and reduces prediction error 

depending on its gradient. This strategy strengthens weak 

learning machines. We obtained the best result with a max 

tree depth of 6 and n-estimators of 45 trees after parameter 

adjustment. This method is fast, works with mixed-type 

data, handles missing data beautifully, doesn't change 

when input variables are changed monotonically and 

doesn't let input space outliers happen. 

 

4.1.2. Distributed Random Forest (DFR) 

 

Random Forest (Liaw and Wiener, 2002) classifies 

using ensemble machine learning. Like previously, it uses 

decision trees but builds a forest of random, uncorrelated 

trees to classify. Random replacement creates numerous 

training sets and trees. Randomly picking a subset of 

characteristics at each node splits the split in each tree. It 

prunes each tree to create random, uncorrelated trees. The 

model will then classify by averaging all three choices in 

the forest. Adding trees reduces volatility. This method 

manages large inputs and balances mistakes on 

imbalanced datasets (Fransiska Amalia Kurniawan, 2011). 

After parameter adjustment, a maximum tree depth of 20 

and n-estimators of 38 trees in the decision-making forest 

yielded the best result.  

 

4.1.3. Extreme Randomized Tree (XRT) 

 

It generates several unpruned decision trees from the 

training database. Classification predictions  are  based  on 
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majority votes. XRT splits somewhat randomly and does 

not repeat observations while forming a tree (Geurts et al., 

2006). The optimal split for XRT is also not used. In the 

algorithm, three hyper parameters are important: the 

number of decision trees in the ensemble, the number of 

input features that can be randomly selected and 

considered for each split point and the minimum number 

of samples needed for a node to form a new split point. 

 

4.1.4. Deep Learning (DL) 

 

Neural networks solve tough classification and 

regression problems. Feed forward neural networks start 

by adding input variables (features) with established 

labels. The interior layers use direction (training) and non-

linear input and weights. There are numerous system-

training algorithms. This study uses back- propagation. It 

has input, hidden, and output layers where a back 

propagation method optimizes perceptron unit weight. 

Back-propagation trains a multi-layered feed-forward 

neural network to reduce stochastic gradients. Prediction 

accuracy improves with adaptive learning rate, rate 

annealing, momentum training, drop-out, conventional L1. 

or L2 regularization, check pointing, and grid search 

(Hinton et al., 2012). Data features can be automatically 

learned (Lecun et al., 2015). Fig. 3. presents the model 

architecture. 

 

 

Fig. 3. The Architecture of a Deep Learning Algorithm (model). 

 
 
 

4.1.5. XGBoost 

 
XGBoost, a supervised learning technique, boosts 

models for accuracy. Boosting uses ensemble learning to 

build several sequential models in each new model to fix 

earlier model flaws. 

4.1.6. Generalized linear model (GLM) 

 

Assuming the prediction has a linear effect but not 

considering a specific distribution of exponential response 

variables improves the linear classification model. 

 

4.1.7. Stacked Ensemble (SE) 

 
Supervised ensemble machine-learning techniques 

use the best bagging, boosting and stacking prediction 

algorithms. Ensemble machine learning approaches 

produce greater predicted performance than any other 

learning algorithm by combining many algorithms. 

Popular machine learning techniques include ensemble 

learning (GBM, DRF). Bagging (DRF) and boosting 

(GBM) combine weak learners (decision trees) to create a 

strong learner. Stacking basic classifier predictions with a 

meta-learner creates an ensemble. A second-level “meta 

learner” is trained to determine the ideal combination of 

base learners in stacking algorithms, also known as super 

learning (Van Der Laan et al., 2007) or stacked regression 

(Breiman, 1996). An ensemble approach combines the 

predictions of numerous base estimators to improve the 

robustness and generalizability of one predictor (Wolpert, 

1992). This study proposes a stacked ensemble model 

including DRF, XRT, GBM, XGBoost, GLM and deep 

learning. This strategy trains a level 1 meta-model on out-

of-fold predictions of base models (level 0) to forecast the 

ensemble model at level 1. 
 

TABLE 3 

 

Model contingency table for computation of Forecast quality 

 

Fog (Visibility <1000 m), 

otherwise 0 
Predicted (0) Predicted (1) 

Actual (0) TN (True Negative) FP (False Positives) 

Actual (0) FN (False Negative) TP (True Positives) 

 

 

4.2. Statistical skill score analysis 

 
Table 3 shows the statistical skill score analysis 

utilizing a contingency table with logic: if fog (visibility 

<1000 m) then 1; otherwise 0; and if dense fog (visibility 

<200 m) then 1; otherwise 0. This analysis considers 

accuracy, precision, sensitivity, recall, hit rate, true 

positive rate, specificity, selectivity, and F1 score. 
 

Overall accuracy measures classifier accuracy 

between 0 and 1. The number of correct guesses divided 

by all forecasts yields it. The most accurate is 1; the least 

accurate is 0. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑃)
                                   (4) 
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Precision, or positive predictive value, measures how 

many positively predicted events are positive. It lies 

between 0 and 1. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
                                               (5) 

 

Recall, sensitivity, hit rate, or true positive rate 

measure the percentage of expected positives. Same as 

TPR. High sensitivity is 1, while low sensitivity is 0. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                                                           (6) 

 

To compute specificity, selectivity, or the correct 

negative rate, divide the number of valid negative 

predictions by the total number of negatives. The best 

specificity is 1, and the poorest is 0. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
(𝑇𝑁)

(𝑇𝑁+𝐹𝑃)
                               (7) 

 

The F1 score represents the harmonic mean of 

precision and recall. It considers false positives and 

negatives. Thus, it excels on skewed datasets. It combines 

the model's precision and recall as the harmonic mean. 

 

𝐹1 =
2

1

𝑟𝑒𝑐𝑎𝑙𝑙
∗

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

                                           (8) 

 

4.3. Performance classification metrics 

 

This study employed performance metrics: AUC 

measures how well the classification rule shown by the 

Receiver Operating Characteristic (ROC) curve works by 

combining the areas under the curve (Hand and Till, 

2001). It aggregates performance across all categorization 

thresholds. Ranges from 0 to 1. False categorization is 

penalized by a log loss. Well-suited for multi-class 

categorization. Equation 9 represents the log loss for N 

samples from M. The log loss shows how well the 

predicted probability matches the actual value. Log loss 

increases when the expected probability varies from the 

real value. 

 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑙𝑜𝑠𝑠 𝑜𝑟 log 𝑙𝑜𝑠𝑠 = 
−1

𝑁
∑ ∑ 𝑦𝑖𝑗

𝑀
𝑗=1

𝑁
𝑖=1 ∗ log(𝑃𝑖𝑗)                                       (9) 

 

where, yij denotes the class of sample I. 
 

The area under the precision-recall curve (AUCPR) 

is calculated for imbalanced datasets, it is better than the 

ROC curve since it measures accuracy and recall 

(sensitivity). Per-class mean error is for multi-class 

categorization only. It is a multi-class dataset's average 

class mistakes. This measure explains data 

misclassification across classes. Model performance 

improves with lower metrics. The Gini index, or Gini 

impurity, is computed by subtracting the total of the 

squared probabilities of each class from one. It estimates 

the likelihood of randomly picked characteristics being 

misclassified. The categorization purity is 0 and it ranges 

from 0 to 1. 1 indicates random element distribution 

across classes, while 0.5 represents equal element 

distribution across select classes. The Gini coefficient 

measures how efficiently the predictor distinguishes 

parent node classes. Equation 10 represents it. 

 
𝐺𝑖𝑛𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 =  ∑ 𝑝(𝑖)𝐶

𝑖=1 ∗ (1 − 𝑃(𝑖))               (10) 

 

5. Results and discussion 
 

This section presents a statistical characterization of 

fog and dense fog, as well as a comparison of various ML 

approaches and the best-proposed algorithms tailored to 

Patna Airport for the short-range prediction of fog 

(visibility <1000 m) or dense fog (visibility <200 m). 

There were a total of 1210 days in the research period 

(from November 2014 to March 2022) with visibility 

below 1000 meters (fog) and 166 days with visibility 

below 200 meters (dense fog).  

 
5.1. Statistical Characterization of Fog at Patna 

Airport 

 
Figs. 4 (a) and (b) depict the statistical 

characterization of the duration of foggy weather, in hours 

and days, respectively, at Patna airport throughout the 

winter season, spanning from November to March. 

According to the data, there is a clear pattern to the 

occurrence of fog across all intensity levels, with January 

having the highest frequency and December and February 

coming in second and third. Conversely, the lowest 

frequency of fog is observed in the month of March. 

January experiences the longest period of fog, while 

March exhibits the shortest period of fog. Additionally, it 

can be observed that the frequency of foggy days, defined 

as those with visibility below 1000 meters, is similar. In 

the month of February, the occurrence of days with 

various levels of intensity is lower during this month. 

Additionally, the standard deviation indicates the 

variability observed in the months of November and 

February. Typically, fog of the radiation type is observed 

with high variability. However, during the months of 

January or occasionally in December, advection fog, 

especially in the rear sector of a western disturbance, 

occurs due to a higher standard deviation or lower 

variability. Regarding variability, the fog observed at 

Patna Airport has a regular pattern during the months of 

December and January. The elevated coefficients of 

variance during November and February, however, show a 

significant degree of unpredictability. The hours of intense  
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Figs. 4. (a&b). Statistical analysis of the number of fog (various intensity scales) (a) hours (b) days for November to March at  

           JPNI Airport Patna, India. 
 

TABLE 4 
 

Mean number of hours of fog (visibility < 1000 m) and dense fog (visibility < 200 m)  

events (in hours) for the JPNI Airport, Patna 

 

Months /Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 

November 
Fog 5.33 2.96 0 0.7 0.6 2.4 0.06 1.06 -- 

Dense fog 0 0 0 0 0 0.03 0 0 -- 

December 

Fog 12.58 7.45 7.1 6.8 2.42 4.64 5.58 1 -- 

Dense fog 2.71 0.74 0.5 0.285 0.03 0.77 1.06 0 -- 

January 
Fog -- 5.87 7.67 10.25 12.83 3.61 6.25 7.16 5.58 

Dense fog -- 1.19 0.83 2.06 3.29 0.25 1.45 2.67 0.903 

February 
Fog -- 2.89 1.58 1.28 1.32 0.61 0.34 1.89 1.107 

Dense fog -- 0.035 0.31 0.28 0.178 0 0.103 0.178 0.285 

March 
Fog -- 0.16 0 0.03 0 0.09 0.16 0 0.16 

Dense fog -- 0 0 0 0 0 0 0 0 
 

 

fog, characterized by visibility below 200 meters, exhibit 

a descending sequence of occurrences, with January 

having the highest frequency, followed by December and 

February.  Similarly, when considering the number of 

days with dense fog, January surpasses both December 

and February. The average duration of fog hours 

(visibility <1000 m) and dense fog hours (visibility    

<200 m) throughout the period under investigation is 

displayed in Table 4. 

 

5.2. Prediction of Fog (visibility <1000 m) using the 

ML approaches 

 

This study aims to examine the classification results 

obtained from predicting fog (visibility <1000 m). 

Additionally, we provide a thorough assessment of the 

performance of several machine learning approaches on 

these datasets. Which strategy demonstrated the highest 

level of effectiveness when applied to these datasets with 

a lead time ranging from 2 to 4 hours and so on? In this 

study, a total of seven machine-learning methodologies 

are employed to forecast the occurrence of fog. At level 0, 

the six base models-GBM, XGBoost, GLM, XRT, DRF, 

and deep learning-go through a process of trial and error 

to find the best performance by fine-tuning. At the level-1 

evaluation stage, the suggested stacked ensemble of level-

0 models does better than the six ML approaches at level 

0. Table 5(a) illustrates the comparison of all seven 

machine learning methodologies for predicting fog 

(visibility <1000 m) for a lead time of 2 and 4 hours and 

Table 5(b) depicts the statistical skills cores of the proposed 

stacked ensemble modules for a lead time of 2   and 4 

hours. In all the combinations and random selections of 

train and test datasets, stacked ensemble has superior

(b) 
(a) 
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TABLE 5 
 

 

(a) Performance metrics for the prediction of fog (visibility<1000 m) for the lead times of 2 and 4 hours; (b) Statistical skill scores for the 

prediction of the proposed stacked ensemble models for the lead time of 2 and 4 hours 
 

 

Types of 
Models 

AUC  AUCPR  Gini Index  MPCE  Logloss 

Lead Time  Lead Time  Lead Time  Lead Time 
 

 
Lead Time 

2 4  2 4  2 4  2 4  2 4 

GBM 0.905 AUC 0.879 0.863 0.809 0.779 0.165 0.170 0.480 0.432 

XGBoost 0.903 0.889 0.863 0.834 0.805 0.756 0.146 0.166 0.503 0.515 

DRF 0.931 0.878 0.912 0.867 0.863 0.808 0.156 0.143 0.393 0.407 

GLM 0.819 0.904 0.690 0.701 0.638 0.610 ----- ---- 0.547 0.536 

XRT 0.903 0.805 0.863 0.819 0.806 0.742 0.160 0.157 0.442 0.483 

Deep 

Learning 
0.924 0.871 0.913 0.903 0.847 0.831 0.143 0.142 0.357 0.389 

Stacked 
Ensemble 

0.933 0.916 0.914 0.905 0.867 0.838 ----- ---- 0.367 0.512 

 

Proposed 

Models 
Lead Time Accuracy Hit rate Selectivity Precision Sensitivity negative predictive Value 

F1 

Score 

Stacked 

Ensemble 

2 0.85 0.85 0.83 0.89 0.85 0.79 0.87 

4 0.87 0.91 0.81 0.88 0.91 0.85 0.89 

 
TABLE 6 

 

(a) Performance metrics for predicting dense fog (visibility <200 m) with two and four-hour lead times; (b) Statistical skill scores for predicting 

dense fog with the proposed stacked ensemble models with two and four-hour lead times 

 

Types of Models 

AUC AUCPR Gini Index MPCE Log loss 

Lead Time Lead Time Lead Time Lead Time Lead Time 

2 4 2 4 2 4 2 4 2 4 

GBM 0.972 0.918 0.918 0.806 0.943 0.837 0.089 0.103 0.910 0.302 

XGBoost 0.971 0.929 0.927 0.856 0.942 0.858 0.058 0.107 0.251 0.510 

DRF 0.966 0.933 0.884 0.823 0.932 0.867 0.071 0.103 0.214 0.396 

GLM 0.853 0.865 0.580 0.702 0.707 0.730 ------- ----- 0.750 0.674 

XRT 0.967 0.913 0.912 0.779 0.933 0.827 0.065 0.116 0.211 0.317 

Deep Learning 0.912 0.893 0.813 0.774 0.823 0.787 0.145 0.160 0.422 0.517 

Stacked 
Ensemble 

0.983 0.944 0.936 0.824 0.967 0.888 ---- ----- 0.248 0.51 

 

Proposed Models Lead Time Accuracy Hit rate Selectivity Precision Sensitivity 
Negative predictive 

value 
F1 Score 

Stacked Ensemble 

2 0.93 0.97 0.75 0.95 0.97 0.86 0.93 

4 0.92 0.96 0.75 0.95 0.96 0.80 0.92 

(a) 

(b) 

(a) 

(b) 
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performance compared to base models. The proposed 

stacked-ensemble models outperform all the base models at 

level 0, including deep learning neural networks. In a 

similar vein, the study conducts a comparison of 

performance metrics pertaining to lead durations ranging 

from 4 to 6 hours. The findings indicate that the suggested 

stacked ensemble models exhibit enhanced performance as 

the lead time diminishes. The empirical evidence indicates 

that when the time stamp decreases, there is an 

improvement in the AUC. The most favorable values for 

the prediction of fog fall within the range of 0.916 to 0.933 

for the proposed stacked ensemble models. 
 

5.3. Prediction of dense fog (visibility <200 m) by 

using machine learning  
 

Table 6(a) presents a comprehensive analysis of the 

performance metrics of several ML approaches employed 

to forecast dense fog (visibility <200 m). Also, the 

statistical skill scores of the proposed stacked ensemble 

models are presented in Table 6(b). The evaluation is 

conducted using a test dataset, focusing on a lead time of 

2 to 4 hours. The results show that stacked ensemble 

methods at level 1 perform better than the six base models 

at level 0, which is in line with the algorithms discussed in 

Section 4. The results have exhibited substantial 

improvement in comparison to the findings presented in 

subsection 5.2. All performance metrics and statistical 

skill scores show big improvements in predicting dense 

fog, which comes after fog for all lead times across all 

train and test dataset combinations. In terms of metric 

performance (shown in Table 6(a)), the stacked ensemble 

methods at level 1 have done better than level 0 machine 

learning approaches like GBM, XGBoost, GLM, XRT, 

DRF and deep learning. Additionally, proposed stacked 

ensemble methods have also exhibited higher statistical 

skill scores (illustrated in Table 6(b)). The accuracy of 

predictions within a lead time ranging from 4 hours to two 

hours exhibits variability, with values ranging from 92 % 

to 93%. The empirical evidence indicates that there is an 

improvement in the area under the receiver operating 

characteristic curve (AUC) as the time stamp decreases. 

The most favorable AUC values, ranging from 0.912 to 

0.983, are seen for predicting dense fog. Moreover, the 

statistical skill score, such as the hit rate, exceeds 97%. 

The selectivity is greater than 75%, and the F1 score 

ranges from 0.92 (for a 4-hour advance time) to 0.93 (for a 

2-hour lead time). These values indicate the effectiveness 

of the suggested models in predicting dense fog 

specifically for the Patna airport. 
 

6. Discussion 
 

Through historical data sets, this study looks at 

machine learning methods for predicting low visibility 

(fog or dense fog) in the nowcasting (02, 04 hours, etc.) 

for airports. The recommended ensemble ML techniques 

at level 1 outperform the base models at level 0. F1 scores 

for fog predictions (visibility <1000 m) range from 0.87 to 

0.89 (with a lead time of 4 to 2 hours). For dense 

fog (visibility <200 m), F1 scores vary from 0.92 (04 

hours lead time) to 0.93 (02 hours lead time). This result 

backs up what (Van Der Velde et al., 2010; Bergot and 

Koracin 2021; Castillo-Botón et al., 2022) found: tree-

based algorithms work very well (Dutta and Chaudhuri 

2015; Bari and Ouagabi 2020). Except for a few authors, 

none others looked into these specific forecasts of fog in 

terms of the practical implications, i.e., the robustness of 

the models that ensemble models will provide (Zhai and 

Chen 2018; Shankar and Sahana, 2023a). Low-

visibility/fog forecasting is more difficult than wind 

speed, temperature, and precipitation forecasting. Despite 

this issue, any improvement in the explicit variance of 

poor visibility event prediction is vital for characterizing 

and accurately predicting these events and applying such 

predictive models in fog modelling (Shankar and Sahana, 

2023b). Results from this experiment using ML 

algorithms lead to crucial findings.  
 

(i) AUC increases with decreasing time stamps, with 

optimal values ranging from 0.916 to 0.9333 for fog 

(visibility <1000 m) and 0.944 to 0.983 for dense fog 

(visibility< 200 m) for 4 to 6 hours of lead time. 
 

(ii) Our suggested techniques use an ensemble of 

multiple relevant ML algorithms (bagging, boosting, and 

stacking) to accurately forecast local-scale low visibility 

like fog (with an intensity scale), etc. 
 

7. Conclusion 
 

 This study compares the performances of the base 

models at level 0, GBM, DRF, GLM, XRT, XGBoost and 

DL, with the proposed stacked ensemble models at level 1 

for the nowcasting of the fog and dense fog. The proposed 

models optimize performance by choosing the optimum 

meta-algorithm trade-off (bagging, boosting and stacking) 

in the wide variety of proposed ML approaches. 

Additionally, while selecting the best prediction 

algorithms, ensemble models (level 1) integrate the base 

model information at level 0 to provide the optimum 

results in the nowcasting process of fog and dense fog. A 

comprehensive and wide analysis of ML approaches 

ensures the optimum outcome of the models and also 

ensures the robustness of the proposed models. The 

stacked ensemble approach (level 1) can forecast better 

than persistence and climatology; however, persistence 

delivers predictions with a short lead time. This 

forecasting method competes with human forecasts. This 

approach generates results for end-users like air traffic 

management and airline operators to extract their needs. 

Therefore, the proposed tailor-made nowcasting system 



 

 

SHANKAR et al., : MACHINE LEARNING APPROACH IN THE PREDICTION OF FOG 

1049 

has the ability to optimize efficient traffic movement and 

the scheduling of the aircraft at the airport.  Streamlining 

airport operations and flight scheduling will save money; 

hence, both the airport operator and airlines will utilize it. 

The proposed data-driven nowcasting method may be 

used at different airports; however, it must tune the ML 

models as per the local conditions. Also, large and diverse 

sets of data improve the ML models understanding of 

more complicated patterns and their ability to make 

accurate predictions of low visibility. 
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