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सार — मध्याव�ध तापमान का सट�क पूवार्नुमान लगान ेक े�लए यह अध्ययन �कया गया है। हमन ेएक नई 
मशीन ल�न�ग (न्यूरोकंप्यू�टंग) तकनीक क� मदद से उच्चतम-न्यूनतम तापमान समय श्रृंखला (संकेत) 5, 7 और 9 

�दन आग ेका पूवार्नुमान लगान ेक� को�शश क� है। तापमान समय श्रृंखला को अपघ�टत करन ेक े �लए �व�वधता 
�व�ध अपघटन (वीएमडी) का उपयोग �कया गया है और वीएमडी स ेप्राप्त अपघ�टत �व�धय� का व्यिक्तगत रूप से 
लॉन्ग शॉटर् टमर् मेमोर� (एलएसट�एम) क े�नवेश क ेरूप म� उपयोग �कया गया है। एलएसट�एम न ेअलग-अलग रूप 
से �व�धय� का पूवार्नुमान लगाया और पूवार्नुमा�नत संकेत उत्पन्न करन ेके �लए इन पूवार्नुमा�नत �व�धय� को जोडा 
गया। इस पद्ध�त द्वारा अनुमा�नत संकेत वास्त�वक पर��ण संकेत क ेसाथ �नकटता स ेकाफ�  मेल खाता ह ैऔर 
संकेत का पूवार्नुमान लगान ेम� त्रु�ट को कम करता है। 

 
ABSTRACT. To predict medium-range temperature with appreciable accuracy this study has been undertaken. We 

have tried to predict max-min temperature time series (signal) 5, 7 and 9 days ahead with the help of a new machine 
learning (neurocomputing) technique. Variational Mode Decomposition (VMD) has been used to decompose temperature 
time series and decomposed modes obtained from VMD have been individually used as input to Long Short Term 
Memory (LSTM). The LSTM predicted the modes individually and predicted modes are combined to generate the 
predicted signal. The signal predicted by this method closely matches with the actual test signal and minimizes the error 
in predicting the signal. 

 

Key words – Neurocomputing, Long short term memory, Variational mode decomposition, Port Blair. 
 

  
1.  Introduction 
 

Temperature is one of the most important 
meteorological parameters. It affects many sectors like 
human health, agriculture, energy, transport, weather 
forecasting and so on. Very early and accurate prediction 
of temperature will help these sectors. The exact 
prediction of temperature is a challenge and it has 
attracted the attention of many researchers. Presently 
short-range prediction (up to 72 hours) of meteorological 
parameters is nearly accurate. But the medium-range 
prediction (up to 10 days) of these parameters with certain 
appreciable accuracy is still a challenge.  

 
Machine learning is the area of computational 

science that focuses on analyzing and interpreting patterns 
and structures in data to enable learning, reasoning and 
decision-making outside of human interactions. It has 
been improved a lot since its first use. It has now 

applications in industries including manufacturing, retail, 
healthcare and life sciences, travel and hospitality, 
financial services, energy, feedstock and utilities, etc.  

  
Machine learning can also be used in predicting 

meteorological parameters such as temperature, 
precipitation, wind speed, wind direction, solar radiation, 
sea-surface temperature, etc. Many scientists have used 
machine learning to predict these parameters across the 
world like (Paniagua-Tineo et al., 2011) predicted daily 
maximum temperature using a support vector regression 
(SVR), (Abdel-Aal, 2004) used abductive networks to 
forecast hourly temperature, (Dombayc et al., 2009) used 
artificial neural networks (ANN) to predict daily means 
ambient temperature, (Radhika et al., 2009) used support 
vector machines (SVM) to predict atmospheric 
temperature, (Lin et al., 2019) applied convolution long 
short term memory (convLSTM) network in numerical 
temperature     prediction,    (Salcedo-Sanz    et al.,   2015)  
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Fig. 1. Location map of Port Blair 
 
 
 
predicted monthly air temperature using machine learning 
algorithms, (Zhang and Dong, 2020) forecasted 
temperature combining Convolution Neural Network 
(CNN) and Recurrent Neural Network (RNN) based on 
time series data, (Poornima and Pushpalata, 2019) 
predicted rainfall using intensified long short term 
memory based recurrent neural network with weighted 
linear units, (Mislan et al., 2015) predicted monthly 
rainfall based on back propagation neural network 
(BPNN), (Dash et al., 2017) predicted rainfall of Kerala 
using single layer feed forward neural network (SLFN) 
and extreme learning machine (ELM) techniques, (Zhang 
et al., 2020) predicted short term wind speed using genetic 
algorithm and ANN model improved by variational mode 
decomposition (VMD), (Tian et al., 2019) used ensemble 
empirical mode decomposition-permutation entropy 
(EEMD-PE) and regularized extreme learning machine 
(RELM) to predict short term wind speed, (Khosravi       
et al., 2018) developed multilayer feed forward neural 
network, radial basis function neural network, SVR, fuzzy 
inference system, adaptive neuro-fuzzy inference system 
to predict hourly solar radiation, (Alzahrani et al., 2014) 
predicted solar irradiance using time series neural 
networks, (Patil et al., 2016) predicted sea surface 
temperature by combining numerical techniques and 
wavelet neural network, (Xu et al., 2020) predicted sea 
surface temperature by using multi-long short-term 
memory and CNN etc.   

 
In this study, we have adopted a unique technique to 

predict   the   medium-range   max-min   temperature  time  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Block diagram of medium-range temperature prediction 
 
 
 
series by using the long short-term memory network 
(LSTM) network and Variational Mode Decomposition 
(VMD). The block diagram of this technique is shown in 
Fig. 2. The LSTM shown in Fig. 3 has been used for its 
better performance over other neural networks such as 
ELM, SVR, Auto-Regressive Integrated Moving Average 
(ARIMA), Holt-Winters, RNN Silu, RNN with relu, etc. 
(Poornima and Pushpalata, 2019; Yu et al., 2019). The 
VMD has been considered over other mode 
decompositions such as Empirical Mode Decomposition 
(EMD), Ensemble Empirical Mode Decomposition 
(EEMD), etc. because it is adaptive quasi-orthogonal, 
completely non-recursive and effectively solves the 
problem of mode aliasing and endpoint effect.  

  
2.    Data and study area 

  
Three groups of medium-range maximum and 

minimum temperature data sets are collected from Met 
Office Port Blair (India), the latitude and longitude of this 
observatory are 11°41′  N and 92°43′  E respectively. The 
location is shown in Fig. 1. The sampling period is 5, 7 
and 9 days. The length of all the data sets is 1000. 

 
Original Signal 
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Fig. 3. Sequential processing of a recurrent neural network 
  
 

3. Methodology 
 
Here, first we have generated temperature time series 

then we have decomposed the time series spectrum into 
several modes using VMD and after that, each 
decomposed mode is separately used as an input to the 
LSTM network. After running the LSTM network we get 
the predicted mode for each input mode. Then the 
predicted modes are combined to generate the predicted 
signal. After that, the original test signal and the predicted 
signal is compared and we obtain the Mean Absolute 
Error (MAE), Mean Squared Error (MSE), R2, relative 
root mean squared error (RRMSE), Theil Inequality 
Coefficient (TIC), Index of Agreement (IA) and Squared 
Sum Error (SSE). These values give an insight into how 
accurately the proposed approach has been able to predict 
the temperature time series. We have also compared the 
original test signal with that of the predicted signal 
without doing any mode decomposition. 

 
3.1.1. Variational Mode Decomposition (VMD) 
  
This is a relatively new method to deal with unstable 

and non-linear signals based on the scale of the signal 
itself. It was proposed by (Dragomiretskiy et al., 2014). In 
this method, the signal is decomposed into a limited 
number of mono-components. Each component has 
specific sparsity properties in the frequency domain. One 
main assumption of this technique is that each mode has a 
limited bandwidth in the frequency domain and is 
compact around a center frequency. A mode of VMD uk(t) 
is considered as an amplitude-modulated-frequency-
modulated signal, which is expressed as :  

 
( ) ( ) ( )[ ]ttAtu kkk ϕcos=                                             (1) 

 
 in which ( )tkϕ  and ( )tAk   respectively denote the 
phase and envelope of the k-th mode. The instantaneous 

frequency ( ) ( )
t

tt kk

∂
∂

=
ϕ

ω  is nonnegative and varies much 

slower than the phase ( )tkϕ . 
 
The detailed theoretical background and applications 

in the simulated signal analysis of the VMD technique can 
be referred to (Dragomiretskiy et al., 2014). The overall 
framework is the variational problem and VMD is the 
solution to the problem. The objective function of the 
variational problem is: 
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where, δ is the Dirac function, * denotes the 

convolution and {uk} = {u1, u2, u3, … uk} and {𝜔𝜔�𝑘𝑘} =
{𝜔𝜔�1,𝜔𝜔�2,𝜔𝜔�3, … .𝜔𝜔�𝑘𝑘}  are the modes and center frequencies 
respectively. 

 
Now using the second penalty factor 𝛼𝛼 and 

Lagrangian multipliers λ, the constraint variation problem 
is changed into a non constraint variation problem. When 
the quadratic multiplication factor can guarantee the signal 
reconstruction accuracy in the presence of Gaussian noise, 
the Lagrangian operator keeps the constraint condition 
strict. The extended Lagrange expression is as follows:  
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where, 𝛼𝛼 depends on the fidelity constraint. To solve 
equation 3 Alternate Direction Method Multipliers 
(ADMM) are used. The different center frequencies and 
the corresponding modes can be obtained through a 
sequence of iterative sub optimizations.  

 
Each mode is represented as: 
 

( )
( ) ( ) ( )[ ]

( )
( )Kk

uf
u

k

iki
k ,...2,1

21

2/
2 =

−+

+−
=

∑ ≠

ωωα

ωλωω
ω  

(4) 
 
where, ( )ωf  is the Fast Fourier Transform (FFT) of 

the signal ( )tf . 
 
VMD mainly consists of the following steps: 
 
Step1. Intrinsic Mode Update. The mode ( )ω1+n

ku  is 
updated with equations 5, 6. The Wiener filtering is 
embedded for updating the mode directly in the Fourier 
domain with a filter tuned to the current center frequency 

n
kω .  
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( ) ( )[ ]{ }ω11 ifft ++ ℜ= n
k

n
k utu                                       (6) 

 
Where { }ℜ  is the real part of an analytic signal and 

ifft() denotes the inverse FFT. 
 
Step2. Center frequency update. The center 

frequency 1+n
kω  is updated as the center of gravity of the 

corresponding mode’s power spectrum, which is presented 
as: 

 

( )
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Step3. Dual ascent. For all frequencies ω ≥ 0, the 

Lagrangian multiplier ( )ωλ 1+n  is obtained by equation 8 
as the dual ascent to enforce the exact signal 
reconstruction until the convergence criteria as shown in 
equation 9 is satisfied. 

 
 

Fig. 4. Structure of an LSTM neural network 
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3.1.2. Long Short Term Memory (LSTM) 
  
LSTM is a specific architecture of RNN. It was 

intended to design for modeling temporal sequences and 
addressing the problems of back propagation through time 
(BPTT) in RNN architecture. It has a long-range 
dependency that makes it more accurate than conventional 
RNNs. A typical LSTM network is comprised of memory 
blocks called cells for remembering and propagating 
outputs explicitly in different time steps. The structure of 
the network is shown in Fig. 4. Here two states are being 
transferred to the next cell, the cell state and hidden state. 
The cell state is the main chain of data flow, which allows 
the data to flow forward essentially unchanged. However, 
some linear transformations may occur. The data can be 
added to or removed from the cell state via sigmoid gates. 
A gate is similar to a layer or a series of matrix operations, 
which contain different individual weights.  

  
The first step in constructing an LSTM network is to 

identify information that is not required and will be 
omitted from the cell in the first step. This process of 
identifying and excluding data is decided by the sigmoid 
function, which takes the output of the last LSTM unit            
(ht-1) at time t-1 and current input (Xt) at time t. 
Additionally, the sigmoid function determines which part 
from the old output should be eliminated. This gate is 
called forget gate (or ft), where ft is a vector with values 
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ranging from 0 to 1, corresponding to each number in the 
cell state, Ct-1. 

 
( ) fttft bXhWf += − ,1σ                                        (10) 

 
where in, σ is the sigmoid function, Wf and bf are 

weight matrices and bias, respectively, of the forget gate. 
  
The following step is deciding and storing 

information from the new input (Xt) in the cell state as 
well as to update the cell state. This step contains two 
parts, the sigmoid layer and tanh layer. The sigmoid layer 
decides whether the new information should be updated or 
ignored (0,1) and tanh function gives weight to the           
values which passed by, deciding their level of importance 
(-1 to 1). The two values are multiplied to update the new 
cell state. This new memory is then added to the old 
memory Ct-1 resulting in Ct.  

 
( ) ittit bXhWi += − ,1σ                                             (11) 

 
( ) nttnt bXhWN += − ,tanh 1                                    (12) 

 
ttttt iNfCC += −1                                                  (13) 

 
where, Ct-1  and Ct are the cell states at time t-1 and t, 

while W and b are the weight matrices and bias, 
respectively, of the ell state. 

 
In the final step, the output values (ht) is based on the 

output cell state (Ot) but is a filtered version. Next, the 
output of the sigmoid gate (Ot) is multiplied by the new 
values created by tanh layer from the cell state (Ct), with a 
value ranging between -1 and 1. 

 
( )[ ]ottot bXhWO += − ,1σ                                       (14) 

 
( )ttt COh tanh=                                                     (15) 

    
where, Wo and bo are the weight matrices and bias, 

respectively of the output gate. 
 
3.1.3  Error calculation 
 
To illustrate the effectiveness of the prediction 

approach for medium-range max-min temperature, the 
following 8 performance indicators are used to measure 
the prediction accuracy. 

 
(i) Mean Absolute Error (MAE) 
 
MAE can avoid the problem of mutual cancellation 

of errors, so it can accurately reflect the actual prediction 

error. The smaller the MAE the smaller the prediction 
error of the prediction model is. 

 
It is expressed as 
 

( ) ( )iwiw
N

MAE
N

i
−= ∑ =1

1
                               (16) 

 
(ii) Mean Squared Error (MSE) 
 
It can reflect the degree of dispersion of a data set. 

The smaller the MSE closer the sample value is to the 
average value. 

 
It is expressed as 
 

( ) ( )[ ]2
1

1 iwiw
N

MAE
N

i
−= ∑ =                              (17) 

 
(iii) Mean Absolute Percentile Error (MAPE) 
 
MAPE represents the percentage of the prediction 

error to the actual value. Therefore smaller the MAPE 
value the smaller the prediction error, i.e. the better the 
prediction effect. 

 
It is expressed as  
 

( ) ( )
( ) 1001

1
×

−
= ∑ = iw

iwiw
N

MAE
N

i                     (18)        

 
(iv) Relative Root Mean Square Error (RRMSE) 
 
RRMSE represents the relative difference between 

the predicted and the actual value. The larger the RRMSE 
value the poorer the prediction accuracy. 

 
It is expressed as : 
 

( ) ( )
( )

2

1

1RRMSE 






 −
= ∑ = iw

iwiw
N

N

i                  (19) 

 
(v) Squared Sum Error (SSE) 
 
SSE calculates the sum of the error squares of the 

corresponding points between the predicted data and the 
actual data. The smaller the SSE the smaller the prediction 
error and the better the accuracy. 

 
It is expressed as : 
 

( ) ( )[ ]2
1

SSE iwiw
N

i
−=∑ =                                    (20) 
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Original spectrum and variational decomposed modes for maximum temperature (frequency 5 days) of Port Blair 

 
 

Fig. 5. Original maximum temperature spectrum of 5 days interval with its decomposed mode of Port Blair 
 

 
(vi) R2 
 
It represents the fitness of a prediction model by the 

change of data. Its normal range is 0 to 1. The closer it 
approaches 1, the stronger the interpretation ability of the 
prediction model to the actual data, that is, the better the 
model fits the data. If R2 < 0, the prediction model is 
inferior. 

 
It is expressed as 
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(vii) Index of agreement 
 
Its physical meaning is that the ratio of the mean 

squared error and potential error of the predicted values to 
the actual value is subtracted by 1 and its range is 0 to 1. 
The larger the IA value, the higher the consistency 
between the actual and predicted values.  

It is expressed as : 
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(viii) Theil Inequality Coefficient (TIC) 
 
Its value range is 0 to 1, the closer it is to 0, the 

smaller the root mean square of unit error and the actual 
value is closer to the predicted value. 

 
It is expressed as : 
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Variational decomposed modes for maximum temperature (frequency 5 days) for testing of Port Blair 

 
 

Fig. 6. The testing spectrum of the maximum temperature of 5 days interval with its decomposed mode of Port Blair 
 
 

Variational decomposed modes for maximum temperature (frequency 5 days) for testing and predicted of Port Blair 

 
 

Fig. 7. Testing and predicted spectrum of the maximum temperature of 5 days interval with its decomposed mode of Port Blair 
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Original spectrum and variational decomposed modes for minimum temperature (frequency 5 days) of Port Blair 

 
 

Fig. 8. Original minimum temperature spectrum of 5 days interval with its decomposed mode of Port Blair 
 
 

Variational decomposed modes for minimum temperature (frequency 5 days) for testing of Port Blair 

 
 

Fig. 9. The testing spectrum of the minimum temperature of 5 days interval with its decomposed mode of Port Blair 
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Variational decomposed modes for minimum temperature (frequency 5 days) for testing and predicted of Port Blair 

 
 

Fig. 10. Testing and predicted spectrum of the minimum temperature of 5 days interval with its decomposed mode of Port Blair 
 

Original spectrum and variational decomposed modes for maximum temperature (frequency 7 days) of Port Blair 

 
 

Fig. 11. Original maximum temperature spectrum of 7 days interval with its decomposed mode of Port Blair 
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Variational decomposed modes for maximum temperature (frequency 7 days) for testing of Port Blair 

 
 

Fig. 12. The testing spectrum of the maximum temperature of 7 days interval with its decomposed mode of Port Blair 
 
 
 

Variational decomposed modes for maximum temperature (frequency 7 days) for testing and predicted of Port Blair 

 
 

Fig. 13. Testing and predicted spectrum of the maximum temperature of 7 days interval with its decomposed mode of Port Blair 
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Original spectrum and variational decomposed modes for minimum temperature (frequency 7 days) of Port Blair 

 
 

Fig. 14. Original minimum temperature spectrum of 7 days interval with its decomposed mode of Port Blair 
 
 
 

Variational decomposed modes for minimum temperature (frequency 7 days) for testing of Port Blair 

 
 

Fig. 15. The testing spectrum of the minimum temperature of 7 days interval with its decomposed mode of Port Blair 
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Variational decomposed modes for minimum temperature (frequency 7 days) for testing and predicted of Port Blair 

 
 

Fig. 16. Testing and predicted spectrum of the minimum temperature of 7 days interval with its decomposed mode of Port Blair 
 
 

Original spectrum and variational decomposed modes for maximum temperature (frequency 9 days) of Port Blair 

 
 

Fig. 17. Original maximum temperature spectrum of 9 days interval with its decomposed mode of Port Blair 
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Variational decomposed modes for maximum temperature (frequency 9 days) for testing of Port Blair 

 
 

Fig. 18. The testing spectrum of the maximum temperature of 9 days interval with its decomposed mode of Port Blair 
 
 

Variational decomposed modes for maximum temperature (frequency 9 days) for testing and predicted of Port Blair 

 
 

Fig. 19. Testing and predicted spectrum of the maximum temperature of 9 days interval with its decomposed mode of Port Blair 
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Original spectrum and variational decomposed modes for minimum temperature (frequency 9 days) of Port Blair 

 
 

Fig. 20. Original minimum temperature spectrum of 9 days interval with its decomposed mode of Port Blair 
 
 

Variational decomposed modes for minimum temperature (frequency 9 days) for testing of Port Blair 

 
 

Fig. 21. Testing spectrum of minimum temperature of 9 days interval with its decomposed mode of Port Blair 
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Variational decomposed modes for minimum temperature (frequency 9 days) for testing and predicted of Port Blair 

 
 

Fig. 22. Testing and predicted spectrum of the minimum temperature of 9 days interval with its decomposed mode of Port Blair 
 
 

 

 
 

Fig. 23.  Testing and predicted spectrum of the maximum temperature 
of 5 days interval of Port Blair without mode decomposition 

 

 
 

where, N is the number of samples, w (i) is the actual 
value, 𝑤𝑤�(i) is the predicted value and 𝑤𝑤�  is the mean value. 

 
4. Results and discussion 

  
To validate the effectiveness of the proposed method 

for predicting medium-range maximum and minimum 
temperature, we have generated the time series spectrum 
(signal) from the temperature data and it is shown in     
Figs. 5, 8, 11, 14, 17 and 20. Then the signal is 
decomposed into 9 modes by the VMD technique. Here to 
decompose  the  signal  by VMD technique we have used  

 
 

Fig. 24.  Testing and predicted spectrum of the minimum temperature 
of 5 days interval of Port Blair without mode decomposition 

 
 
 
the python vmdpy module (https://pypi.org/project/ 
vmdpy/). Here sample parameters kept for this 
decomposition are alpha = 1000, tau = 0, K = 9, DC = 0, 
init = 1, tol = 1 × 10-7. The decomposed modes are also 
shown in Figs. 5, 8, 11, 14, 17 and 20. After obtaining the 
decomposed modes, each mode is used as the input of the 
LSTM network. Here the used LSTM network is trained 
using a Python package called ‘keras’ on top of the Tensor 
flow backend. The network has a visible layer with 1 
input, a hidden layer with 10 LSTM blocks and an output 
layer that makes a single value prediction. The network is 
trained for 30 epochs and a batch size of 1 is 

https://pypi.org/project/vmdpy/�
https://pypi.org/project/vmdpy/�
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TABLE 1 
 

Error in predicting maximum temperature 
 

Method 
MAE MSE RRMSE MAPE SSE R2 IA TIC 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

5       
days 

7            
days 

9          
days 

5   
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

Proposed 0.561 0.604 0.581 0.548 0.663 0.562 0.059 0.047 0.001 1.831 1.984 1.897 109.526 132.665 112.353 0.733 0.680 0.739 0.991 0.989 0.991 0.012 0.013 0.012 

Only 
LSTM 1.022 1.235 1.102 1.834 2.355 1.943 0.012 0.230 0.094 3.348 3.977 3.558 366.736 471.069 388.582 0.262 0.081 0.236 0.971 0.963 0.969 0.022 0.025 0.023 

 
 

TABLE 2 
 

Error in predicting minimum temperature 
 

Method 
MAE MSE RRMSE MAPE SSE R2 IA TIC 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9   
days 

5  
days 

7  
days 

9  
days 

5  
days 

7  
days 

9  
days 

5    
days 

7    
days 

9    
days 

5        
days 

7  
days 

9  
days 

5 
days 

7  
days 

9  
days 

5 
days 

7  
days 

9  
days 

Proposed 0.665 0.687 0.678 1.072 0.969 1.104 0.183 0.100 0.109 2.751 2.824 2.801 214.312 193.711 220.822 0.229 0.337 0.289 0.979 0.981 0.978 0.021 0.020 0.021 

Only 
LSTM 1.119 1.201 1.185 2.298 2.318 2.473 0.007 0.171 0.130 4.579 4.857 4.822 459.526 463.518 494.607 -0.263 -0.204 -0.223 0.954 0.954 0.950 0.031 0.031 0.032 

 
 
 
used. The activation function is tan h, the optimizer used 
is Adam. Here the input is split into train and test by 80% 
and 20% respectively. Figs. 6, 9, 12, 15, 18 and 21 show 

the decomposed modes for testing. These modes are used 
for testing the mentioned LSTM network to predict max-
min temperature signals for 5, 7 and 9 days. After running 

Fig. 25.  Testing and predicted spectrum of the maximum temperature 
of 7 days interval of Port Blair without mode decomposition 

Fig. 26.  Testing and predicted spectrum of the minimum temperature 
of 7 days interval of Port Blair without mode decomposition 

Fig. 27.  Testing and predicted spectrum of the maximum temperature 
of 9 days interval of Port Blair without mode decomposition 

Fig. 28.  Testing and predicted spectrum of the minimum temperature 
of 9 days interval of Port Blair without mode decomposition 
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the LSTM network for each of the testing modes the 
network gives us the predicted modes. These predicted 
modes are combined to obtain the predicted max, min 
temperature signal. Figs. 7, 10, 13, 16, 19 and 22 show the 
test signal and predicted signal along with test and 
predicted modes. From these figures we can visually 
compare the test and predicted signals. It can be seen from 
Figs. 7, 10, 13, 16, 19 and 22 that the test and predicted 
signal closely match. But to measure the actual error and 
degree agreement with the original we have calculated 
MAE, MSE, RRMSE, MAPE, SSE, R2, IA and TIC, 
details of which are given in Section 3. We have also 
predicted the max, min temperature signal without going 
through VMD. We have directly used the max, min signal 
as input to the LSTM to predict the signals. The predicted 
signal by LSTM along with original signals is shown in 
Figs. 23-28. We have also calculated MAE, MSE, 
RRMSE, MAPE, SSE, R2, IA and TIC for the signal with 
only LSTM and then compared with our proposed 
approach and the results are shown in Tables 1-2. It is 
clear from the Tables that MAE, MSE, RRMSE, MAPE, 
SSE for the proposed approach is far better than those of 
only LSTM. The value of R2, IA for the proposed 
approach is always higher than only the LSTM predicted 
signal.   
 
5. Conclusions  

  
This study aimed to predict medium-range 

temperature with appreciable accuracy. For this, we have 
used 5, 7 and 9 days max-min temperature data. From the 
results obtained in section 4, it is seen that the proposed 
approach has MAE, MSE, RRMSE and MAPE below 0.7, 
1.1, 0.2 and 2.85 respectively in predicting max-min 
temperature 5, 7 and 9 days ahead, which is very less. The 
values of IA are always above 0.97 in this approach. The 
performance of only LSTM to predict the temperature is 
poor compared to the proposed approach.  Hence it may 
be concluded that the proposed approach is suitable and 
may be used to predict medium range temperature. 
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