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सार — भारतीय ग्रीष्मकाल�न मॉनसून वषार् (ISMR) से जुड़ी अ�निश्चतता के कारण, एकल �नधार्रणात्मक 
पूवार्नुमान क� तुलना म� संभा�वता ऋतु�नष्ठ पूवार्नुमान उपयोगकतार् क े �लए अ�धक उपयोगी ह� जो ISMR क� 
अंत�नर्�हत अ�निश्चतता को व्यक्त कर सकत े ह�। हालाँ�क इस तरह क े संभा�वता ऋतु�नष्ठ पूवार्नुमान सामान्य 
प�रसंचरण मॉडल (GCM) आउटपुट से उत्पा�दत �कए जा सकत ेह�, और आम तौर पर एकल मॉडल त्रु�ट क ेसभी 
स्रोत� का प्र�त�न�धत्व नह� ं करता है। संभा�वता बहु मॉडल एंस�बल (PMME) व्यिक्तगत GCM द्वारा संभा�वता 
पूवार्नुमान क ेकौशल म� सुधार क े�लए एक स्वीकृत तर�का है। PMME को दो दृिष्टकोण� म� स ेएक के साथ बनाया 
जा सकता है: ऋतु�नष्ठ कुल वषार् क� तीन श्रे�णय� क ेसंबंध म� गैर-पैरामी�ट्रक, या पैरामी�ट्रक-जलवाय ुआधार 
अव�ध द्वारा प�रभा�षत सामान्य से कम, �नकट और सामान्य से अ�धक। दोन� �व�धय� क� अपनी सीमाए ँह�। गैर-
पैरामी�ट्रक PMME एक छोट ेएंस�बल आकार का उपयोग करता ह ैिजसक ेप�रणामस्वरूप अ�त�वश्वसनीय पूवार्नुमान 
होत ेह�, और पैरामी�ट्रक PMME गलत धारणा बनात ेह� �क कुल वषार् गॉ�सयन �वतरण का अनुसरण करती है। इन 
समस्याओ ंसे बचन ेक े �लएहम ISMR पूवार्नुमान हेत ुPMME क े �नमार्ण क े �लए एक नई मशीन ल�न�ग (ML) 

दृिष्टकोण एक्सट्र�म ल�न�ग मशीन (ELM) क ेउपयोग को प्रस्ता�वत करत ेह�। ELM �संगल-�हडन-लेयर फ�ड-फॉरवडर् 
न्यूरल नेटवकर् का अत्याधु�नक सामान्यीकृत रूप है। हालाँ�क, पारंप�रक ELM नेटवकर् केवल एक �नधार्रणात्मक 
प�रणाम उत्पन्न करता ह,ै इस�लए हम ELM के संशो�धत संस्करण का उपयोग करत े ह� िजस े प्रोबे�ब�लिस्टक 
आउटपुट एक्सट्र�म ल�न�ग मशीन (PO-ELM) कहा जाता है। PO-ELM संभा�वता पूवार्नुमान करन ेक े�लए �सग्मॉइड 
ए�ड�टव न्यूरॉन्स और थोड़ा अलग रै�खक प्रोग्रा�मंग का उपयोग करता है। इस तरह क ेPO-ELM आधा�रत PMME 

क ेप्रदशर्न का मूल्यांकन सामान्यीकृत �रसीवर ऑपरे�टंग �वशेषता स्कोर और �वश्वसनीयता आरेख� क ेसंदभर् म� 1982 

से 2018 तक क� 37 वष� क� अव�ध क ेदौरान ल�व-थ्री-ईयर-आउट क्रॉस-वै�लडेशन स्क�म क ेबाद �कया जाता है। 
यह बताया गया ह ै�क ML पर आधा�रत PMME क े�लए हमार� नई रणनी�त भारत क ेबड़ े�ेत्र� म� कुशल MME 

पूवार्नुमान तैयार करन ेम� स�म है। 
 
ABSTRACT. Due to the uncertainty associated with Indian summer monsoon rainfall (ISMR), probabilistic 

seasonal forecasts which can convey the inherent uncertainty of ISMR are more useful to the user community than a 
single deterministic forecast. While such probabilistic seasonal forecasts can be produced from general circulation model 
(GCM) output, one single model generally does not represent all sources of error. The probabilistic multi model ensemble 
(PMME) is a well-accepted way to improve on the skill of probabilistic forecasts by individual GCMs. PMME can be 
constructed with one of two approaches: non-parametric, or parametric with respect to the occurrence of three categories 
of seasonal total rainfall-below, near and above normal as defined by the climatological base period. However, both the 
methods have their limitations. Non-parametric PMME use a smaller ensemble size which results in overconfident 
forecasts and parametric PMME make the inaccurate assumption that total rainfall follows a Gaussian distribution. To 
avoid these problems, we propose the use of the Extreme Learning Machine (ELM), a novel machine learning (ML) 
approach, to construct PMME for ISMR forecasting. ELM is a state-of-the-art generalized form of single-hidden-layer 
feed-forward neural network. However, since the traditional ELM network only produces a deterministic outcome, we 
use a modified version of ELM called Probabilistic Output Extreme Learning Machine (PO-ELM). PO-ELM uses 
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sigmoid additive neurons and slightly different linear programming to make probabilistic predictions. The performance of 
such PO-ELM based PMME is assessed rigorously in terms of Generalized Receiver Operating Characteristic scores and 
reliability diagrams over a 37 years period spanning from 1982 to 2018 following a leave-three-year-out cross-validation 
scheme. It is demonstrated that our new strategy for PMME based on ML is capable of producing skillful MME forecasts 
over large regions of India. 

 

Key words  –  Indian Monsoon, Probabilistic prediction, Machine learning, Multimodal ensemble. 
 
 

  
1.  Introduction 
 

Predictions communicating the intrinsic uncertainty 
of Indian summer monsoon rainfall (ISMR) become more 
useful to the user community, especially those 
stakeholders involved in agricultural/hydrological 
planning and climate risk management, because of 
ISMR’s characteristic intricacy. Probabilistic forecasts 
which can convey the prediction uncertainty can be 
considered a better way to disseminate seasonal                  
forecast information, compared to single deterministic 
forecasts. A plethora of studies exist in the literature 
which focus on the deterministic approach to the                
seasonal prediction of ISMR. However, only a few studies 
have described probabilistic prediction systems (Kulkarni 
et al., 2012; Acharya et al., 2013; Acharya et al., 2014a; 
Acharya, 2018). These studies are mostly based on 
probabilistic multi-model ensemble (PMME)                   
prediction using outputs of general circulation model 
(GCM). As one single model generally does not represent 
all sources of error, the PMME is a well-accepted way to 
improve the skill of probabilistic forecasts by individual 
GCMs. 

 
PMME forecasts can be made with one of two 

approaches: non-parametric, or parametric with respect to 
the occurrence of three equi-probable, mutually exclusive 
and collectively exhaustive categories viz., below-normal 
(BN), near-normal (NN) and above-normal (AN) of 
seasonal mean rainfall as defined by the climatological 
base period. There are some basic differences between 
non-parametric and parametric methods for making 
PMME. In the non-parametric approach, weights will be 
assigned after the estimation of probabilities from 
individual GCM without assuming the form of forecast 
distribution (Acharya et al., 2013). Whereas, in a 
parametric method, weights are assigned to the 
deterministic prediction obtained from GCM and then 
converted to probabilistic space using Gaussian predictive 
probability density function (Acharya et al., 2014a). 
However, both the methods have their limitations. For 
example, Non-parametric PMME uses a smaller ensemble 
size which results in overconfident forecasts and 
parametric PMME makes the inaccurate assumption that 
total rainfall follows a Gaussian distribution. 

 
To avoid the problems with the non-parametric and 

parametric approaches, in this study, we propose using a 

novel Machine Learning (ML) method based on Artificial 
Neural Network (ANN) to construct PMME for seasonal 
predictions of ISMR for the first time. Based on our 
previous work constructing deterministic MME using the 
Extreme Learning Machine (ELM) (Acharya et al., 
2014b), a generalized form of the single-hidden-layer 
feed-forward ANN, we explore ELM’s potential for 
making PMME. However, as the traditional ELM network 
can only produce a deterministic outcome, we 
implemented a modified version of ELM called 
Probabilistic Output Extreme Learning Machine (PO-
ELM) and used it to construct PMME-based forecasts of 
ISMR with the state-of-the-art coupled GCMs of the 
North American Multi-Model Ensemble (NMME) 
(Kirtman, et al., 2014). This work basically reports an 
extension of the work of Acharya et al. (2013); Acharya  
et al. (2014a and 2014b) and the ultimate interest of the 
present work is to develop a skillful probabilistic seasonal 
forecast of ISMR which is useful to multiple sectors of 
society, including agriculture, hydrology and health. 
 

Below, Section 2 provides a short description of            
the GCMs and reference datasets used. Section 3 outlines 
the methodology and implementation of the PO-ELM 
approach for making PMME. Section 4 presents the 
evaluation of the performance of the proposed                    
method and section 5 concludes with a future scope of this 
research. 
 
2.  Datasets 
 

2.1.  NMME datasets 
 

This study uses five GCM’s May-initialized, lead-1 
seasonal mean rainfall hindcasts for the June-July-August-
September (JJAS) season spanning over the 1982-2018 
time period. These five global ocean-atmosphere coupled 
models are members of the North American Multi-Model 
Ensemble (NMME) project (Kirtman et al., 2014). The 
five models include one from NOAA’s Centers for 
Environmental Prediction (NCEP-CFSv2), two from the 
Canadian Meteorological Center (CanSIPS-IC3 GEM5-
NEMO and CanCM4i), one from the Geophysical Fluid 
Dynamics Laboratory (GFDL-CM2p5-FLOR-B01) and 
one from the National Aeronautics and Space 
Administration (NASA-GEOSS2S). These NMME 
monthly hindcast datasets are available at a common                   
1° resolution grid at http://iridl.ldeo.columbia.edu/ 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME�
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SOURCES/.Models/.NMME. The GCMs have different 
numbers of ensemble members representing different 
initialization methods, which were averaged to generate 
an ensemble mean to represent the forecast signal. More 
details about these GCMs can be found in Acharya et al. 
(2021). The capacity of these NMME models to predict 
ISMR is well documented in several studies (Pillai et al., 
2018; Singh et al., 2019). 
 

2.2.  Observational reference data 
 

The 1° gridded daily rainfall dataset from India 
Meteorological Department (IMD) is used as an 
observational reference (Rajeevan et al., 2006). This daily 
data is further transformed into seasonal mean rainfall for 
JJAS for the same time period of the GCMs’ hindcast 
(1982 to 2018). 
 
3.  Methodology and implementation 
 

3.1.  Overview of ELM 
 

The ANN, an ML technique based on the human 
nervous system, is the most popular artificial intelligence-
based method for prediction, pattern recognition and 
pattern classification. The single-hidden-layer feedforward 
network (SLFN), one of the most popular types of feed 
forward ANNs, has been extensively studied from                 
both theoretical and practical perspectives for its             
learning capacity and fault-tolerance. It has been used 
extensively to forecast convective hazards since the mid-
1990s, however, after the pioneering work by Acharya            
et al. (2014b), there is strong interest in exploring the 
potential of ML based MME to improve seasonal 
forecasts. 

 
The efficacy of SLFN-based methods is highly 

dependent on the appropriate tuning of their adjustable 
hyperparameters, e.g., transfer function, learning rate and 
the number of nodes in each layer. There are also several 
disadvantages of traditional SLFN-based methods, 
including long computation time, over-fitting and 
vanishing gradient. The Extreme Learning Machine 
(ELM), proposed by Huang et al. (2006), appears to             
solve these problems. ELM can unquestionably learn 
much faster than conventional learning algorithms                  
like the back- propagation algorithm and the Levenberg-
Marquardt algorithm that leverage gradient descent-           
based methods to optimize the weights in the neural 
network. 

 
In ELM, the parameters of hidden nodes, like              

their input weights and biases, are randomly assigned             
and need not be tuned. Alternately, the output weights            
are determined analytically using the Moore-Penrose 

(MP) generalized inverse. This simplified approach  
makes ELM thousands of times faster than                     
traditional learning algorithms. Moreover, ELM is                  
able to produce very good generalization performance 
with less human intervention. The detailed mathematical 
foundations of ELM can be found in Huang et al.               
(2006). Acharya et al. (2014b) proposed the use of the 
ELM for generating the deterministic MME based 
prediction. 

 
3.2.  Description of PO-ELM 
 
Since the successful introduction of the basic ELM, a 

number of further extensions and improvements to the 
structure of ELM have been proposed by researchers. 
However, probabilistic prediction using ELM has not yet 
been explored much since the traditional ELM only 
produces unbounded continuous deterministic output, 
which is not well suited for probabilistic forecasting. In a 
very recent study by Wong et al. (2020), the original ELM 
model was modified to produce probabilistic outputs. The 
PO-ELM (Wong et al., 2020) modifies the original ELM 
model such that it optimizes a sigmoid objective function 
and produces bounded continuous output on the interval 
(0, 1). When trained with a binary target vector, this 
sigmoid output can be interpreted as a binary probability- 
the probability that a given input sample will be a member 
of the class of interest (represented by 1) or not 
(represented by 0).  

 
Where, however, we have also made a further 

modification to the PO-ELM model, in order to produce 
relative probabilities for the BN, NN and AN classes, 
rather than binary probabilities for each. A traditional PO-
ELM, trained on a one-hot encoded multi-class target 
vector, is akin to three PO-ELM models with the same 
weights, trained on each of the independent column 
vectors representing each class. Each of those models 
would produce binary probabilities for the class they were 
trained on. This is not useful in tercile probability 
forecasting, since the three probabilities have no meaning 
relative to one another - they could all be 0.99, a forecast 
of ‘yes’ for all three tercile categories, a difficult to 
interpret the result. We address this by applying 
normalization to the PO-ELM network’s binary 
probabilities. More mathematical details of PO-ELM can 
be found in Wong et al. (2020). Fig. 1 shows the 
schematic structure of PO-ELM. 
 

3.3.  Implementation procedure of PO-ELM for 
making PMME 

 
In this study, PO-ELM was trained to make PMME 

on the hindcast from five GCMs. The whole procedure 
consisted of the following sequential steps: 
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Fig. 1. Schematic representation of the structure of Probabilistic Output Extreme Learning Machine (PO-ELM) 
 

 
3.3.1.  Scaling the input neurons 
 
First the rainfall outputs from five GCMs were used 

as input neurons and were scaled to the range of [-1, 1] via 
the “Min-Max” scaling method (Acharya et al., 2014b). 

 
3.3.2.  One-hot encoding the target data 
 
The observed rainfall data (IMD) was treated as 

target data and was “one-hot encoded” according to tercile 
boundaries defined by the 33rd and 66th percentiles of the 
observed data. This creates three separate target vectors 
representing BN, NN and AN respectively. With one-hot 
encoding, observed rainfall is converted into a binary 
vector (1 or 0) for each tercile category, with one 
representing a sample’s membership in a tercile category and 
zero representing a lack of membership in that category. 

 
3.3.3.  Apply PO-ELM algorithm in training and 

testing mode 
 
ML models are data-hungry - meaning that a large 

sample size is needed for ML models to learn 

relationships and maintain good predictive accuracy. 
However, due to the short length (1982-2018; only 37 
years) of the dataset used here, it cannot be divided 
independently for training and testing the network. So, we 
used leave-three-out cross validation where three years 
among the total dataset was reserved for the ‘‘test’’ 
dataset and residual data (in our case 34 samples) was 
used as the ‘‘training’’ dataset. After training, or fitting 
the network with PO-ELM, a final weight matrix was 
obtained which was further applied to the independent 
inputs in the ‘‘test’’ phase. Then the final outcomes were 
compared with the original observation. 

 
3.3.4.  Hyperparameter tuning and final architecture 
 
To find an optimal network, we performed informal 

hyper-parameter tuning using cross-validation, loosely 
targeting high values and broad geographical spread of 
verification metrics. We found that the most skillful 
architecture, presented in section 4, consisted of 5 hidden 
nodes with linear activation functions. As the weights           
and bias are randomly chosen in the first part of the 
network, to avoid the over or under-fitting, we ran the 
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network 30 times and finally averaged the final 
probabilities. 

 
3.3.5.  Spatial Smoothing 
 
As this PMME approach was implemented at each 

grid point individually, the resultant probabilities tended 
to be noisy spatially. Therefore, the final forecast 
probabilities were smoothed spatially using local kernel-
function smoothing. In particular, the PMME prediction 
were spatially smoothed using 3 × 3 kernel smoothers 
with weights that followed a bivariate Gaussian function 
with standard deviation = 1° and were normalized to sum 
to 1. Coastal area weights were normalized according to 
the number of land grid points included in the smoothing. 

 
All above discussed steps required for the generation 

of a PO-ELM-based PMME forecast system were done 
using XCast, a high-performance Python data science 
toolkit for climate forecasting, designed by the authors 
(Hall and Acharya, 2022). 

 
4.  Results and discussion 
 

We demonstrate the skill of PO-ELM-based PMME 
tercile probabilistic forecasts of Indian Summer Monsoon 
Rainfall using Generalized Receiver Operating 
Characteristic scores (GROCS) and reliability diagram as 
skill measures. Both of the skill metrics were estimated 
within leave-three-out cross-validation for 1982-2018. 
The detailed discussion of skill assessment is presented 
below: 
 

4.1.  Generalized receiver operating characteristic 
scores 

 
In probabilistic forecasts, ROC curves describe the 

degree to which forecasts are able to correctly 
discriminate between classes, as well as their ability to 
distinguish one categorical outcome from another (Mason 
and Graham, 1999). The ROC curve is basically a signal 
detection curve obtained by plotting a graph of hit rate (on 
the vertical axis) against corresponding false alarm rate 
(on the horizontal axis) over a range of different 
thresholds to assess a probabilistic forecasts system. A hit 
implies the occurrence of an event of interest, such as 
above normal precipitation, while a false alarm implies the 
nonoccurrence of such an event. An ROC curve 
demonstrating some level of skill generally follows a 
curve beginning at the bottom left corner of a square and 
intercepting both the top right corner and a point in the top 
left quadrant of the figure. A diagonal line indicates no 
skill, i.e., the hit rate and false-alarm rate are equal. The 
ROC curve will lie above the 45° line from the origin if 
the forecast system is skillful (when the hit rate exceeds  

 
 
 

 
Fig. 2.  Generalized Relative Operating Characteristic Score (GROCS) 

of the PO-ELM based PMME for June-July-August- 
September during 37 years hindcast period. Areas with 
GROCS values greater than 0.5 (exhibiting some skill) have 
been shaded 

 
the false-alarm rate). The area beneath the ROC curve 
which has become known as the ROC score (ROCS) 
summarizes the performance of the forecast. ROCS above 
0.5 reflect positive discrimination skill while 1.0 
representing the maximum possible score. If the ROCS is 
less than 0.5 (i.e., the same as a no-skill forecast), then the 
model is less skillful than a random or constant forecast. 
Generally, ROCS is calculated for each of the tercile 
categories (BN or NN or AN) individually. However, the 
generalized ROC score (GROCS) is generalized to 
encompass all forecast categories collectively, rather than 
being specific to a single category. 
 

The spatial patterns of GROCS for PO-ELM based 
PMME have been shown in Fig. 2. It is interesting to 
notice that the large portions of North, Northeast, Central 
and South India exhibit more skill (GROCS>0.5) than 
climatological forecasts (i.e., 0.33 for each tercile 
category). Especially high GROCS are observable over 
the Deccan Plateau in South India, the Northern Plains 
and Western Himalayas in Northern India and along the 
Eastern Himalayas and North Eastern Range near 
Purvachal and the Assam Valley. Interestingly, the spatial 
pattern of high GROCS loosely appears related to the 
spatial distribution of climatological rainfall during the 
ISMR season. Therefore, in view of the GROCS analysis, 
it can be interpreted that for the majority of the grid points 
over the country, the probabilistic predictions produced by 
PO-ELM based PMME successfully discriminated 
between events of occurrences and non-occurrences. 
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Fig. 3.  Reliability diagram for below and above normal categories 
of the PO-ELM based PMME for June-July-August-
September during 37 years hindcast period 

 
 

4.2.  Reliability diagrams 
 

One limitation of GROCS is that it only shows the 
degree of correct probabilistic forecast discrimination. 
However, for a skillful probability forecast other factors 
such as the reliability (degree of correspondence between 
issued forecast probabilities and relative observed 
frequencies), resolution (ability of the forecast system to 
assign probabilities different from the climatological 
probability) and sharpness (tendency of probability 
forecasts to approach 0 and 1) is equally important. 
Reliability diagram (Murphy and Winkler, 1977) is widely 
used to summarized all the above discussed factors to 
assess the forecast probabilities for each of the forecast 
categories individually. The primary interest in the 
diagram where the x-axis shows the forecast probability 
intervals and the y-axis shows the corresponding observed 
relative frequencies of occurrence, is to show the observed 
relative frequency of occurrence that is associated with the 
issuance of each of a set of specific probability intervals 

(bins), shown individually for each of the tercile 
categories. An inset plot is often shown within the 
reliability plot, representing the frequency of issuance of 
each probability interval for each of the forecast 
categories. This plot tells how strongly and frequently the 
issued forecast probabilities depart from the 
climatological probabilities (i.e., 0.33 for each tercile 
category) as a measure of sharpness. A reliability diagram 
requires a large sample of data to show a wealth of 
detailed information about the forecasts and their 
correspondence with the observations for each of a set of 
issued probability intervals. In the ideal situation a 
reliability diagram should plotted for each individual grid 
point, but when considering a smaller sample size (in our 
case it is only 37 years of hindcast), that becomes 
impossible, hence it requires a large sample of data by 
pooling all hindcast years and all grid points. 
Additionally, since users are unlikely to rely on a forecast 
for a region exhibiting zero skill and because these 
diagrams are intended to further enhance a user's 
understanding of the forecast that they intend to rely on, 
here we choose to limit the calculation of the reliability to 
data from the geographical subregions exhibiting GROCS 
greater than or equal to 0.5. Including grid points whose 
forecasts display no skill in the calculations would 
unfairly spoil the reliability for the skillful forecasts.  

 
The reliability diagram is plotted in Fig. 3 for BN 

and AN forecast categories individually by pooling all 
forecasts for 37 years and all grid points where 
GROCS>0.5 over Indian land mass. 

 
Note that only bins with more than 1% of the total 

number of forecasts in each category are plotted in the 
diagrams. The vertical boundary between the two 
represents a line of “no skill” while the diagonal boundary 
between the two represents climatological probability and 
the horizontal red line in each diagram represents a line of 
“no resolution”. The 45-degree line bisecting the angles 
between the “no skill” and “climatology” boundaries 
represents a perfectly calibrated forecast, in which case 
one could expect the forecasted percentage probability 
exactly represent the portion of the time that forecast was 
accurate (i.e., a 100% probability forecast always comes 
true 100% of the time, a 90% probability forecast comes 
true 90% of the time, etc.). Fig. 3 shows that both BN and 
AN category, the red lines (representing the forecast 
probability versus observed frequency) are close to the 
diagonal line (perfect forecast), indicating high reliability 
and well calibrated forecasts across all probabilities. The 
resolution has also improved as the angle of red lines with 
the horizontal (no resolution) is higher. However, the NN 
category closely mirrors the level of calibration of 
climatology (figure not shown). Both BN and AN also 
observe a much more uniformly distributed set of forecast 

Below Normal                            

Above Normal                            
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probabilities, whereas most of the NN probabilities are 
centered around 0.3 and do not exceed 0.7. In conclusion, 
PO-ELM based PMME provides high reliable forecasts 
with good resolution and better strategy compared to 
climatological probabilities for BN and AN category. 
 
5.  Concluding remarks and future scopes 
 

A single deterministic rainfall forecast is likely to 
communicate over-confidence for predicting seasonal 
Indian summer monsoon rainfall (ISMR) which can 
undermine the trust between stakeholders and forecasters. 
Probabilistic seasonal forecasts can provide an effective 
way of conveying inherent uncertainty within the 
prediction which are useful to multiple sectors of society, 
including agriculture, hydrology and health. 

 
Probabilistic seasonal forecasts can be produced 

from outputs of general circulation models (GCMs), 
however, one single model generally does not represent all 
sources of error. The probabilistic multi model ensemble 
(PMME) is a well-accepted way to improve on the skill of 
probabilistic forecasts by individual GCMs. While PMME 
can be constructed by non-parametric or parametric 
methods, both the methods have their limitations. To 
overcome the limitations, we have proposed the use of an 
innovative method based on Machine Learning (ML), viz., 
Probabilistic Output Extreme Learning Machine (PO-
ELM), a state-of-the-art generalized form of single-
hidden-layer feed-forward neural network, to construct 
PMME for the seasonal predictions of ISMR using the 
outputs of the GCMs from the NMME project. The 
performance of such PO-ELM based PMME was assessed 
rigorously in terms of GROCS and reliability diagram 
over a 37 years period spanning from 1982 to 2018 under 
leave-three-year-out cross-validation. In view of the 
GROCS analysis, we have found that PO-ELM based 
PMME successfully discriminated between events of 
occurrences and non-occurrences for the majority of grid 
points over the country. Moreover, PO-ELM based 
PMME provides highly reliable forecasts with good 
resolution and better sharpness than climatological 
probabilities, for the BN and AN category. Hence, it is 
demonstrated that our new strategy for PMME based on 
ML is capable of producing skillful MME forecasts over 
large regions of India.  
 

Though this paper concentrated only on the 
traditional tercile probability events, in the future, we will 
extend this work to explore further structural 
modifications to the PO-ELM network to develop a more 
flexible forecast (probability of exceedance) format that 
allows users to glean information from those part of 
forecast distribution what matters most to them such as the 
probability of extremely dry/wet conditions.  
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