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ABSTRACT. Gridded precipitation datasets are widely available from satellite observations and reanalysis model
outputs. However, its performance in specific regions in the world may vary and depends on several factors, such as grid
data spatial resolution, rainfall estimation algorithms, geographical location, elevation and regional climate conditions.
This study aims to report on 13 gridded precipitation datasets' performance over Indonesia through direct comparisons
with rain gauge measurements at various time scales over a 12-year period (2001-2012). The results show that, at daily
timescales, the MERRA2 and CPC outperformed other datasets but tended to underestimate the rain gauge data in
Indonesia, followed by GPCC. However, MERRA2 has smaller variation and bias than CPC. On monthly and annually
timescales, CPC was found to be the best-performing dataset, followed by MERRA2, GPM-IMERG, GPCC and TRMM
(TMPA), while JRA55 registered the worst performance at all timescales, followed by ERA-Interim. The performance of
all datasets was better during JJA and SON than during DJF and MAM. The best performances were found in the
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southern (S) region of Indonesia, while the worst were in the northeast (NE) region for all months and datasets. The best
performances during DJF (Asian Winter Monsoon) and JJA/SON (Australian Winter Monsoon) were found in the
northwest (NW) and southern (S) regions, respectively. Most datasets overestimate the rain gauge data over Indonesia,

except for GSMaP, MERRA2, CPC and CMORPH.

Key words — Precipitation datasets, Asian-Australian monsoons, Surface observations, Satellite observations,

Indonesia.

1. Introduction

Rain gauge observations are usually used for manual
measurement of precipitation directly on the surface at a
point scale. In Indonesia, the number of meteorological
stations is still limited and sparsely distributed, especially
in mountainous and inaccessible or remote areas that are
likely not available. Measurement of rainfall is very
important because the onset and peak of the wet and dry
seasons in Indonesia are determined based on rainfall
(Wati et al., 2019). The variability of rainfall in Indonesia
is strongly influenced by the activity of the Asian-
Australian Monsoon. The Asian monsoon affects the
variability of rainfall during the rainy season and the
Australian monsoon affects the variability of rainfall
during the dry season (Robertson et al., 2011). The
utilization of existing gridded precipitation datasets can
cope with the lack of rain gauge observations and the
daily missing-values problems in the observation time
series.

There are several categories of gridded precipitation
datasets, including rain gauge-based, satellite-based,
mixed gauge-satellite-based and reanalysis model datasets
(Higgins et al., 1996; Xie and Arkin, 1997; Jones and
Moberg, 2003; Schneider et al., 2011; Arakawa and Kitoh,
2011). There are several rain gauge-based gridded datasets
available. Their quality depends on the station density,
interpolation methods, spatial resolution, altitude gradient
and climate (Merino et al., 2021). Satellites measure
rainfall by estimating the amount of electromagnetic
radiation (or energy) emitted or reflected from the tops of
clouds or raindrops themselves. The satellite generates
data in the form of a grid, the size of which varies. The
lower the grid resolution, the better the data describes the
variation in rainfall between regions. Meanwhile,
reanalysis datasets involve a variety of observational data
synthesis (radiosondes, satellites, buoys, planes and ships)
that use the assimilation scheme with climate models.

Previous studies have evaluated the performance of
several gridded precipitation datasets in Indonesia, but the
number of gridded datasets used was limited (less than 10)
and focused more on rain-gauge and satellite-based
datasets, excluding reanalysis datasets (Wati et al., 2021,
2022). These studies found that MSWEPv2, SA-OBS,
TMPA 3B42V7 and GPM-IMERG are the best datasets
that generally outperformed other datasets in Indonesia.
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This study aims to evaluate the statistical performance of
13 gridded precipitation products, including reanalysis
datasets, over Indonesia through direct comparisons with
rain gauge datasets at various time scales during the
period of 2001-2012 (12 years), particularly during the
Asian-Australian Monsoon period.

2. Data and methodology

2.1. Gridded precipitation datasets

The summary of thirteen precipitation datasets used
in this study is presented in Table 1. It consists of nine
rain gauge and satellite-based datasets which have a daily
temporal resolution and four reanalysis datasets with an
hourly (ERAS5 and MERRA?2), a 3-hourly (JRA55) and a
12-hourly (ERA-Interim) temporal resolutions. For
analysis purposes, reanalysis datasets are then converted
to daily resolution. It should be noted that the spatial
resolutions of datasets are 0.1° for GPM-IMERG and
GSMaP; 0.25° for CHIRPS, CMORPH, PERSIANN,
TRMM and ERA5; 0.5° for CPC; 0.562° for JRASS5;
0.5° x 0.67° for MERRA2; 0.75° for ERA-Interim; and
1° for GPCC and GPCP.

2.2. Observation datasets

For observation datasets, rain gauge data from 82
BMKG stations in Indonesia from 2001-2012 (12 years)
has been used as the reference dataset (Fig. 1). These
times span the years between observations and all
precipitation datasets being compared. The rainfall data is
the same observed daily precipitation dataset that was
used in Supari et al. (2017). For regional analysis,
Indonesia is simply divided into three regional clusters
based on the typical annual rainfall pattern (Aldrian and
Susanto, 2003), as follows (Fig. 1):

(i) Northwest (NW) region containing 24 stations,
which typically has two peaks of rainy season in a year

(if) Northeast (NE) region containing 12 stations, which
typically has one peak of rainy season during JJA and one
peak of dry season during DJF.

(iii) South (S) region containing 45 stations, which
typically has one peak of rainy season during DJF and one
peak of dry season during JJA.
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Fig. 1. Spatial distribution of rain gauge stations and simple clusters based on a typical rainfall regions

TABLE 1

Summary of Gridded Precipitation Datasets used in this study

Resolution
S. No. Dataset type Dataset product Period References
Spatial Temporal

1. Gauge-based CPC-Unified 0.5° daily 1979-present Chen et al. (2008)

2. Gauge-based GPCC V2018 1.0° daily 1982-2016 Schamm et al. (2014)

3. Gauge and satellite-based GPCP V1.2 1.0° daily 1997-2015 Huffman et al. (2001)

4. Satellite-based CHIRPS v2.0 0.25° daily 1981-present Funk et al. (2015)

5. Satellite-based CMgE\SEc_)r\r/el (;?e—dADJ 0.25° daily 1998-present Joyce et al. (2004)

6. Satellite-based PERSIANN-CDRv01r01 0.25° daily 1983-present Ashouri et al. (2015)

7. Satellite-based TRMM (TMPA) 3B42V7 0.25° daily 1998-2019 Huffman et al. (2007; 2010)

GPM-IMERG V06
8. Satellite-based Gauge-calibrated 0.1° daily 2000-present Huffman et al. (2015; 2020)
Final product

9. Satellite-based GSMaP Gauge-calibrated 0.1° daily 2000-present Kubota et al. (2007; 2020)

10. Reanalysis ERA-5 0.25° hourly 1950-present Hersbach et al. (2020)

11. Reanalysis ERA-Interim 0.75° 12-hourly 1979-2019 Dee et al. (2011)

12. Reanalysis JRA55 0.562° 3-hourly 1958-present Kobayashi et al. (2015)

13. Reanalysis MERRA2 0.5°x 0.67° hourly 1980-present Gelaro et al. (2017)
2.3. Statistical metrics calculating simple statistical metrics of time sequence,

including Pearson Coefficient Correlation (r; Egn. 1),
This study implemented the point to grid comparison Root Mean Squared Error (RMSE; Egn. 2) and

approach using the nearest neighbor method (the dataset Bias / Error (Egn. 3). r is used to measure the degree of
grid location is the same as the point of the observation relationships between observed and grid datasets. RMSE
station site). Furthermore, the comparison is conducted by is used to describe the level of accuracy between
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Fig.2. Box plot of coefficient correlation, RMSE and bias (error) from all observation stations for all months at daily, monthly,
monthly-average and annually timescales. Green triangles represent the mean values

TABLE 2

The mean values of statistical measures for all months. The best values are bold

Daily Monthly Annually
Dataset type Dataset RMSE RMSE RMSE Bias (%)
r (mm/day) r (mm/month) r (mm/year)
Rain gauge- CPC 0.53 13.27 0.88 69.48 0.83 382.61 -4.87
based GPCC 0.47 15.06 0.82 94.04 0.76 618.78 18.28
GPCP 0.28 15.44 0.74 108.74 0.72 665.82 5.37
Satellite-based CMORPH 0.34 16.27 0.74 105.95 0.67 627.77 -7.67
PERSIANN 0.30 15.12 0.75 107.35 0.71 666.51 7.08
CHIRPS 0.32 15.27 0.75 97.16 0.71 490.16 7.17
GSMAP 0.31 16.71 0.71 115.77 0.67 677.27 -1.56
TRMM 0.32 16.80 0.81 92.44 0.77 564.20 6.70
GPM 0.35 17.27 0.83 93.63 0.80 634.04 20.50
Reanalysis JRA55 0.21 16.35 0.55 151.80 0.44 1021.17 11.17
ERA 0.23 15.97 0.60 130.49 0.50 822.12 12.37
ERA5 0.29 15.23 0.70 109.97 0.64 594.02 9.66
MERRA2 0.53 12.96 0.85 81.57 0.79 480.86 -4.20

observation data and grid data. Bias / Error is used to 1 5
determine rainfall estimation results from grid data that is RMSE = —Z(Si -Gj)
overestimated (Bias > 0) or underestimated (Bias < 0). n

\/7G(GG )f\/)(; : )3)2 @) BIAS/Error = %—1 x100
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Fig. 3. The seasonal mean values of coefficient correlation, RMSE and bias (error) from all observation stations at daily
and monthly timescales
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TABLE3

The seasonal values of statistical measures
(The best values are bold)

Dataset Type Rain gauge-based Satellite-based Reanalysis
Data/Season/Metrics CPC GPCC GPCP CMORPHPERSIANNCHIRPS GSMAP TRMM GPM JRA55 ERA ERA5 MERRA2

Daily r 051 045 0.23 0.31 0.25 0.29 030 030 033 016 017 0.25 0.51
oI RMSE 1581 17.96 1845 19.40 17.94 17.83 1953 19.87 20.28 1947 19.17 18.09 15.47

r 050 044 024 0.29 0.25 0.27 025 029 030 016 018 0.23 0.49

MAM RMSE 1347 1570 16.01 16.91 15.60 1574 1734 1741 1809 16.89 16.26 15.64 1341

r 0.52 0.48 0.28 0.32 0.28 0.29 0.28 0.32 0.36 0.22 0.24 0.28 0.52

A RMSE 9.78 1073 1135 12.07 11.39 1183 1251 1237 1262 1195 1155 1130 9.53

r 051 046 0.27 0.31 0.27 030 028 030 032 021 022 028 0.51

SON RMSE 1224 1399 1415 14.72 13.87 1406 1559 15.66 16.15 1510 1490 14.00 11.81
Monthly r 082 074 0.60 0.62 0.62 0.60 057 073 077 032 037 052 0.78
BF RMSE 8274 109.00 12742 12635 12890 116.15 13291 107.55 107.47 179.62 155.88 132.17 98.49

r 0.81 0.72 0.59 0.59 0.60 0.60 0.53 0.72 0.74 0.38 0.40 0.53 0.75

MAM RMSE 67.19 96.83 108.16 10476 106.57 9539 11239 9044 92.77 14855 124.10 106.58 80.15

r 086 083 0.72 0.67 0.71 0.71 0.65 078 081 057 060 0.67 0.83

DA RMSE 48.80 64.25 7438 77.39 74.34 69.37 87.73 64.88 66.03 10540 91.26 77.57 55.78

r 0.86 082 0.72 0.71 0.73 073 070 079 082 055 058 070 0.84

SO RMSE 6153 86.76 103.13 95.79 98.37 88.89 107.77 87.26 89.91 139.17 127.02 101.49 72.30

DJF Bias(%) -5.82 1391 -1.21 -9.08 2.70 4.10 -1.67 285 1752 484 8.56 7.49 -5.17

MAM Bias (%) -5.56 2224 12.68 -6.97 13.45 816 -2.95 1078 2281 16.29 1164 1093 -3.77

JJA Bias(%) 141 30.04 2366 0.75 23.84 20.70 -6.86 1261 27.62 1455 3464 1835 588

SON Bias (%) -1.69 29.84 1845 -6.15 17.54 13.52 753 16.26 3212 29.26 33.62 21.61 0.21

where, S; represents the grid precipitation data and G;
represents the observed station data.

3. Results and discussion
3.1. Performance for daily to annual timescales

Fig. 2 shows a box plot diagram of correlation
coefficient, RMSE and bias at daily, monthly, monthly-
average and annually timescales for all stations and
gridded datasets, while the mean values of each metric are
given in Table 2. On daily timescale, the mean
correlations between observation and gridded datasets
range between 0.21 and 0.53, while the mean RMSE
values range between 12.96 and 17.27 mm/day. In
general, MERRA2 and CPC outperformed other datasets
in terms of correlation and RMSE but tended to
underestimate the rain gauge data by 4.2-4.8%, followed
by GPCC but overestimated by 18.28%. However,
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MERRAZ2 is considered to be the best dataset at daily
timescale because it has less variation (smaller
interquartile range) of correlation and RMSE and has less
bias compared to CPC and GPCC.

On monthly timescale, the mean correlations values
range between 0.55 and 0.88, while the mean RMSE
values range between 69.48 and 151.80 mm/month. On
annually timescale, the mean correlations values range
between 0.44 and 0.83, while the mean RMSE values
range between 382.61 and 1021.17 mm/year. On monthly
and annual timescales, CPC was found to be the best-
performing dataset, followed by MERRA2, GPM, GPCC
and TRMM, while JRA55 registered the worst
performance at all timescales, followed by ERA-Interim.
The mean correlation values for monthly and annual CPC
dataset are of 0.88 and 0.83, respectively, while the mean
RMSE values for monthly and annual CPC dataset are
69.48 mm and 382.61 mm, respectively. The monthly and
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Fig. 4. The mean values of coefficient correlation, RMSE and bias (error) at three regional clusters for

all months at monthly timescales

annual bias percentages are quite similar to the daily bias
percentage. GSMaP has the smallest bias among other
gridded data, with an underestimation of 1.56%. Most
datasets overestimate the rain gauge data over Indonesia,
except for GSMaP, MERRA2, CPC and CMORPH.
Negative biases in GSMAP and CMORPH were in line
with previous studies (Wati et al., 2021).

3.2. Performance for seasonal timescale

In order to better understand the performance of each
precipitation gridded dataset at seasonal timescale, the
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mean values of each statistical metric were separately
calculated for the seasons December-January-February
(DJF), March-April-May (MAM), June-July-August (JJA)
and September-October-November (SON) (Fig. 3;
Table 3). Fig. 3 indicates that, generally, both on daily and
monthly timescales, all precipitation gridded data have
greater correlation coefficients and lower RMSE values in
JJA and SON than those during DJF and MAM.
MERRA2 and CPC outperformed other gridded datasets
in terms of correlation and RMSE for each season at daily
and monthly timescale, respectively (Table 3).The order
of seasonal RMSE from the lowest to the highest values is
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Fig. 5. As for Fig. 4, but only for DJF (Asian Winter Monsoon)

JJA - SON - MAM - DJF. Most precipitation grid datasets
perform worse during DJF and MAM, owing to greater
seasonal rainfall variability than during JJA and SON
(Aldrian et al., 2007). Most Indonesia regions, notably in
the south, suffer a wet season during DJF due to the Asian
Winter Monsoon, with increased rainfall frequency and
intensity, whereas most Indonesia regions experience a
dry season during JJA (Australian Winter Monsoon).
Consequently, it results in increased rainfall variability
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during DJF, which is typically challenging to be
represented by gridded rain-gauge/satellite and reanalysis
datasets. In addition, MAM and SON are transition
periods from rainy to dry and dry to rainy season in
Indonesia, respectively, which imply greater rainfall
variability than during JJA.

As previously discussed that only four gridded
datasets (GSMaP, MERRAZ2, CPC and CMORPH)
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Fig. 6. As for Fig. 4, but only for MAM

underestimate (have negative biases) the rain gauge data.
However, seasonal biases from these four datasets suggest
that underestimation only occurred during DJF and MAM,
which is likely due to higher rainfall amount during rainy
periods. Overestimation occurred during JJA, except for
GSMaP, while during SON, CPC and CMORPH have
negative biases and GSMaP and MERRA2 have positive
biases.
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3.3. Performance based on regional clusters

The performance of precipitation gridded datasets at
three regional clusters as defined in Fig. 1 was evaluated
to identify which datasets are suitable in representing
monthly precipitation at particular region. The evaluation
was conducted for all months in a year and by season. The
all-months performance of the gridded dataset for each
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Fig. 7. As for Fig. 4, but only for JJA (Australian Winter Monsoon)

region is depicted in Fig. 4. Generally, all gridded datasets
performed well in the S region, followed by NW region.
The high mean correlation and low mean RMSE values of
each gridded dataset indicate that the rainfall over S
region is well represented by gridded datasets. This could
be possibly due to the density of the rain gauge station
network in the S region being better than in the NW and
NE. The worst performances were identified in the NE
Region. Although, CPC and MERRAZ2 are the top two
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datasets that have well performances, they underestimate
the rain-gauge data over S region but have near zero bias
over NE region.

Furthermore, the performance of precipitation
gridded dataset has also been conducted for each season.
During DJF (Asia Winter Monsoon), the best
performances were found in NW region, where there are
two peaks of rainfall throughout the year, followed by NE
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Fig. 8. As for Fig. 4, but only for SON

region (Fig. 5). The lowest mean correlation values were
in NE region, particularly coming from the reanalysis data
(JRAS5, ERA-Interim and ERAB). The worst performance
was identified in S region, with the highest mean RMSE
values of gridded data. During MAM, the performance of
gridded datasets was consistently good in S and NW
regions, but worse in NE region (Fig. 6). The biases were
positive for GPCC, GPM, JRA55, ERA-Interim and
ERADS5 and negative for CPC, CMORPH and MERRA?2 at
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all regions. The magnitude of biases on DJF was better
than on MAM, especially in S and NW regions.

During JJA (Australian Winter Monsoon) and SON,
the best performances (lowest RMSE) were found in S
region, followed by NE region, while the worst were
identified in NW region with low correlation and high
RMSE (Figs. 7&8). However, most of the gridded rainfall
datasets overestimate the rain gauge data in S region,
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followed by NE region, during JJA and SON. This
suggests that most gridded rainfall data has overestimated
rainfall during JJA (dry season) and SON (transition from
dry to rainy season) in S region.

3.4. Performance based on dataset type

The performance of precipitation gridded datasets
was also evaluated according to type-based in order to
identify which precipitation dataset is the best for studying
climatology, meteorology or hydrology in Indonesia
region. Tables 2&3 are showing the statistical measures of
precipitation gridded dataset based on the dataset type at
different timescales. First, for rain gauge-based
precipitation datasets, CPC was found to be the best-
performing dataset at all timescales including daily
(r = 0.53), monthly (r = 0.88) and annually (r = 0.83)
(Table 2). At seasonal timescale, CPC was the best-
performing at daily timescale during JJA (r 0.52,
RMSE = 9.78 mm) and at monthly timescale during JJA
(r = 0.86, RMSE = 48.8 mm) and SON (r = 0.86,
RMSE = 61.53 mm). CPC also has the least biases in
MAM, JJA and SON, while in DJF, GPCP has the least
bias (Table 3).

Secondly, for satellite-based precipitation datasets,
the best daily performance datasets were GPM (r = 0.35)
and CMORPH (r = 34), followed by GSMAP (r = 0.31).
While at monthly and annually timescale, GPM and
TRMM were the best-performing datasets (Table 2). At
seasonal timescale, JJA was the season that can be well-
performed by GPM (r = 0.36, RMSE = 12.62 mm) and
CMORPH (r = 0.32, RMSE 12.07 mm) at daily
timescale. While GPM and TRMM were the best-
performing datasets at monthly timescale during JJA and
SON. However, the least biases were found in GSMAP
for DJF and MAM and in CMORPH for JJA and SON
(Table 3). Lastly, for reanalysis datasets, MERRA2 was
found to be the best-performing dataset at all timescales
including daily (r = 0.53, RMSE = 12.96), monthly
(r = 0.85, RMSE = 81.57) and annually (r = 0.79,
RMSE = 480.86 mm) (Table 2). At seasonal timescale,
MERRA2 was the best-performing at daily timescale
during JJA (r = 0.52, RMSE = 9.53 mm) and at monthly
timescale during JJA (r = 0.83, RMSE = 55.78 mm) and
SON (r = 0.84, RMSE = 72.3 mm). MERRAZ2 also has the
least biases in MAM, JJA and SON, while in DJF, JRA55
has the least bias (Table 3).

4. Conclusions

The evaluation of 13 gridded precipitation datasets,
which consists of rain gauge-based, satellite-based, mixed
rain gauge-satellite-based and reanalysis datasets, has
been done by calculating the time series coefficient
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correlation, RMSE and biases over a 12-year period
(2001-2012) through comparison with rain gauge data
over Indonesia. On daily timescale, the mean correlations
range between 0.21 and 0.53, while the mean RMSE
values range between 12.96 and 17.27 mm/day. In
general, MERRAZ2 and CPC out performed other datasets
in terms of correlation and RMSE but tended to
underestimate the rain gauge data by 4.2 - 4.8%, followed
by GPCC but overestimated by 18.28%. On monthly
and annual timescales, CPC was found to be the
best-performing  dataset, followed by MERRAZ2,
GPM, GPCC and TRMM, while JRAS55 registered the
worst performance at all timescales, followed by ERA-
Interim.

In general, both on daily and monthly timescales, all
precipitation gridded data have greater correlation
coefficients and lower RMSE values in the JJA and SON
than those during DJF and MAM. MERRA2 and CPC
outperformed other gridded datasets in terms of
correlation and RMSE for each season. All gridded
datasets performed well in the S region, followed by NW
region. While, the worst performances were identified in
the NE Region. Although, CPC and MERRAZ are the top
two datasets that have well performances, they
underestimate the rain-gauge data over S region but have
near zero bias over NE region. The best performances
during DJF (Asian Winter Monsoon) and JJA/SON
(Australian Winter Monsoon) were found in the northwest
(NW) and southern (S) regions, respectively. Most
datasets overestimate the rain gauge data over Indonesia,
except for GSMaP,MERRA2, CPC and CMORPH. Based
on the datasets type, this study suggests CPC (rain gauge-
based), GPM (satellite-based) and MERRAZ2 (reanalysis)
are the best datasets used for studying climatology,
meteorology or hydrology in Indonesia region.
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