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सार — �ग्रडेड वषर्ण डेटासेट उपग्रह प्रे�ण� और पुन�वर्श्लेषण मॉडल आउटपुट स ेव्यापक रूप से उपलब्ध ह�। 
हालाँ�क, दु�नया क े �व�शष्ट �ेत्र� म� इसका प्रदशर्न �भन्न-�भन्न हो सकता ह ैऔर यह कई कारक� , जैसे �क �ग्रड 
डेटा स्था�नक �वभेदन, वषार् अनुमान एल्गो�रदम, भौगो�लक िस्थ�त, ऊंचाई और �ेत्रीय जलवायु िस्थ�तय�पर �नभर्र करता 
है। इस अध्ययन का उद्देश्य 12 साल क� अव�ध (2001-2012) म� �व�भन्न समय के पैमाने पर वषार्मापन के साथ प्रत्य� 
तुलना के माध्यम से इंडोने�शया के 13 �ग्रडेड वषार् डेटासेट के �नष्पादन को �रपोटर् करना है। प�रणाम बताते ह� �क , 
दै�नक समय के पैमाने पर , MERRA2 और CPC ने अन्य डेटासेट से बेहतर प्रदशर्न �कया , ले�कन इंडोने�शया म� 
वषार्मापी डेटा को कम करके आंका गया , इसके बाद GPCC का स्थान रहा। हालाँ�क , MERRA2 म� CPC क� तुलना म� 
छोटे बदलाव और पूवार्ग्रह ह�। मा�सक और वा�षर्क समय -सीमा पर, CPC को सबसे अच्छा प्रदशर्न करन ेवाला डेटासेट पाया 
गया, इसक ेबाद MERRA2, GPM-IMERG, GPCC और TRMM (TMPA) का स्थान रहा , जब�क JRA55 ने सभी समय-
मान� पर सबसे खराब प्रदशर्न दजर् �कया , इसके बाद ERA-अंत�रम का स्थान रहा। DJF और MAM क� तुलना म� JJA 
और SON के दौरान सभी डेटासेट का प्रदशर्न बेहतर था। सबसे अच्छा प्रदशर्न इंडोने�शया के द��णी (S) �ेत्र म� पाया 
गया, जब�क सभी मह�न� और डेटासेट के �लए  सबसे खराब प्रदशर्न पूव�त्तर (NE) �ेत्र म� था। DJF (ए�शयाई 
शीतकाल�न मॉनसून) और JJA/SON (ऑस्ट्रे�लयाई शीतकाल�न मॉनसून) के दौरान सवर्श्रेष्ठ प्रदशर्न क्रमशः उत्तर पिश्चम 
(NW) और द��णी (S) �ेत्र� म� पाए गए। GSMaP, MERRA2, CPC और CMORPH को छोड़कर , अ�धकांश डेटासेट 
इंडोने�शया म� वषार्मापी डेटा का अनुमान लगाते ह�। 

 
 
ABSTRACT.  Gridded precipitation datasets are widely available from satellite observations and reanalysis model 

outputs. However, its performance in specific regions in the world may vary and depends on several factors, such as grid 
data spatial resolution, rainfall estimation algorithms, geographical location, elevation and regional climate conditions. 
This study aims to report on 13 gridded precipitation datasets' performance over Indonesia through direct comparisons 
with rain gauge measurements at various time scales over a 12-year period (2001-2012). The results show that, at daily 
timescales, the MERRA2 and CPC outperformed other datasets but tended to underestimate the rain gauge data in 
Indonesia, followed by GPCC. However, MERRA2 has smaller variation and bias than CPC. On monthly and annually 
timescales, CPC was found to be the best-performing dataset, followed by MERRA2, GPM-IMERG, GPCC and TRMM 
(TMPA), while JRA55 registered the worst performance at all timescales, followed by ERA-Interim. The performance of 
all datasets was better during JJA and SON than during DJF and MAM. The best performances were found in the 
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southern (S) region of Indonesia, while the worst were in the northeast (NE) region for all months and datasets. The best 
performances during DJF (Asian Winter Monsoon) and JJA/SON (Australian Winter Monsoon) were found in the 
northwest (NW) and southern (S) regions, respectively. Most datasets overestimate the rain gauge data over Indonesia, 
except for GSMaP, MERRA2, CPC and CMORPH. 

 

Key words –  Precipitation datasets, Asian-Australian monsoons, Surface observations, Satellite observations, 
Indonesia. 

 
 
 

  
1.  Introduction 
 

Rain gauge observations are usually used for manual 
measurement of precipitation directly on the surface at a 
point scale. In Indonesia, the number of meteorological 
stations is still limited and sparsely distributed, especially 
in mountainous and inaccessible or remote areas that are 
likely not available. Measurement of rainfall is very 
important because the onset and peak of the wet and dry 
seasons in Indonesia are determined based on rainfall 
(Wati et al., 2019). The variability of rainfall in Indonesia 
is strongly influenced by the activity of the Asian-
Australian Monsoon. The Asian monsoon affects the 
variability of rainfall during the rainy season and the 
Australian monsoon affects the variability of rainfall 
during the dry season (Robertson et al., 2011). The 
utilization of existing gridded precipitation datasets can 
cope with the lack of rain gauge observations and the 
daily missing-values problems in the observation time 
series.  

 
There are several categories of gridded precipitation 

datasets, including rain gauge-based, satellite-based, 
mixed gauge-satellite-based and reanalysis model datasets 
(Higgins et al., 1996; Xie and Arkin, 1997; Jones and 
Moberg, 2003; Schneider et al., 2011; Arakawa and Kitoh, 
2011). There are several rain gauge-based gridded datasets 
available. Their quality depends on the station density, 
interpolation methods, spatial resolution, altitude gradient 
and climate (Merino et al., 2021). Satellites measure 
rainfall by estimating the amount of electromagnetic 
radiation (or energy) emitted or reflected from the tops of 
clouds or raindrops themselves. The satellite generates 
data in the form of a grid, the size of which varies. The 
lower the grid resolution, the better the data describes the 
variation in rainfall between regions. Meanwhile, 
reanalysis datasets involve a variety of observational data 
synthesis (radiosondes, satellites, buoys, planes and ships) 
that use the assimilation scheme with climate models. 

 
Previous studies have evaluated the performance of 

several gridded precipitation datasets in Indonesia, but the 
number of gridded datasets used was limited (less than 10) 
and focused more on rain-gauge and satellite-based 
datasets, excluding reanalysis datasets (Wati et al., 2021, 
2022). These studies found that MSWEPv2, SA-OBS, 
TMPA 3B42V7 and GPM-IMERG are the best datasets 
that generally outperformed other datasets in Indonesia. 

This study aims to evaluate the statistical performance of 
13 gridded precipitation products, including reanalysis 
datasets, over Indonesia through direct comparisons with 
rain gauge datasets at various time scales during the 
period of 2001-2012 (12 years), particularly during the 
Asian-Australian Monsoon period.  

 
2. Data and methodology 

 
2.1. Gridded precipitation datasets 
 
The summary of thirteen precipitation datasets used 

in this study is presented in Table 1. It consists of nine 
rain gauge and satellite-based datasets which have a daily 
temporal resolution and four reanalysis datasets with an 
hourly (ERA5 and MERRA2), a 3-hourly (JRA55) and a 
12-hourly (ERA-Interim) temporal resolutions. For 
analysis purposes, reanalysis datasets are then converted 
to daily resolution. It should be noted that the spatial 
resolutions of datasets are 0.1° for GPM-IMERG and 
GSMaP; 0.25° for CHIRPS, CMORPH, PERSIANN, 
TRMM and ERA5; 0.5° for CPC; 0.562° for JRA55;    
0.5° × 0.67° for MERRA2;  0.75° for ERA-Interim; and 
1° for GPCC and GPCP. 

 
2.2. Observation datasets 
 
For observation datasets, rain gauge data from 82 

BMKG stations in Indonesia from 2001-2012 (12 years) 
has been used as the reference dataset (Fig. 1). These 
times span the years between observations and all 
precipitation datasets being compared. The rainfall data is 
the same observed daily precipitation dataset that was 
used in Supari et al. (2017). For regional analysis, 
Indonesia is simply divided into three regional clusters 
based on the typical annual rainfall pattern (Aldrian and 
Susanto, 2003), as follows (Fig. 1): 

 
(i) Northwest (NW) region containing 24 stations, 
which typically has two peaks of rainy season in a year 

 
(ii) Northeast (NE) region containing 12 stations, which 
typically has one peak of rainy season during JJA and one 
peak of dry season during DJF. 
 
(iii) South (S) region containing 45 stations, which 
typically has one peak of rainy season during DJF and one 
peak of dry season during JJA. 
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Fig. 1. Spatial distribution of rain gauge stations and simple clusters based on a typical rainfall regions 
 
 
 
 

TABLE 1 
 

Summary of Gridded Precipitation Datasets used in this study 
 

S. No. Dataset type Dataset product 
Resolution 

Period References 
Spatial Temporal 

1. Gauge-based CPC-Unified 0.5° daily 1979-present Chen et al. (2008) 

2. Gauge-based GPCC V2018 1.0° daily 1982-2016 Schamm et al. (2014) 

3. Gauge and satellite-based GPCP V1.2 1.0° daily 1997-2015 Huffman et al. (2001) 

4. Satellite-based CHIRPS v2.0 0.25° daily 1981-present Funk et al. (2015) 

5. Satellite-based CMORPH_V1.0_ADJ            
Bias-corrected 0.25° daily 1998-present Joyce et al. (2004) 

6. Satellite-based PERSIANN-CDRv01r01 0.25° daily 1983-present Ashouri et al. (2015) 

7. Satellite-based TRMM (TMPA) 3B42V7 0.25° daily 1998-2019 Huffman et al. (2007; 2010) 

8. Satellite-based 
GPM-IMERG V06         
Gauge-calibrated               

Final product 
0.1° daily 2000-present Huffman et al. (2015; 2020) 

9. Satellite-based GSMaP Gauge-calibrated 0.1° daily 2000-present Kubota et al. (2007; 2020) 

10. Reanalysis ERA-5 0.25° hourly 1950-present Hersbach et al. (2020) 

11. Reanalysis ERA-Interim 0.75° 12-hourly 1979-2019 Dee et al. (2011) 

12. Reanalysis JRA55 0.562° 3-hourly 1958-present Kobayashi et al. (2015) 

13. Reanalysis MERRA2 0.5° × 0.67° hourly 1980-present Gelaro et al. (2017) 
 

 
 

 
2.3. Statistical metrics 
 
This study implemented the point to grid comparison 

approach using the nearest neighbor method (the dataset 
grid location is the same as the point of the observation 
station site). Furthermore, the comparison is conducted by 

calculating simple statistical metrics of time sequence, 
including Pearson Coefficient Correlation (r; Eqn. 1), 
Root Mean Squared Error (RMSE; Eqn. 2) and                 
Bias / Error (Eqn. 3). r is used to measure the degree of 
relationships between observed and grid datasets. RMSE 
is used to describe the level of accuracy between 

https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803#qj3803-bib-0103�
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Fig. 2.  Box plot of coefficient correlation, RMSE and bias (error) from all observation stations for all months at daily, monthly,            
monthly-average and annually timescales. Green triangles represent the mean values 

 
 

TABLE 2 
 

The mean values of statistical measures for all months. The best values are bold 
 

Dataset type Dataset 
Daily Monthly Annually 

Bias (%) 
r RMSE 

(mm/day) r RMSE 
(mm/month) r RMSE 

(mm/year) 

Rain gauge-
based 

CPC 0.53  13.27  0.88  69.48  0.83  382.61  -4.87  

GPCC 0.47  15.06  0.82  94.04  0.76  618.78  18.28  

GPCP 0.28  15.44  0.74  108.74  0.72  665.82  5.37  

Satellite-based CMORPH 0.34  16.27  0.74  105.95  0.67  627.77  -7.67  

PERSIANN 0.30  15.12  0.75  107.35  0.71  666.51  7.08  

CHIRPS 0.32  15.27  0.75  97.16  0.71  490.16  7.17  

GSMAP 0.31  16.71  0.71  115.77  0.67  677.27  -1.56  

TRMM 0.32  16.80  0.81  92.44  0.77  564.20  6.70  

GPM 0.35  17.27  0.83  93.63  0.80  634.04  20.50  

Reanalysis JRA55 0.21  16.35  0.55  151.80  0.44  1021.17  11.17  

ERA 0.23  15.97  0.60  130.49  0.50  822.12  12.37  

ERA5 0.29  15.23  0.70  109.97  0.64  594.02  9.66  

MERRA2 0.53  12.96  0.85  81.57  0.79  480.86  -4.20  

 
 
 
observation data and grid data. Bias / Error is used to 
determine rainfall estimation results from grid data that is 
overestimated (Bias > 0) or underestimated (Bias < 0). 
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Fig. 3.  The seasonal mean values of coefficient correlation, RMSE and bias (error) from all observation stations at daily 
and monthly timescales 

Corr. Coefficient (Daily) 
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TABLE 3 
 

The seasonal values of statistical measures 
(The best values are bold) 

 
Dataset Type Rain gauge-based Satellite-based Reanalysis 

Data/Season/Metrics CPC GPCC GPCP CMORPH PERSIANN CHIRPS GSMAP TRMM GPM JRA55 ERA ERA5 MERRA2 

Daily 
DJF 

r 0.51  0.45  0.23  0.31  0.25  0.29  0.30  0.30  0.33  0.16  0.17  0.25  0.51 

RMSE 15.81  17.96  18.45  19.40  17.94  17.83  19.53  19.87  20.28  19.47  19.17  18.09  15.47  

MAM 
r 0.50  0.44  0.24  0.29  0.25  0.27  0.25  0.29  0.30  0.16  0.18  0.23  0.49  

RMSE 13.47  15.70  16.01  16.91  15.60  15.74  17.34  17.41  18.09  16.89  16.26  15.64  13.41  

JJA 
r 0.52  0.48  0.28  0.32  0.28  0.29  0.28  0.32  0.36  0.22  0.24  0.28  0.52  

RMSE 9.78  10.73  11.35  12.07  11.39  11.83  12.51  12.37  12.62  11.95  11.55  11.30  9.53  

SON 
r 0.51  0.46  0.27  0.31  0.27  0.30  0.28  0.30  0.32  0.21  0.22  0.28  0.51  

RMSE 12.24  13.99  14.15  14.72  13.87  14.06  15.59  15.66  16.15  15.10  14.90  14.00  11.81  

Monthly 
DJF 

r 0.82  0.74  0.60  0.62  0.62  0.60  0.57  0.73  0.77  0.32  0.37  0.52  0.78  

RMSE 82.74  109.00  127.42  126.35  128.90  116.15  132.91  107.55  107.47  179.62  155.88  132.17  98.49  

MAM 
r 0.81  0.72  0.59  0.59  0.60  0.60  0.53  0.72  0.74  0.38  0.40  0.53  0.75  

RMSE 67.19  96.83  108.16  104.76  106.57  95.39  112.39  90.44  92.77  148.55  124.10  106.58  80.15  

JJA 
r 0.86  0.83  0.72  0.67  0.71  0.71  0.65  0.78  0.81  0.57  0.60  0.67  0.83  

RMSE 48.80  64.25  74.38  77.39  74.34  69.37  87.73  64.88  66.03  105.40  91.26  77.57  55.78  

SON 
r 0.86  0.82  0.72  0.71  0.73  0.73  0.70  0.79  0.82  0.55  0.58  0.70  0.84  

RMSE 61.53  86.76  103.13  95.79  98.37  88.89  107.77  87.26  89.91  139.17  127.02  101.49  72.30  

 DJF Bias (%) -5.82  13.91  -1.21  -9.08  2.70  4.10  -1.67  2.85  17.52  4.84  8.56  7.49  -5.17  

 MAM Bias (%) -5.56  22.24  12.68  -6.97  13.45  8.16  -2.95  10.78  22.81  16.29  11.64  10.93  -3.77  

 JJA Bias (%) 1.41  30.04  23.66  0.75  23.84  20.70  -6.86  12.61  27.62  14.55  34.64  18.35  5.88  

 SON Bias (%) -1.69  29.84  18.45  -6.15  17.54  13.52  7.53  16.26  32.12  29.26  33.62  21.61  0.21  
 

 
 
where, Si represents the grid precipitation data and Gi 

represents the observed station data. 
 

3. Results and discussion 
 
3.1. Performance for daily to annual timescales 
 
Fig. 2 shows a box plot diagram of correlation 

coefficient, RMSE and bias at daily, monthly, monthly-
average and annually timescales for all stations and 
gridded datasets, while the mean values of each metric are 
given in Table 2. On daily timescale, the mean 
correlations between observation and gridded datasets 
range between 0.21 and 0.53, while the mean RMSE 
values range between 12.96 and 17.27 mm/day. In 
general, MERRA2 and CPC outperformed other datasets 
in terms of correlation and RMSE but tended to 
underestimate the rain gauge data by 4.2-4.8%, followed 
by GPCC but overestimated by 18.28%. However, 

MERRA2 is considered to be the best dataset at daily 
timescale because it has less variation (smaller 
interquartile range) of correlation and RMSE and has less 
bias compared to CPC and GPCC.  

 
On monthly timescale, the mean correlations values 

range between 0.55 and 0.88, while the mean RMSE 
values range between 69.48 and 151.80 mm/month. On 
annually timescale, the mean correlations values range 
between 0.44 and 0.83, while the mean RMSE values 
range between 382.61 and 1021.17 mm/year. On monthly 
and annual timescales, CPC was found to be the best-
performing dataset, followed by MERRA2, GPM, GPCC 
and TRMM, while JRA55 registered the worst 
performance at all timescales, followed by ERA-Interim. 
The mean correlation values for monthly and annual CPC 
dataset are of 0.88 and 0.83, respectively, while the mean 
RMSE values for monthly and annual CPC dataset are 
69.48 mm and 382.61 mm, respectively. The monthly and  
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Fig. 4.  The mean values of coefficient correlation, RMSE and bias (error) at three regional clusters for 
all months at monthly timescales 

 
 
annual bias percentages are quite similar to the daily bias 
percentage. GSMaP has the smallest bias among other 
gridded data, with an underestimation of 1.56%. Most 
datasets overestimate the rain gauge data over Indonesia, 
except for GSMaP, MERRA2, CPC and CMORPH. 
Negative biases in GsMAP and CMORPH were in line 
with previous studies (Wati et al., 2021). 

 
3.2. Performance for seasonal timescale 
 
In order to better understand the performance of each 

precipitation gridded dataset at seasonal timescale, the 

mean values of each statistical metric were separately 
calculated for the seasons December-January-February 
(DJF), March-April-May (MAM), June-July-August (JJA) 
and September-October-November (SON) (Fig. 3;          
Table 3). Fig. 3 indicates that, generally, both on daily and 
monthly timescales, all precipitation gridded data have 
greater correlation coefficients and lower RMSE values in 
JJA and SON than those during DJF and MAM. 
MERRA2 and CPC outperformed other gridded datasets 
in terms of correlation and RMSE for each season at daily 
and monthly timescale, respectively (Table 3).The order 
of seasonal RMSE from the lowest to the highest values is  
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Fig. 5. As for Fig. 4, but only for DJF (Asian Winter Monsoon) 
 
 
 
 
JJA - SON - MAM - DJF. Most precipitation grid datasets 
perform worse during DJF and MAM, owing to greater 
seasonal rainfall variability than during JJA and SON 
(Aldrian et al., 2007). Most Indonesia regions, notably in 
the south, suffer a wet season during DJF due to the Asian 
Winter Monsoon, with increased rainfall frequency and 
intensity, whereas most Indonesia regions experience a 
dry season during JJA (Australian Winter Monsoon). 
Consequently, it results in increased rainfall variability 

during DJF, which is typically challenging to be 
represented by gridded rain-gauge/satellite and reanalysis 
datasets. In addition, MAM and SON are transition 
periods from rainy to dry and dry to rainy season in 
Indonesia, respectively, which imply greater rainfall 
variability than during JJA.  

 
As previously discussed that only four gridded 

datasets (GSMaP, MERRA2, CPC and CMORPH)  
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Fig. 6. As for Fig. 4, but only for MAM 
 
 
 
 
underestimate (have negative biases) the rain gauge data. 
However, seasonal biases from these four datasets suggest 
that underestimation only occurred during DJF and MAM, 
which is likely due to higher rainfall amount during rainy 
periods. Overestimation occurred during JJA, except for 
GSMaP, while during SON, CPC and CMORPH have 
negative biases and GSMaP and MERRA2 have positive 
biases. 

3.3. Performance based on regional clusters 
 
The performance of precipitation gridded datasets at 

three regional clusters as defined in Fig. 1 was evaluated 
to identify which datasets are suitable in representing 
monthly precipitation at particular region. The evaluation 
was conducted for all months in a year and by season. The 
all-months performance of the gridded dataset for each 
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Fig. 7. As for Fig. 4, but only for JJA (Australian Winter Monsoon) 
 
 
 
 
region is depicted in Fig. 4. Generally, all gridded datasets 
performed well in the S region, followed by NW region. 
The high mean correlation and low mean RMSE values of 
each gridded dataset indicate that the rainfall over S 
region is well represented by gridded datasets. This could 
be possibly due to the density of the rain gauge station 
network in the S region being better than in the NW and 
NE. The worst performances were identified in the NE 
Region. Although, CPC and MERRA2 are the top two 

datasets that have well performances, they underestimate 
the rain-gauge data over S region but have near zero bias 
over NE region. 

 
Furthermore, the performance of precipitation 

gridded dataset has also been conducted for each season. 
During DJF (Asia Winter Monsoon), the best 
performances were found in NW region, where there are 
two peaks of rainfall throughout the year, followed by NE  
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Fig. 8. As for Fig. 4, but only for SON 
 
 
 
 
region (Fig. 5). The lowest mean correlation values were 
in NE region, particularly coming from the reanalysis data 
(JRA55, ERA-Interim and ERA5). The worst performance 
was identified in S region, with the highest mean RMSE 
values of gridded data. During MAM, the performance of 
gridded datasets was consistently good in S and NW 
regions, but worse in NE region (Fig. 6). The biases were 
positive for GPCC, GPM, JRA55, ERA-Interim and 
ERA5 and negative for CPC, CMORPH and MERRA2 at 

all regions. The magnitude of biases on DJF was better 
than on MAM, especially in S and NW regions. 

 
During JJA (Australian Winter Monsoon) and SON, 

the best performances (lowest RMSE) were found in S 
region, followed by NE region, while the worst were 
identified in NW region with low correlation and high 
RMSE (Figs. 7&8). However, most of the gridded rainfall 
datasets overestimate the rain gauge data in S region, 
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followed by NE region, during JJA and SON. This 
suggests that most gridded rainfall data has overestimated 
rainfall during JJA (dry season) and SON (transition from 
dry to rainy season) in S region. 

 
3.4. Performance based on dataset type 
 
The performance of precipitation gridded datasets 

was also evaluated according to type-based in order to 
identify which precipitation dataset is the best for studying 
climatology, meteorology or hydrology in Indonesia 
region. Tables 2&3 are showing the statistical measures of 
precipitation gridded dataset based on the dataset type at 
different timescales. First, for rain gauge-based 
precipitation datasets, CPC was found to be the best-
performing dataset at all timescales including daily              
(r = 0.53), monthly (r = 0.88) and annually (r = 0.83) 
(Table 2). At seasonal timescale, CPC was the best-
performing at daily timescale during JJA (r = 0.52,  
RMSE = 9.78 mm) and at monthly timescale during JJA  
(r = 0.86, RMSE = 48.8 mm) and SON (r = 0.86,             
RMSE = 61.53 mm). CPC also has the least biases in 
MAM, JJA and SON, while in DJF, GPCP has the least 
bias (Table 3).  

 
Secondly, for satellite-based precipitation datasets, 

the best daily performance datasets were GPM (r = 0.35) 
and CMORPH (r = 34), followed by GSMAP (r = 0.31). 
While at monthly and annually timescale, GPM and 
TRMM were the best-performing datasets (Table 2). At 
seasonal timescale, JJA was the season that can be well-
performed by GPM (r = 0.36, RMSE = 12.62 mm) and 
CMORPH (r = 0.32, RMSE = 12.07 mm) at daily 
timescale. While GPM and TRMM were the best-
performing datasets at monthly timescale during JJA and 
SON. However, the least biases were found in GSMAP 
for DJF and MAM and in CMORPH for JJA and SON 
(Table 3). Lastly, for reanalysis datasets, MERRA2 was 
found to be the best-performing dataset at all timescales 
including daily (r = 0.53, RMSE = 12.96), monthly           
(r = 0.85, RMSE = 81.57) and annually (r = 0.79,          
RMSE = 480.86 mm) (Table 2). At seasonal timescale, 
MERRA2 was the best-performing at daily timescale 
during JJA (r = 0.52, RMSE = 9.53 mm) and at monthly 
timescale during JJA (r = 0.83, RMSE = 55.78 mm) and 
SON (r = 0.84, RMSE = 72.3 mm). MERRA2 also has the 
least biases in MAM, JJA and SON, while in DJF, JRA55 
has the least bias (Table 3). 

 
4. Conclusions 

 
The evaluation of 13 gridded precipitation datasets, 

which consists of rain gauge-based, satellite-based, mixed 
rain gauge-satellite-based and reanalysis datasets, has 
been done by calculating the time series coefficient 

correlation, RMSE and biases over a 12-year period 
(2001-2012) through comparison with rain gauge data 
over Indonesia. On daily timescale, the mean correlations 
range between 0.21 and 0.53, while the mean RMSE 
values range between 12.96 and 17.27 mm/day. In 
general, MERRA2 and CPC out performed other datasets 
in terms of correlation and RMSE but tended to 
underestimate the rain gauge data by 4.2 - 4.8%, followed 
by GPCC but overestimated by 18.28%. On monthly               
and annual timescales, CPC was found to be the                    
best-performing dataset, followed by MERRA2,                  
GPM, GPCC and TRMM, while JRA55 registered the 
worst performance at all timescales, followed by ERA-
Interim. 

 
In general, both on daily and monthly timescales, all 

precipitation gridded data have greater correlation 
coefficients and lower RMSE values in the JJA and SON 
than those during DJF and MAM. MERRA2 and CPC 
outperformed other gridded datasets in terms of 
correlation and RMSE for each season. All gridded 
datasets performed well in the S region, followed by NW 
region. While, the worst performances were identified in 
the NE Region. Although, CPC and MERRA2 are the top 
two datasets that have well performances, they 
underestimate the rain-gauge data over S region but have 
near zero bias over NE region. The best performances 
during DJF (Asian Winter Monsoon) and JJA/SON 
(Australian Winter Monsoon) were found in the northwest 
(NW) and southern (S) regions, respectively. Most 
datasets overestimate the rain gauge data over Indonesia, 
except for GSMaP,MERRA2, CPC and CMORPH. Based 
on the datasets type, this study suggests CPC (rain gauge-
based), GPM (satellite-based) and MERRA2 (reanalysis) 
are the best datasets used for studying climatology, 
meteorology or hydrology in Indonesia region. 
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