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सार – मध ्-मापकम् प पवर ्ीय क् मे् म�्  क ्ीा् 3-डर डा  क�मीम् स ्क ्र्ीा्अध ्  ्ीर क् ीक ् �मए एी्

ग�णवर ्मॉडम्पसव्ा� व्�ी ा्ग ा् है् िजससक् �ी्प  ्ग�व्ए ं् वापमा ्ी�्ऊध ्ापधर् �भन ्वा ीा्औसव्बहा ्
 ासव्� ी्रप्सक्जा ा्जा्सीक े्मममभमव्बहा ्मे्जय म्प  ्ग�व्अ   ्(U)  और्रकखां�शी्अ    (meridional 

compinent) (V)  दय �्हयवक् ह�्िजनहे्््ऊँ ाई्सक्संबं�धव्मा ा्जावा्हैे्ब्ण्- सैम्ा्आ �ृव्(N) भर्ऊँ ाई्सक्संब�ंधव्
मा र्जावर्हैे्इस्मॉडम्ीय्पम �तव्र्भारव्मे्प पवर ् के्ीक ्ीय क् ामक्लहसस्क्ीक ्�मए्मागम्�ी ा्ग ा्है्जय्मुख ् 
रप्सक्असम्बमाप् पहाहा �्(ABH) ीक ्उतव्र�-द� णर्भाग्वथा्खासर्ज �ंव ा्पहाहा �्(KJH) ीक ्पम �-पिश ्मर् के्मे्
फैमा्हैे्इस्मॉडम्ीय्अदपध्संख ्ातम्ी्पहम्ीक  ज�रए्व ैार्�ी ा्ग ा्हैे्ऊध ्ापधर् कग्�  यभ (wʹ) ीय्द� गु�णव्
 यग्ीक ्रप् मे्दशाप ा्ग ा् हैे्इसमे्वर ् िसथ्�व �्ीा्अध ्  ् �ी ा्ग ा् है्और्सभर् िसथ्�व �् मे् थासभं ्
अ पुसथ््और्अपसार�्म�् क ्सखं ्ा (k, l) ीक ्बर ्ीक ्संबधं्और्�भन ्-�भन ््ऊँ ाई � पर्ऊध ्प ाह/ अधय ाह् के ्ीय्
भर्�म ा्ग ा्है्जय्म�् क क् सक्सबं�ंधव्ह�्और्उस्पर्  ाप् ी�्गई्हैे 

 
 

ABSTRACT. A mathematical model for studying the 3-D dynamical structure of lee wave across a meso-scale mountain 
corner has been proposed for a mean flow with realistic vertical variation of wind and temperature. The basic flow 
consists of both zonal wind component (U) and meridional component (V), which are assumed to be dependent of height. 
The Brunt-Vaisala frequency (N) is also assumed to be dependent of height. This model has been applied to the mountain 
corner, in the North East India, formed by broadly North-South oriented Assam Burma Hills (ABH) and broadly               
East-West oriented Khasi Jayantia hills (KJH). The model has been solved following the quasi-numerical approach. The 
perturbation vertical velocity (wʹ) is expressed as a double integral. Three cases have been studied and in all cases the 
relation between the possible transverse and divergent lee wave numbers (k, l) and also the updraft/downdraft regions 
associated with lee waves at different heights has been mapped and discussed.  

 
Key words – Corner mountain hills, Lee wave, Quasi-numerical solution. 

 
 
1.  Introduction 
 
 It is well-established fact that, weather and climate 
of a place is crucially influenced by the presence of 
orographic barriers at that place.  Influence of orographic 
barriers on airflow depends on the scale of the obstacle as 
well as scale of flow. 
        
 In a stably stratified atmosphere an air parcel, 
displaced vertically, undergoes buoyancy oscillation 
which gives rise to internal gravity waves (IGW). Now 
these IGW can propagate vertically to a great distance 
carrying energy and momentum to higher levels in the 
atmosphere. Sometimes, they are associated with the 

formation of clear air turbulence (CAT). The information 
about standing waves, which under favourable 
meteorological conditions form on the lee side of the 
mountain barrier, is very important for the safety of 
aviation. Many aircraft accidents reported in mountainous 
areas are often attributed to the vertical velocities of large 
magnitude associated with the lee waves. Hence the 
studies on lee waves associated with air flow across an 
orographic barrier have an important bearing on the safety 
of aviation.  
 
         The studies of the effect of orographic barrier on air-
stream may broadly be divided into two categories. In one 
category, the orographic barrier has been assumed to have 
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an infinite extension in the direction normal to the basic 
flow, so that the flow can be considered to be essentially 
2-D. The 2-D mountain wave problem was first studied 
Lyra (1943) and subsequently by Quency (1947, 1948); 
Scorer (1949); Sawyer (1960); Sarker (1965, 1966, 1967); 
De (1973); Sinha Ray (1988); Kumar et al. (1998) etc. In 
another type of theoretical studies, the orographic barrier 
has been assumed to have finite extension in both 
directions, viz., along and across the basic flow, due to 
which the perturbations are essentially of 3-dimensional. 
The 3-D mountain wave problem was first addressed by 
Scorer and Wilkinson (1956) and subsequently Wurtele 
(1957); Crapper (1959); Sawyer (1962); Das (1964); 
Onishi (1969); Smith (1979, 1980); Dutta et al. (2002); 
Dutta (2003, 2005); Naresh (2007); Das et al. (2013, 
2016) etc.  
      
 In some of the above studies, wind and stability were 
assumed to be either invariant with height or assumed to 
have some analytical behaviour with height. Solutions for 
such studies were essentially obtained by analytical 
method. In other studies, realistic vertical variation of 
wind and stability were considered and the solution 
obtained using quasi numerical or numerical method.  
 
 In India studies on the effect of an orographic barrier 
on airflow have been addressed by Das (1964); Sarker 
(1965, 1966, 1967); Sarker et al. (1978); De (1971, 1973); 
Farooqui and De (1974); SinhaRay (1988); Dutta (2002, 
2005); Naresh et al. (2005) etc.  
      
 In all the studies the barrier (2-D) or the major ridge 
axis (3-D) of the barrier has been assumed to be extended 
broadly either in the East-West (EW) direction or in 
North-South (NS) direction. 
      
 In India in the northeast region, the Khasi-Jayantia 
hill (KJH) is broadly East-West oriented whereas the 
Assam-Burma hill (ABH) is broadly North-South oriented 
and they meet at almost right angle forming a mountain 
corner to the northeast. It is believed that weather and 
climate in that region are neither controlled by KJ hill 
alone nor it is controlled by AB hill alone, rather they may 
be controlled by their combined effect. To address the 
problem of this combined effect, one has to investigate the 
effect of the above mountain corner on airflow and rainfall 
in that region.  
       
 From the foregoing discussion it appears that hardly 
any study has been made to address the problem on the 
effect of such a mountain corner on airflow and rainfall in 
that region. 
 
    The objective of the present study is to develop a     
3-D dynamical model for lee wave across a meso-scale 

mountain corner for a mean flow with realistic vertical 
variation of wind and temperature and solving it quasi-
numerically, similar to Dutta (2005), for the corner effect 
of KJ hills & AB hills, which has not been addressed               
so far.   

 
2.  Data 

 
 Guwahati (26.19° N Latitude and 91.73° E 
Longitude) is the only Radio-Sonde station to the 
upstream of ABH. Accordingly for the present study we 
have used the average of 0000 UTC and 1200 UTC 
RS/RW data of Guwahati for 30th September, 2001,            
26th September, 2003 and 1st June, 2004, have been 
obtained from Archive of India Meteorological 
Department (IMD), Pune, India. 

 
3. Methodology 

 
 In this section, we shall develop a 3-D dynamical 
model for lee wave across a meso-scale mountain corner. 
The proposed model considers a steady state, adiabatic, 
inviscid, non-rotating and Boussinesq mean flow (U, V, 0) 
across a meso-scale mountain corner. The realistic vertical 
variation of mean flow has been considered here. Under 
these assumptions the linearized governing equations are 
simplified to: 
  

 
0

1u u dU pU V w
x y dz xρ
′ ′ ′∂ ∂ ∂′+ + = −

∂ ∂ ∂
                (1)  

 

 
0

1v v dV pU V w
x y dz yρ
′ ′ ′∂ ∂ ∂′+ + = −

∂ ∂ ∂
                 (2) 

 

 
0 0

1w w pU V g
x y z

θ
ρ θ

′ ′ ′ ′∂ ∂ ∂
+ = − +

∂ ∂ ∂
                  (3)  

 

 
u 0v w
x y z
′ ′ ′∂ ∂ ∂
+ + =

∂ ∂ ∂
                                            (4)  

 

 0 0U V w
x y

d
dz
θθ θ′ ′∂ ∂ ′+ + =

∂ ∂
                            (5) 

 
 where, U, V, ρ0, θ0, are respectively zonal  
component and meridional component, density and 
potential temperature of basic flow and , , , ,u v w p θ′ ′ ′ ′ ′  
are respectively the perturbation part of zonal wind, 
meridional wind, vertical wind, pressure, density and 
potential temperature. Since the perturbation quantities 

, , , ,u v w p θ′ ′ ′ ′ ′  etc are all continuous functions of 
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, ,x y z hence their horizontal variation may be 
represented by a double Fourier integral, such as, 
 

 ( ) ( ) ( )dkdlezlkuzyxu lykxi∫ ∫
∞

∞−

∞

∞−

+=′ ,,ˆ
4

1,, 2π
 

 
where,  
 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

+−′= dxdyezyxuzlku lykxi,,,,ˆ   

 
is the double Fourier transform of ( )zyxu ,,′ . 
 

 Performing double Fourier transform from (1) to (5) 
we get,  
 

 ( )
0

ˆˆ ˆ dUi kU lV ik
dz

pu w
ρ

+ + = −                       (6)  

 

 ( )
0

ˆˆ ˆ dVi kU lV il
dz

pv w
ρ

+ + = −                         (7)  

 

 ( )
0 0

ˆ
ˆˆ1i pwkU lV g

z
θ

ρ θ
∂

+ = − +
∂

                      (8)  

 

 ˆ 0
ˆˆ wu vik il
z

∂
+ + =

∂
                                              (9)  

 

 ( ) 0ˆ ˆ 0i kU lV w d
dz
θθ+ + =                               (10) 

 

 Eliminating ˆ, ,ˆ ,ˆ ˆu v p θ  from the equations (6) to (10) 
we get,  
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 

  +  
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∂∂    +   − +   
  

 − + 

(11)  

 where, 0

0θ
dgN
dz
θ

=  is the Brunt-Vaisala 

frequency. 

 Now putting ( ) ( )
( )

0
1

0

0
, , ( , ,ˆ )ˆ k l z k l z

z
w w

ρ
ρ

= in 

equation (11), we get vertical structure equation  
 

 ( ){ }
2

21
12 , , 0

ˆ ˆf k l z
z
w wκ∂
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00
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1 1
24

dU dVk lN k l dz dzf k l z
kU lVkU lV

d U d Vk l d ddz dz
kU lV d

d

z z

z

d

d
ρ

ρ

ρ ρ
ρρ

 ++  
= −  

++   
 

 
+    − + − +   

 
 

(13) 

 

 and 2 2 2k lκ = +  
 
 It is very complicated to solve the equation (12) 
analytically. So, the equation (12) is solved quasi- 
numerically for the given wave number vectors (k, l) of all 
vertical levels. The direction of the zonal wind changes 
from north to south during winter season at all levels (De, 
1973). The solution of (12) is strictly indeterminate        
unless the values of f(k, l, z) is specified at great                 
height. Therefore it is assumed that above the upper 
boundary f (k, l, z)  is constant. For simplicity, it is also 
assumed that above the upper boundary f (k, l, z) = 0, 
which is similar to Sarker (1967); Dutta (2005, 2007); 
Sinha Ray (1988) etc. 
 
 Therefore, the approximate solution of the equation 
(12) in the region f(k, l, z) = 0 is of the form  
 
 KZezlkw −=C),,(ˆ1                                                 (14) 
 
 where, ‘C’ is an arbitrary constant. Since the 
pressure and vertical velocity are continuous function of z. 

So, 
2

1
1 2

ˆˆ ,
z
ww ∂

∂
 are also continuous function of z in the 

region f (k, l, z) = 0. 
 

 1
1ˆŵ

z
wκ∂

∴ = −
∂

                                                    (15) 
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Fig. 1. The profile of corner mountain 

 
  
 Here, the equations (14) and (15) are the upper 
boundary condition of the equation (12). Now at the 
surface the airflow follows the contour of the corner 
mountain, the profile is given by : 
 

 ( )
( )

( )

2

22
0

2

22
0

,
2

a
a x xHh x y

b
b y y

 
 

+ − =  
 +
 + − 

                            (16) 

 
 Profile of (15) is given by Fig.1. The chess color of 
this figure is the corner mountain, which we are interested 
to study. Now the double Fourier transform of (16) is 
given by :  
 

 ( ) 0 0ˆ ,
2

ak ikx bk ilyiH a bk l e e
l k

h − − − − = − +  
      (17) 

 
 Now the linearized lower boundary condition                  
(at z = 0) for 1w′  is given by :  
 

 
( ) ( )

( ) ( )

1 , ,0 , ,0

, ,0 , ,0
(0) (0)

x y x y

h

w w

x y h x y
U V

x y

=

∂ ∂

′ ′

= +
∂ ∂

 

 
 Therefore,  
 
 ( ) ( ) ( ){ }1

ˆ, ,0 0 0 ( , )ˆ k l i kU lV hw k l= +        (18) 
 
 Using the above boundary conditions and following 
Dutta (2005, 2007) the equation (12) have been solved  

quasi-numerically. Therefore, the solution for 
( )1ˆ , ,w k l z is given by : 

 

 ( ) ( ) ( ){ } ( )1
( , , ), , 0 0 ,
( , ,

ˆˆ
0)

k l zk l z i kU lV kw h l
k l

ψ
ψ

= +    (19) 

 
 Therefore,  
 

 

( ) ( )
( ) ( ) ( ){ } ( )0

0

0 ( , , ), , 0 0 ,
( , ,0)

ˆˆ k l zk l z i kU lV k lh
z

w
k l

ρ ψ
ρ ψ

= +                    

(20) 
         
 where, ( , , )k l zψ  is an arbitrary function, which 
satisfying equations (14) and (15) and it is value above the  
upper boundary,  ( , , ) 1k l zψ = . Following Dutta (2005) 

( , , )k l zψ  has been computed numerically at different 
vertical levels and different vertical grid points, at 
intervals of 0.25 kmd = , for a given wave number vector 

( , )k l . Hence the perturbation vertical velocity 

( ), , zw x y′ [using inverse Fourier transformation] is 
given by:    
 
 

( ) ( )
( )

( ) ( ){ } ( ) ( )
( )

( )

0

0

0 0

0
, ,   

, ,
0 0 ,

, ,0
ˆ i kx ly

x y z Real part of
z

k l z
i kU lV k l e dkdl

k
h

l

w
ρ
ρ

ψ
ψ

∞∞
+

=

 
+ 



′


∫∫

(21) 

 
 The above integration is carried numerically for               
the following range of the values of k and l, k  varying  
from  4 δk to 20 δk and l varying from -20 δl  to -4 δl                
and 4 δl and 20 δl, where δk = δl = 2π/4Lmax,                     
where Lmax is the maximum horizontal wave length              
scale. The horizontal grid size ∆x or ∆y has been                 
taken as 5 km. So, the minimum horizontal wave           
length of the disturbance that can be resolved by the 
chosen grid is 30 km. 
 
 Now the value of the double integral in            
equation (21) depends on the character of Ψ(k,l,0)                
in the range of the integration. For the given value of 
divergent wave number l, the values of k for                        
which Ψ(k,l,0), corresponding to the transverse lee                
wave number. Using scale analysis made by                        
Dutta  (2005 and 2007)  it  follows that to ignore the effect 
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Fig. 2(a) Vertical profile of U, V and T for case 1                                           Fig. 2(b). Relation between k and l for case 1 

 

       
Fig. 2(c).  Contour of wʹ (cm/sec) at 1.5 km level for case 1                          Fig. 2(d).  Contour of wʹ (cm/sec) at 3 km level for case 1 

 

        
Fig. 2(e).  Contour of wʹ (cm/sec) at 6 km level for case 1                      Fig. 2(f).  Contour of wʹ (cm/sec) at 10 km level for case 1 

 
 

of earth’s rotation (Coriolis force), the maximum 
horizontal extent of the disturbance should not exceed  
150 km. 

 The above expression in equation (21) the 
perturbation vertical velocity wʹ(x,y,z) consist of two parts, 
one is forcing part which significant on the wind ward 
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side of the corner mountain and another is wave part 
which is significant on the lee side of corner mountain. In 
the present study we shall compute only lee wave part. 
 
 Now for searching the lee wave part (wave part), we 
consider a given divergent lee wave number l = l0, the 
corresponding transverse lee wave number is evaluated by 
the following method.  
 
 Let us consider two consecutive values kp and kp+1 of 
k, where  0( , ,0)k lψ  differs in sign between kp and kp+1. 

Then, there exist for some pk′  1( )p p pkk k +′< < such 
that:  
 

 ( )0, ,0 0p lkψ =′  
 

 Then pk k= ′  is the transverse lee wave number for 
given divergent lee wave number l = l0. Now kp and kp+1  
are very closed to each other on k-axis in the wave number 
plane (k,l), the character of 0( , ,0)k lψ is approximating 

linear between kp and kp+1. Thus  pk′  is given by : 
 

 
( )

( ) ( )
1 0

1 0 0

( ) , ,0

, ,0 , ,0
p p p

p p
p p

k
k

k k k l
k

l k l

ψ

ψ ψ
+

+

′−
= −′

′′ −
                

 (Dutta, 2005) 
 
 Using this way we have found out the possible 
transverse lee wave number for a given divergent lee wave 
number. So, the total contribution of all possible 
transverse lee waves for all divergent lee waves towards 
the vertical velocity ( ), , zw x y′ can be obtained (Dutta, 
2005) as:  
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 
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′
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′ ′

′ ′
′

′

∑∑

      (22) 

4. Results and discussion 
 

 Using the formula (22), the 3-D lee wave numbers 
associated with vertical velocity ( )w′  has been computed 
for those atmospheric condition which are favourable to 
give rise to lee waves across the Corner Mountain hills 
(CMH) during summer and rainy season. In this model 
three cases have been studied, where in every case, the 
graphical relation between the lee wave numbers 
( , )k l and contours pattern of perturbation vertical 

velocity ( )w′ have been presented.    
 
 Case 1: 30th September, 2001 (Rainy season)  
 
 The vertical profile of U(z), V(z) and T(z) are shown 
in Fig. 2(a), which are based on the average of                   
0000 UTC and 1200 UTCRS/RW data of Guwahati 
(26.19° N Latitude and 91.73° E Longitude) on 30th 
September, 2001. Dutta (2005) showed that during winter 
season the profile of T(z) are almost constant lapse rate 
throughout the modal vertical domain. In the present study 
the profile of T(z)  shows an almost constant lapse rate 
with vertical and also have found the multi modal 
character in the profile of U(z) and V(z), which  makes the 
air stream characteristic to be favourable for the 
occurrence of the lee waves across the CMH in India at 
that day.  
 
 Using the above profile of U(z), V(z) and T(z) we 
have computed the all possible pairs of lee wave 
numbers ( , )k l . The graphical relation between the wave 

number vectors ( , )k l  as a scatter diagram has been 
shown in Fig. 2(b). From this figure it is seen that a given 
divergent lee wave number ( )l  can give rise to a number 
of transverse lee wave number (k) across the CMH in 
rainy season and k increase with l and the wave length 
of transverse lee waves vary between 31 km to 148 km 
and corresponding to the range of computed wave length 
of divergent lee wave is 30 km to 600 km.  
 
 The maximum updraft regions of perturbation 
vertical velocity (cm/sec)w′  at 1.5 km, 3 km, 6 km and 
10 km above mean see level, which approximately 
resemble to 850 hPa, 700 hPa, 500 hPa and 300 hPa 
respectively are shown in Fig. 2(c-f). From these figures it 
is seen that the magnitude of maximum updraft is more at 
3 km level and have not found any specific shaped and no 
tilting with vertical also it decreases with vertical. Das         
et al. (2013) have showed that the updraft regions are 
crescent shaped and tilting with vertical across AB hills at 
every level during winter season.  
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 Fig. 3(a).  Vertical profile of U, V and T for case 2                    Fig. 3(b).  Relation between k and l for case 2 
 

      
             Fig. 3(c).  Contour of wʹ (cm/sec) at 1.5 km level for case 2                              Fig. 3(d).  Contour of wʹ (cm/sec) at 3 km level for case 2 
 

      
            Fig. 3(e).  Contour of wʹ (cm/sec) at 6 km level for case 2                                 Fig. 3(f).  Contour of wʹ (cm/sec) at 10 km level for case 2 
 
 
 Case 2: 26th September, 2003 (Rainy season) 
  
 The vertical profiles of U(z), V(z) and T(z) have 
been shown in Fig. 3(a), which are based on average                

of 0000 UTC and 1200 UTC RS/RW data of                  
Guwahati on that date. In this case the profile of 
temperature T(z) is constant lapse rate with height                 
and  also  the  temperature  T(z) is constant lapse rate with  
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                         Fig. 4(a).  Vertical profile of U, V and T for case 3                                      Fig. 4(b).  Relation between k and l for case 3 
 

                      

Fig. 4(c).  Contour of wʹ (cm/sec) at 1.5 km level for case 3                            Fig. 4(d).  Contour of wʹ (cm/sec) at 3 km level for case 3 
 

                

          Fig. 4(e).  Contour of wʹ (cm/sec) at 6 km level for case 3                               Fig. 4(f).  Contour of wʹ (cm/sec) at 10 km level for case 3 
 
 
 
the modal vertical domain. Dutta (2005, 2007) have 
showed that the vertical profile of wind is favourable for 
given lee wave. 

 The graphical relation between lee wave numbers k 
and l and, using the profile of U(z), V(z) and T(z) as input, 
is shown in Fig. 3(b). This figure shows that a given 
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divergent lee wave number (l) can give rise a                        
number of transverse lee wave number (k) across                
CMH on that date. This also shows k  increases with l 
and the wave length of transverse lee wave varies between   
30 km to 150 km and corresponding to the range of 
computed   wave length of divergent lee wave is 30 km to 
600 km. 
 
 The contours of (cm/sec)w′ at 1.5 km, 3 km,                   
6 km and 10 km above mean see level, which 
approximately resemble to 850 hPa, 700 hPa,                          
500 hPa and 300 hPa respectively, are shown in                       
Figs. 3(c-f). Similar to previous case, the magnitude of 
maximum updraft is more at 1.5 km level and it decreases 
with vertical and no specific shaped tilting with vertical 
have seen. Dutta et al. (2002) and Dutta (2005) showed 
that, the maximum updraft regions were approximately 
crescent shaped across Western Ghats (WG) during winter 
season.   
 
 Case 3:  1st June, 2004 (Summer season)  
 
 The profiles of basic flow U(z), V(z) and T(z) in the 
undisturbed flow are shown in Fig. 4(a). This is based on 
the average of 0000 UTC and 1200 UTC   RS/RW data of 
Guwahati on that date. The figure shows that the profile of 
temperature T(z) is constant lapse rate with vertical and 
the vertical profile of two components of  basic flow U(z) 
and V(z)  make the air stream characteristic to be 
favourable for the occurrence of the lee waves across the 
CMH during summer season. De (1970, 1971, 1973) also 
investigated that the airstream characteristic across the AB 
hills during winter season is favourable for the occurrence 
of the lee waves.   
 
 The graphical relation between k and l as scatter 
diagram is shown in Fig. 4(b) by using the profile of U(z), 
V(z) and T(z) as input. From this figure clearly it is seen 
that for a given divergent lee wave number (l) rises to a 
number of transverse lee wave (k) on that date across 
CMH and also k increases with increases l . Here the 
wave length of transverse lee waves vary from 30 km to 
146 km and corresponding range of divergent wave length 
is from 31 km to 600 km. 
 
 Figs. 4(c-f) show the contours of perturbation 
vertical velocity (cm/sec)w′ at 1.5 km, 3 km, 6 km and 
10 km above mean see level, which approximately 
resemble to 850 hPa, 700 hPa and 500 hPa respectively.                   
Similar to case 1 and case 2, in this case also it is seen that 
the magnitude of maximum updraft is at 1.5 km level and 
it decrease with vertical and no specific tilting with 
vertical. 

5. Conclusions 
 
 In this investigation, we have presented a 
mathematical model for the 3-D dynamics of lee wave 
across a meso-scale mountain corner following quasi 
numerical approach. In the sequel, we have made some 
interesting observation. Moreover, 
  
(i) All the above cases the temperature T(z) is constant 
lapse rate with vertical and the profile of  U(z), V(z) 
shows the multi modal character, which makes the air 
stream characteristic to be favourable for the occurrence 
of the lee waves across the CMH during summer as well 
as rainy season. 
 
(ii) During the summer and rainy season, when 
atmosphere is strongly stratified, a given divergent lee 
wave (l) gives to rise to a number of transverse lee wave 
numbers (k) across the Corner Mountain hills (CMH) and 
also k  increases with  l . 
 
(iii) Strength of the updraft in all the cases found to be 
more at lower levels and decaying rapidly with vertical 
thereafter.  
 
(iv) No specific shapes of the updraft regions have been 
found. 
 
(v) No specific tilting or lateral spreading with vertical 
have been found.  
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