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सार — सांिख्यक�य डाउनस्के�लंग मॉडल (SDSM 4.2) का उपयोग दूसर� पीढ़� के कनाडा क ेपृथ्वी प्रणाल� मॉडल 
(CanESM2) क ेपूवार्नुमानकत्तार्ओ ंका उपयोग करत ेहुए, सोहरा म� वषार् और अ�धकतम तथा न्यूनतम तापमान का 
अनुमान लगान ेक े�लए �कया जाता है, जो पृथ्वी पर प्रचण्ड घटनाओ ंक ेस्थान� म� से एक है। एसडीएसएम का 
आशांकन 1979 से 2005 तक क े दै�नक वषार् और तापमान स े�कया गया और 2006 से 2020 तक डेटा क ेसाथ 
इस ेवैधीकृत �कया गया। तीन महत्वपूणर् सांद्रता पथ (RCP) 2.6, 4.5 और 8.5 क ेतहत उत्पन्न भ�वष्य क ेप�रदृश्य� 
को भ�वष्य क� तीन अव�धय� म� �वभािजत �कया गया जैस े�नकट भ�वष्य (2021-2040) मध्य भ�वष्य (2041-2071), 

और सुदूर भ�वष्य (2071-2100)। यह पाया गया ह ै�क सोहरा म� वषार् और अ�धकतम/न्यूनतम तापमान मुख्य रूप 
से प्रमखु वैिश्वक अनुमानकतार् क्रमश: 850 एचपीए ऊंचाई (एस850) पर �व�शष्ट आद्रर्ता, 2 मीटर (तापमान)/सतह 
�व�शष्ट आद्रर्ता औसत तापमान से प्रभा�वत होत ेह�। डाउनस्केल्ड प�रणाम से �ात होता ह ै �क �नकट भ�वष्य क े
दौरान आधार अव�ध 1985-2005 और मध्य और सुदूर भ�वष्य क ेदौरान 1979-2008 क� तुलना म� �व�भन्न आरसीपी 
क ेतहत मॉनसून वषार् म� 266-1543 �ममी तक क� वृ�द्ध हुई है। साथ ह�, भ�वष्य म� सभी आरसीपी क े�लए वा�षर्क 
अ�धकतम और न्यूनतम तापमान म� 1-2.8 �डग्री सेिल्सयस और 1.2-3.6 �डग्री सेिल्सयस क� वृ�द्ध होगी। 

 
ABSTRACT. The Statistical Downscaling Model (SDSM 4.2) is used to project the future precipitation and 

maximum and minimum temperatures at Sohra, one of the extreme places on earth, using the predictors of the Second-
Generation Canadian Earth System Model (CanESM2). The SDSM was calibrated with daily precipitation and 
temperature data from 1979 to 2005 and validated from 2006 to 2020. Future scenarios generated under the three 
Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 are divided into three future periods, Near Future (2021-
2040), Mid Future (2041-2071), and Far Future (2071-2100). It is found that the precipitation and maximum/minimum 
temperature at Sohra are influenced mainly by the major global predictors; specific humidity at 850 hPa height (s850) and 
mean temperature at 2 m (temp)/near surface specific humidity (shum), respectively. The downscaled result reveals an 
increase in Monsoon precipitation in the range of 266-1543 mm under various RCPs compared with the base periods 
1985-2005 during the Near Future and 1979-2008 during the Mid and Far Future. Also, annual maximum and minimum 
temperature increases in the range of 1-2.8 °C and 1.2-3.6 °C for all RCPs in the future. 

 

Key words  –  SDSM, Precipitation, Temperature, Sohra, Future projection, CanESM2. 
 
 

  
1. Introduction  
 

Anthropogenic activities have led the climate of the 
globe to change much faster than before, as reported by 
the IPCC 6th assessment report (IPCC, 2021). 
Consequently, there is a likelihood of an increase in 
extreme events like floods, drought, heat waves, etc., on 
the local scale. These extreme events could impact the 
livelihood of society, human health, agriculture, urban 
development, water availability and many more aspects of 

life. To cope with such circumstances, it is essential to 
understand the future state of the climate with the 
available historical climate information. For this, climate 
projections are made using the Global Climate Model or 
General Circulation Model (GCM) at a coarse resolution. 
GCMs are often reliable in global scale projections with 
large grid sizes up to the order of 50,000 sq km (Wilby           
et al., 2002). However, due to coarser resolution, 
unresolved microscale processes, terrain difference, and 
convections, it can rarely project at regional or local scale,  
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Fig. 1. Study Location of Sohra (Cherrapunji) 
 
 
 
as accurately as at large scale. In fact, higher uncertainties 
are associated with complex mountainous topography 
having extreme climatic conditions. Using downscaling 
techniques, projections at local level or site level is 
possible and are quite popular tools among climatologists 
and hydrologists nowadays. Basically, downscaling can be 
achieved by two approaches, Dynamical Downscaling 
(DD) and Statistical Downscaling (SD). In DD, a 
Regional Climate Model (RCM) of finer resolution is 
forced or nested within a GCM to produce outputs at 
regional level. While in SD, the relationship established 
between the large-scale global predictors and local scale 
predictands is downscaled empirically or statistically. 
Both methods are comprehensive and give promising 
result. DD is based on physical processes and requires 
high computations. However, SD is quite handy, 
computationally inexpensive, and based on statistics. The 
efficiency in SD depends on how accurately the model is 
calibrated with the appropriate choice of predictors, which 
can significantly influence the predictands at the regional 
level. Moreover, the length of observed and historical data 
and the choice of regression process also affect the model 
efficiency. In general, SD is faster and is a good 
alternative to assess climate impact analysis, hydrological 
responses to various climate scenarios, and to downscale 
important climate variables such as precipitation, 
temperature, evapotranspiration, etc. The downscaling of 
identically independent and conditional events like 
precipitation is difficult compared to unconditional events 

like temperature. Due to nonlinearity and high spatial and 
temporal variability, statistical downscaling of 
precipitation could rarely show high efficiency (Maraun  
et al., 2010).  
 

The Statistical Downscaling Model (SDSM) is one 
of the most widely used downscaling approaches to assess 
climate change and climate impact analysis at the regional 
level (Sharma et al., 2007; Akhtar et al., 2008; Elshamy  
et al., 2009; Wetterhall et al., 2009; Huang et al., 2011; 
Kannan and Ghosh,  2011; Souvignet and Heinrich  2011). 
To date, various studies have been carried out in the South 
Asian region using both Statistical, and Dynamical 
Downscaling approaches (Tripathi et al., 2006; Anandhi  
et al., 2007; Akhtar et al., 2008; Ghosh and Mujumdar, 
2008; Ashiq et al., 2010; Goyal and Ojha, 2010; 
Mahmood and Babel, 2013; Shafiq et al., 2019). In the 
Indian context, the precipitation is primarily due to 
summer rainfall, which contributes to about 80 % of the 
annual precipitation in India (Bollasina, 2014). Most of 
the studies using GCMs suggest that the Indian monsoon 
rainfall will increase due to climate change in the 21st 
century (Chaturvedi et al., 2012; Menon et al., 2013; Lee 
and Wang, 2014; Asharaf and Ahrens, 2015; Mei et al., 
2015; Sharmila et al., 2015; Varghese et al., 2020). 
Whereas the mean surface temperature is likely to 
increase, and the warming across the country may vary at 
a different rate by the end of the 21st century (Kumar      
et al., 2013; Basha et al., 2017; Das and Umamahesh,
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Figs. 2(a-d). Observed mean annual (a) precipitation, (b) diurnal temperature range, (c) maximum 
temperature and (d) minimum temperature at Sohra from 1979 to 2020 

 
 
 
 
2022). Under Representative Concentration Pathway 8.5 
(RCP 8.5), CMIP5 models project a median increase in 
Indian monsoon rainfall of 2.3% per Kelvin rise in 
temperature (Menon et al., 2013). Also, under RCP 8.5, 
the amount of rainfall over India is projected to increase 
by 18.7 %  towards the end of the 21st  century compared 
to 1961-1999 (Chaturvedi et al., 2012). The same study 
showed that the mean warming in India is likely to be in 
the range of 1.7-2 °C by 2030s and 3.3-4.8 °C by 2080s 
relative to the preindustrial time scenario between RCP 
6.0 and RCP 8.5. Moreover, the increase in maximum 
temperature anomaly is likely to cause severe heat wave 
events in the regions of southern, northeast, and western 
parts of India (Das and Umamahesh, 2022). Some models 
even project that the increase will contribute to 
precipitation, especially in the Himalayan region, 
northeast of the Bay of Bengal and the west coast of India 
(Gusain et al., 2020). Though North-Eastern Indian 
rainfall is trendless, some studies predicted that the daily 
mean rainfall would likely to increase in the future (Salvi 
and Ghosh, 2013). Due to unique topography and 
orographic features, the North-Eastern region of India 
receives the highest annual rainfall compared to the rest of 

India. Furthermore, Sohra (Cherrapunji) is among such 
places with extreme precipitation and the highest recorded 
one day rainfall in a calendar month. Hence, in this study, 
we aim to downscale the precipitation as well as the 
maximum and minimum temperature of Sohra from the 
CanESM2 outputs to observe their variability in the future 
under three emission scenarios, RCP 2.6, 4.5 and 8.5, 
respectively. 

 
2. Study area, data and methodology 
 

2.1. Study Location and its Climate 
 
Sohra (Cherrapunji) is located at the Southern edge 

of stiff mountainous cliffs of the Hilly State of Meghalaya 
in North-Eastern India and is at an altitude of about 4823 
feet (1484 m) above the mean sea level (Fig. 1). It acts as 
a first orographic barrier for the westerly wind, which 
carries the moist and warm air over the Bay of Bengal and 
is responsible for the heavy monsoon in Sohra. The 
average temperature is moderate and ranges between   
11.6 °C during January (Winter) to 20.6 °C during August 
(Summer), respectively. 
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TABLE 1 
 

List of Screened out predictors used for the calibration 
 

Predictand Rank Predictors Description R1 (%) PRP (%) P value 

Precipitation 

1 nceps850 Specific humidity at 850 hPa height 37.6 SP 0 

2 ncepp850 850 hPa geopotential height 31.8 83.9623 0 

3 ncepp500 500 hPa geopotential height 26.4 84.4697 0 

4 ncepmslp Mean sea level pressure 33.8 82.2485 0 

Maximum 
Temperature 

1 nceptemp Mean temperature at 2 m 61.3 SP 0 

2 ncepp5_z 500 hPa vorticity 36 76.1111 0 

3 ncepp500 500 hPa geopotential height 58.5 50.7692 0 

4 ncepmslp Mean sea level pressure 43.8 73.7443 0 

Minimum 
Temperature 

1 ncepshum Near surface specific humidity  84.2 SP 0 

2 ncepp500 500 hPa geopotential height 74.2 82.6146 0 

3 nceps850 Specific humidity at 850 hPa height 83.2 86.7788 0 

4 ncepp850 850 hPa geopotential height 56 79.1071 0 

 
 
2.2. Data used 

 
The observed daily precipitation, maximum 

temperature (Tmax) and minimum temperature (Tmin) 
data (1979-2020) used for calibration and validation of 
SDSM was obtained from the website of Cherrapunjee 
Holiday Resort which keeps the daily data that is collected 
from the meteorological station of the Indian Meteorology 
Department at Sohra. While, the historical NCEP-NCAR 
(National Center of Environmental Prediction-National 
Center for Atmospheric Research) climate data and future 
climate scenario data of 26 predictors for RCP 2.6, 4.5, 
and 8.5 were obtained from the second-generation 
Canadian Earth System Model with appropriate grid box 
for Sohra [CanESM2 predictors: CMIP5 experiments 
(Canada.ca)]. 
 

2.3. Statistical downscaling model 
 

SDSM is a hybrid of multiple linear regression 
(MLR) and the stochastic weather generator (SWG) 
developed by Wilby et al., (2002). It is a window-based 
decision support tool coded in Visual Basic 6.0 and is the 
first of its kind offered to the broader climate change 
impacts community. The model uses MLR techniques to 
establish relationships between the NCEP, historical large-
scale circulation pattern, atmospheric variables 
(predictors) and local scale variables (predictands) and 
produces some regression parameters. SWG uses the 
NCEP and GCM predictors along with these calibrated 
regression parameters to simulate an ensemble of 20-100 
daily time series to correlate better with the observed time 
series. The model can develop a low-cost, single-site, 

ensemble scenario of daily surface weather variables 
under present and future climate forcing using seven key 
functions; (i) quality control and data transformation,     
(ii) screening of predictor variables, (iii) model 
calibration, (iv) weather generation, (v) statistical analysis, 
(vi) graphing model output and (vii) scenario generation.     
 
3. Result and discussion 
 

3.1. Characteristics of observed Precipitation and 
Temperature 

 
Analysis of observed mean annual temperature 

(maximum and minimum), precipitation, and diurnal 
temperature range (DTR) is carried out for Sohra from 
1979 to 2020 using Mann Kendall trend test and Sen’s 
Slope estimator to determine the trend and magnitude of 
that trend. It was observed that only DTR and maximum 
temperature showed a significant increasing trend at 99% 
significant level with 0.05 and 0.06 °C/year, respectively            
[Figs. 2(b&c)]. Precipitation and minimum temperature 
did not show any significant trend [Figs. 2(a&d)]. Also, 
the summary statistics revealed that Sohra witnessed 
11,477 mm of mean annual rainfall in the range of           
7,424-17,930 (min-max) mm. Moreover, the mean annual 
DTR, Tmax and Tmin were 7.7, 21.5 and 13.7 °C, 
respectively. 
 

3.2. Screening of predictors 
 

The selection of appropriate predictors is the central 
task of downscaling by SDSM. Out of 26 global 
predictors of CanESM2, only a few which showed a
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Figs. 3(a-f). Model performance during Calibration and Validation of monthly precipitation (a, d), monthly maximum temperature (b, e) 
and monthly minimum temperature (c, f) 

 
 
 
significant relationship with the local scale predictands 
were chosen for calibrating and downscaling the model. 
To screen out the relevant predictors, a combination of the 
correlation matrix, partial correlation, and P value at 0.05 
significance level is used, as described by Mahmood and 
Babel (2013). The predictor with the highest correlation 
coefficient among all predictors is selected as a super 
predictor (SP), and then, the percentage reduction in an 
absolute partial correlation (PRP) with respect to absolute 
correlation is calculated for the rest of the predictors 
which using the following equation: 
 







 −

=
1

1.PRP
R

RrP                                                  (1) 

 
where P.r is the partial correlation coefficient and R1 

is the correlation coefficient between predictor and 
predictand. Thus, four predictors are screened out, one 
super predictor and three with a minimum PRP value 
(Table 1). It was observed that Specific humidity at      
850 hPa (nceps850), Mean temperature at 2 m 
(nceptemp), and Near surface specific humidity 
(ncepshum) were found to be the SPs for precipitation, 
Tmax, and Tmin at Sohra, respectively. Most of the 
selected predictors are in agreement with similar studies 

over the Himalayan region (Khadka and Pathak, 2016; 
Shafiq et al., 2019). 
 

3.3. Calibration and validation 
 

Calibration is an essential step that involves the 
establishment of a regression relationship between the 
screened-out predictors from CanESM2 and the local 
scale predictands. The predictors listed in Table 1 were 
used for the calibration of SDSM. Also, the reliability of 
the calibrated model was validated with the simulated 
results during the observation period. Thus, the daily 
weather data series was divided into two sets. Data sets 
from 1979 to 2005 were used for calibration, while the 
rest from 2006 to 2020 were used for validation for each 
of the predictands. During the simulations, the model was 
set to conditional process for precipitation and 
unconditional for temperature. Fig. 3 shows the month-
wise comparison of observed and modeled predictands for 
precipitation, maximum temperature, and minimum 
temperature during both the calibration [Figs. 3(a-c)] and 
validation [Figs. 3(d-f)] period. 

 
A statistical index, Correlation Coefficient (R), was 

used to assess the model performance for the predictands 
during the period of observation. In the calibration period,
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Figs. 4(a-i). Projected changes in monthly precipitation, monthly maximum temperature, and monthly minimum temperature during the 
future periods 2021-2040 (a-c), 2041-2070 (d-f), and 2071-2100 (g-i), respectively 

 
 
 
R for precipitation was found to be 0.99, whereas Tmax 
and Tmin were found to be 0.96 for both. Similarly, the 
validation period gave R values of  0.99, 0.93, and 0.95 
for the precipitation, Tmax, and Tmin, respectively. It is 
often difficult to simulate daily precipitation due to its 
heterogeneous nature, and therefore, it is poorly resolved 
by the large-scale predictors compared to daily 
temperature. However, in this study, the Correlation 
Coefficient values suggest a better simulation of 
precipitation and temperature variables.  
 

3.4. Future projection 
 
With the calibrated model, future scenarios were 

generated for the predictands under the Representative 
Concentration Pathways (RCP) 2.6, 4.5 and 8.5 from the 

outputs of CanESM2 for Near Future (2021-2040), Mid 
Future (2041-2070) and Far Future (2071-2100) periods. 
It is to mention here that the results were generated using 
the mean of 20 ensembles of the downscaled scenarios. 
The projected results were compared with the base period 
1986-2005 for NF and 1979-2008 for both MF and FF, 
respectively, shown in Fig. 4. Also, the seasonal 
projections were compared for four seasons; Winter (Jan-
Feb), Pre-Monsoon (Mar-May), Monsoon (Jun-Sep) and 
Post-monsoon (Oct-Dec). 
 

3.4.1. Precipitation 
 

The generated scenario reveals that the average 
monthly precipitation will increase sufficiently from Apr 
to Jul and in Oct in the three future periods for all RCPs
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Figs. 5(a-i). Projected changes in seasonal precipitation, seasonal maximum temperature, and seasonal minimum temperature during the 
future periods 2021-2040 (a-c), 2041-2070 (d-f), and 2071-2100 (g-i), respectively 

 
 
[Figs. 4(a, d&g)]. In contrast, decrement in precipitation 
will be observed for Mar and Aug of the Near Future (NF) 
and Sep of Mid Future (MF) and Far Future (FF) periods 
in all three scenarios. However, little changes will be 
observed in Jan, Feb, Nov, and Dec months for all RCPs 
in the future. The month of July will witness a maximum 
increment (310-420 mm) in precipitation by all the RCPs 
during NF, by RCP 2.6 (410 mm) and 4.5 (496 mm) 
during MF, and only by RCP 2.6 (430 mm) during FF. 
However, in the case of RCP 8.5 of Mid Future (618 mm) 
and Far Future (1103 mm), and RCP 4.5 of FF (494 mm), 
the maximum increment in precipitation will be observed 
for June month. It is observed that with higher RCPs, the 
maximum change will be shifted from July to June in the 
future.  

 
The projected change in seasonal precipitation at 

Sohra shows that it will increase though out all the 
seasons in the three future periods except during the 
Winters of MF and FF [Figs. 5(a, d&g)]. The maximum 
increase in precipitation will be observed during the 
Monsoon for all the RCPs, followed by the pre-monsoon 
and post-monsoon seasons. However, little change will be 
observed during winter. For the monsoon season, the 
precipitation increment will vary from 266 mm during NF 

for RCP 2.6 to 1543 mm during FF for RCP 8.5. While, in 
pre- and post-monsoon, the increment will vary from 128 
and 163 mm during NF for RCP 2.6 to 792 and 1024 mm 
during FF for RCP 8.5, respectively. Also, with higher 
RCPs, the change in seasonal precipitation increases 
during MF and FF. 
 

3.4.2. Maximum temperature 
 

The downscaled results for the three RCP show that 
the projected maximum temperature will increase every 
month throughout the year in future periods, except for 
Oct of NF in all RCPs and the Oct of MF in RCP 2.6 only 
[Figs. 4(b, e&h)]. The annual maximum temperature 
increases by 1-1.1 °C during NF, 1.2-1.8 °C for MF and 
1.2-2.8 °C during FF. The highest change in maximum 
temperature is shown by January month (2.6-4.3 °C) in all 
the three RCPs during the entire future periods. Also, Feb 
and Dec show a relatively higher increase in Tmax as 
compared to other months, excluding Jan. Also, the worst 
scenario is shown by the RCP 8.5, as it shows a higher 
increment in Tmax for the RCP 2.6 and RCP 4.5 of MF 
and FF, respectively. It is observed that the change in 
maximum temperature increases from Mar, reaches a peak 
during July, and then decreases till Sep. Again, it starts 
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rising from Oct, peaks during Jan and goes down till Mar. 
This indicates that the summer and winter months will be 
most affected in the future as the increase in daytime 
temperature is much higher relative to the other months. 

 
Also, seasonal projections show an increase in Tmax 

for the three RCP in the future [Figs. 5(b, e&h)]. The 
maximum increase is projected for Winters, followed by 
Monsoon for all the RCPs during the future periods. For 
RCP 8.5, the projected increase in Winter is 2.3, 3, and  
3.8 °C; RCP 2.6 is 2.1, 2.5, and 2.5 °C during NF, MF, 
and FF, respectively. Also, during the Monsoon, the 
maximum temperature will vary from 1.3 °C during NF 
for RCP 2.6 to 3.2 °C during FF for RCP 8.5. Results 
show that the winter and monsoon seasons will be the 
most affected by the end of the 21st century.  

 
3.4.3. Minimum temperature 

 
The future changes in monthly minimum 

temperature according to RCP 2.6, 4.5 and 8.5 is 
represented in Figs. 4(c, f&i). The scenarios in the Near 
Future, Mid Future, and Far Future show that the 
minimum temperature will also increase almost every 
month except Mar and Apr of RCP 2.6 in all future 
periods, Mar of RCP 4.5 in NF and MF, and Mar and Apr 
of RCP 8.5 in NF only. The annual minimum temperature 
increases by 1.2-1.4 °C during NF, 1.3-2.2 °C for MF, and 
1.3-3.6 °C during FF. Similar to the maximum 
temperature, the highest increment is observed for January 
in the case of the minimum temperature. Dec also shows a 
relatively higher increment as compared to other months. 
It is also noticed that with higher RCPs, the minimum 
temperature increases rapidly toward future periods. 
Moreover, a higher increase in minimum temperature 
during Jun-Jul and Dec-Jan indicates relatively warmer 
nights during Summers and Winters in the future 
compared to the base period. 

 
Seasonal projection of minimum temperature also 

shows increased values in the three RCP in the future 
[Figs. 5(c, f&i)]. The maximum increase is projected for 
Winters, followed by the Monsoon and then Post-
Monsoon, for all the RCPs in the future. The projected 
increase in Winter for RCP 8.5, is 2.6, 3.2 and 4.5 °C and 
for RCP 2.6 is 2.4, 2.5 and 2.7 °C during NF, MF and FF, 
respectively. Also, during the Monsoon, the minimum 
temperature will vary from 1.6 °C during NF for RCP 2.6 
to 4.5 °C during FF for RCP 8.5. Results show that the 
winter and monsoon seasons will be the most affected, 
followed by the Post-Monsoon season at the end of the 
21st century.  

 
The present study uses the projections of CanESM2 

and the results obtained are consistent with other such 

studies around the world. Several studies which uses 
CanESM2 projections have showed similar results over 
different parts of India (Menon et al., 2013, Shafiq et al., 
2019, Vijayakumar et al., 2021). Global studies have also 
projected a hotter climate and wetter monsoon in future 
(Collins et al., 2013, Kitoh, 2017). The increase in 
temperature in future period may be attributed to the 
increasing concentration of Green House Gases, Aerosol, 
which may trap the heat into the atmosphere (Collins et 
al., 2013). Due to increased temperature, the water vapour 
content in the atmosphere will increase which may 
intensify the moisture extraction by the southwest 
monsoon leading to heavy rainfall in future at Sohra. 
 
4. Conclusions 
 

The future climate of Sohra was projected in terms 
of temperature and precipitation using the output of 
CanESM2. A statistical downscaling technique was used 
to downscale these outputs at the station level using 
SDSM 4.2. The daily data of maximum and minimum 
temperature and precipitation of Sohra for 1979-2020 was 
used to downscale the GCM outputs, and the period 1979-
2005 was used for model calibration, while the period 
2006-2020 was used for model validation. Sohra is a place 
with extreme climatic conditions, and downscaling of 
precipitation and temperature for this region is important 
for various impact studies on agriculture, tourism, and 
water resources. 

 
The projection on precipitation reveals that the 

monthly precipitation will increase sufficiently from Apr 
to Jul and in Oct in the future under all RCPs. Also, the 
monthly maximum and minimum temperature will 
increase in future periods in all RCPs. The highest change 
in precipitation and maximum and minimum temperature 
are observed under RCP 8.5. The seasonal projection 
shows that the maximum increase in precipitation will be 
observed in the Monsoon from 266 mm for RCP 2.6 in NF 
to 1543 mm for RCP 8.5 in FF. Similarly, for maximum 
and minimum temperatures, the highest increment will be 
observed during the winter season as the increment in 
maximum and minimum temperatures will reach up to 3.8 
and 4.5 °C under RCP 8.5 towards the end of the 21st 
century. Overall, the study suggests that in the future, 
precipitation will increase during the Monsoons, and the 
temperature extremes will increase during the winter 
season. It indicates that Sohra may witness a dry and harsh 
Winter as the precipitation change is negligible and the 
temperature change is highest during this season in future 
periods. Previous studies on climate extremes at Sohra 
also suggest that the Consecutive Dry Days (CDD) have 
increased significantly by 0.54 days/year, while the 
Consecutive Wet Days (CWD) have decreased 
significantly with 0.36 days/year during the recent period 
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1979-2020 (Kalita  et al., 2023). Therefore, water scarcity 
during the dry Winters may prevail in the future, which is 
a well-known problem for people living in Sohra 
(Mawroh and Husain, 2012; Mawroh, 2019). However, 
increase in Monsoon precipitation in the future may 
increase frequent flooding in low-lying areas such as the 
North-Eastern part of Bangladesh, as most of the 
rainwater from Sohra is drained into the Bangladesh flood 
plain during the Monsoon season. 

 
The current study provides a basic representation of 

the future climate of Sohra using the ensemble mean of a 
single model output. However, there are uncertainties 
associated with the SDSM because it assumes the 
statistical relationship between the predictors and the 
predictions to be stationary at all future times. Also, using 
a single GCM output often leads to a biased estimation of 
future states. Further, uncertainties may arise due to the 
imperfect understanding of the physical process and 
feedback in the model. Therefore, the use of multi-model 
ensembles or multiple ensembles mean of single model 
can better represent the future climate. Moreover, 
downscaling from multiple GCMs with an RCM or from 
multiple RCMs could be a better alternative for reducing 
uncertainties. Hence, further study is recommended in this 
direction. 
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