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सार — विभिन्न मौसम की घटनाओ ंका उच्च परिशुद्धता के साथ मॉडल तैयाि किना औि पिूाानमुान किना 
कठिन होता है। इस अध्ययन ने विभिन्न प्राचलों अथाात ्अधधकतम औि न्यनूतम तापमान, सुबह औि शाम की सापेक्ष 
आर्द्ाता को प्राचभलक मॉडल अथाात ् स्िसमाश्रयी समेककत गततमान माध्य (ARIMA) औि सामान्यीकृत स्िसमाश्रयी 
कंडीशनल हेट्रोसेकेडभसटी (GARCH) मॉडल का उपयोग किके पिूाानमुातनत ककया है। आकंड़ों में जनििी, 1996 से निबंि, 
2019 तक के मध्य प्रदेश के होशंगाबाद जजले के दैतनक समय श्रृखंला आकँड़े शाभमल थे। AIC औि BIC कसौटी का 
उपयोग प्रततयोगी मॉडलों में चयन के भलए ककया गया था। ितामान जांच से पता चला है कक ARIMA-GARCH मॉडल 
न्यनूतम तापमान, अधधकतम तापमान औि सापेक्ष आर्द्ाता के पिूाानमुान के भलए अधधक उपयकु्त हैं। 

 
ABSTRACT. Various weather phenomenon are difficult to model and forecast with high precision. This study has 

modelled and forecasted the various parameter namely maximum and minimum temperature, morning and evening 

relative humidity using parametric models namely Autoregressive Integrated Moving Average (ARIMA) and Generalized 

Autoregressive conditional heteroskedasticity (GARCH)) models. The data consisted of daily time series data for 
Hoshangabad district of Madhya Pradesh from January, 1996 to November, 2019. The AIC and BIC criterion were used 

to select among competing models. Present investigation has revealed that ARIMA-GARCH models are more suitable for 

forecasting of minimum temperature, maximum temperature and relative humidity. 
 

Key words  –  Weather, Time series, Error distribution, ARCH, GARCH. 

   
1.  Introduction 

 

 Weather factors play vital role in production of 

crops; if weather factors (viz., rainfall, maximum 

temperature, minimum temperature, etc.) are not favorable 

to the crop, then crop cannot be grown well (Kaul, 2006). 

The associated impacts of high temperatures, changing 

patterns of precipitation and possible increased frequency 

of extreme events such as drought and floods would 

combine to reduce yields and increase risks in agricultural 

production in several parts of the globe. In India, 

agricultural production is often determined by the whims 

of nature. Information about seasonal forecast of               

weather allows farmers to make planning and 

management strategies for improvement in production               

of crops. Humidity is important to make                

photosynthesis possible and temperature a plant on a 

sunny day is mainly regulated by cooling through 

evaporation. The changes in the average temperature of 

the earth can translate into large shifts in the                      

climate and weather. Martínez et al. (2012) estimated              

and forecasted temperature and humidity by using 

artificial neural network (ANN) for tobacco dry 

processing. Smith et al. (2009) predicted the air 

temperature by using time series model. Shukla et al. 

(2014) used GARCH model to forecast the climate 

parameters temperature, maximum temperature and 

relative humidity. 
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The key in forecasting nowadays is to understand the 

different forecasting methods and their relative merits and 

so be able to choose which method to apply in a particular 

situation. Though modeling and forecasting of phenomena 

has a long history, its application, especially in the field of 

weather forecasting become substantially visible during 

the latter half of the last century. It got further boost with 

the introduction of Box - Jenkins methodology, GARCH 

and ARCH is particularly in time series forecasting, 

followed by availability and wide use of computer 

softwares. Several researchers have applied SARIMA 

model to rainfall data of various locations and found 

satisfactory results (Akpanta et al., 2015; Wanga et al., 

2013; Murthy et al., 2018; Dabral and Murry, 2017). The 

next paragraph discusses the noteworthy applications of 

Box-Jenkins and ARCH family models to other fields. 

Mishra et al. (2017 & 2018) compared time series models 

(ARIMA, GARCH and ARCH) and used for forecasting 

Time series data is usually fraught with non stationarity 

and volatility. Keeping in view the wide popularity of 

these methods of forecasting in predicting weather and 

non-weather data, this study was carried out with 

following specific objectives: 

 
(i) Identification and comparison of suitable forecasting 

models based on model selection criteria for weather 

parameters.  

 

(ii) Developing a local scale statistical model enabling   

to predict certain surface meteorological parameters, 

crucial for agricultural operation and validation of the 

models. 

 
2. Methods and data 

 
The time series data on monthly maximum and 

minimum temperature, morning and evening relative 

humidity in percent (R.H.) for Hoshangabad district of 

Madhya Pradesh from January, 2017 to November, 2019 

daily data was used for the present study. Time series data 

was collected from Gramin Krishi Mausam Seva (GKMS) 

from ZARS, Powarkhada, J.N.K.V.V. The series contains 

8491 data points, out of which 8401 data points (January 

to December 1996-2018) were used for model building 

and 90 points (January to December 2019) were kept for 

validation. An area comes under Central Narmada Valley 

Agro Climatic Zone [Fig. 1(a)]. Average rainfall is             

1243 mm during 2017-18.The on set of monsoon started 

on 1
st
 week of June and decreased on 30

th
 September. 

Maximum rain was received in the month of July and 

August. 

 
Since the work of Mandelbrot (1963) and Fama 

(1965), it is known that the “good” statistical assumptions 

retained in traditional models are sometimes caught in 

default in finance. Friedman and Vandersteel (1982); 

Bollerslev (1987); Baillie and Bollerslev (1989) and more 

recently Chan and Grant (2016); Silva et al. (2019); Peter 

et al.,(1991);Francq and Zakoian (2019) have shown that 

the assumption of normality and homoscedasticity of the 

error term  relating to models on financial assets is 

frequently rejected. 

 

Weiss (1984) proposed ARMA models with ARCH 

errors. This approach is adopted and extended by many 

researchers for modeling economic time series (Hauser 

and Kunst, 1998; Karanasos, 2001). In the field of geo-

sciences, Tol (1996) fitted a GARCH model for the 

conditional variance and the conditional standard 

deviation, in conjunction with an AR (2) model for the 

mean, to model daily mean temperature. In this study, 

ARMA-GARCH error (or, for notation convenience, 

called ARMA-GARCH) model was selected for modeling 

daily streamflow processes. 
 

In the basic  model, 
 

ttt yy   11 ; where, t  2,0 N  

 

where, it is assumed that 
2
  was constant. This is a 

restrictive approach. In finance and financial engineering, 
2
  (standard deviation) is a central variable that 

corresponds to the concept of volatility. In general, 
2
  is 

assumed to be constant, which is not always satisfactory. 

Experience has shown that volatility can fluctuate 

significantly. In practice, we estimate 
2
  over short 

periods, which make it possible to indirectly incorporate a 

form of change. Following the pioneer work of (Engle, 

1982), through it proceed to a modification of the AR (1) 

model to take account of a volatility which changes over 

time according to a well-defined approach. 
 

With a brief rappel, the mean of an (1), is : 

 
11 





tyE  and the variance is : 

  .
1 2

1

2






tyV Furthermore, by supposing yt-1 is known, 

the conditional mean of this process is given by : 

  ,/ 111   ttt yyyE  which clearly depends on the 

previous information in time t – 1, so it’s not necessarily 

constant over time; in contrast the conditional variance 

was considered constant (does not depends of time scale), 
 

     1

2

11   tttttt yyyEyEyyVar  
 

   2
1

2
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Fig. 1(a). Area comes under central Narmada valley agro climatic zone 

 

 

 
 

Fig. 1(b). Pattern evolution of the four time series over the period of study 
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In fact, this result is generated by the hypothesis          

t  2,0 N ; which is a more restricted one, it needs 

another procedure that take in consideration the 

dependence of the conditional variance, the ARCH family 

models is a better approach for this situation.  

 

For the mean equation, the ARIMA (p, q) process 

had been used, where in identification step, the study used 

Akaike's information criterion is written as follows: 

 

AIC = 2k – 2 ln (k) 

 

where,  is the number of parameters to be estimated 

from the model and  is the maximum of the likelihood 

function of the model. Whereas, Burnham & Anderson 

(2002) strongly recommend the use of the AICc instead of 

the AIC if  is small and / or  large, 

 

 
1

12
AICAICc






kn

kk
 

 
It is to be noted further that the AICc tends towards 

the AIC when n becomes large. The AICc was first 

proposed by Hurvich and Tsai (1989); Brockwell & Davis 

(1991) recommend using the AICc as the primary 

criterion for the selection of ARMA time series models. 

McQuarrie & Tsai (1998) confirmed the interest of AICc 

using a large number of regression and time series 

simulations. 

 

Definition 2.1 an  process is given as : 

 

 


 

q

i

titit L

1

2
0

2
0

2   

 

where, 00  and .0 ii   to guarantee that the 

unconditional variance be positive. The ARCH (q) model 

makes it possible to take into account the volatility 

clustering, (Lu & Marchesi, 1998), i.e., the strong 

(respectively the weak) variation of ( ) are followed by 

other strong (weak) variations, this notion is firstly 

developed by Mandelbrot (1963).  
 

3. Estimation of ARCH (p) model 
 

Estimates can be obtained from the maximum 

likelihood method, Engle (1982); Pantula (1985), or by 

the generalized moments method. The identification of the 

order of the ARCH (q) model can also be obtained using 

the traditional tests used for the identification of AR 

processes by proceeding in two steps. 
 

It is to be noted that the conditional likelihood 

function of an AR (1) is given by : 
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In the case of ARCH errors, we have and                

t  2,0 N  and the likelihood function can easily be 

changed by replacing 
2
 with st. 
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4. The errors’ distributions 

 

 Early achievements in financial time series modeling 

by ARCH / GARCH were limited to the case of Normal 

errors, for which an explicit conditional probability 

function is readily available to promote parameter 

estimation in the model, Hall and Yao (2003). Investigation 

of non-Normal cases has been partly driven by empirical 

evidence that financial time series can be very heavy-

tailed [Mittnik et al. (1998); Mittnik and Rachev (2000)]. 

It should specify the form of the conditional distribution 

for the errors, most frequently used distribution (or the 

default) is Normal (Gaussian), the Student’s t, the 

Generalized Error (GED), the Student’s t with fixed d.f., 

or the GED with fixed parameter.  

 

5. Results and discussion  

 

 The data description is shown in Table 1, where a 

summary statistics of the central tendency (mean, 

median), the dispersion and the form data distribution 

were mentioned into. Over the study period, in average the 

minimum temperature and the maximum temperature 

were (respectively) 19.47 °C and 31.7 °C.  Relating to the 

evaporations measures in morning and evening, in average 

the estimation was about 72.67% and 49.59% 

(respectively). For the dispersion statistics, we see that the 

min and max temperature have weak variations compared 

to the evaporations measures. The form of the data 

distribution for all time series did not show any normally 

patterns (according to the Skewness, Kurtosis statistics). 

 

From Fig. 1(b) it can be observed that all the four 

time series are stationary, after testing the hypothesis of 

unit roots by using the Augmented Dickey Fuller (ADF), 

Phillips-Perron (PP) and KPSS unites roots tests, it was 

confirmed that the time series are stationary except the 

Morning evaporation time series, which is integrated                  

of first order; detailed results are presented in Table 1. 

There was no trend effect in all the four time series (and
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Fig. 2. The first difference of the time series plots over the study period. Source : plots using Eviews program 
 

 

TABLE 1 

 

Summary statistics of data 

 

Descriptive Mesures   Min Temperature Max Temperature Morn Humidity Eve-humidity 

 Mean  19.47  31.70  72.67  49.59 

 Median  21.00  31.00  77.00  50.00 

 Range (1.6, 34) (2.2, 46.6) (3, 100) (5, 100) 

 SD  6.243  5.791  19.15  22.60 

 Skewness -0.345  0.208 -0.705  0.110 

 Kurtosis  2.017  2.801  2.604  2.159 

 Jarque-Bera (Prob)  510.6 (0.00)  74.34 (0.00)  759.54 (0.00)  266.94 (0.00) 
 

Notes : SD : Sample Standard deviation. According to skewness, kurtosis and Jarque-Bera statistic test, we reject the 

normality of data distribution for all time series 
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TABLE 2 

 

Results of Augmented-Dickey-Fuller (ADF), Phillips-Perron (PP) and KPSS unites roots tests 

 

Variables 
ADF(*) PP KPSS(**) 

Constant Constant & Trend Constant Constant & Trend Constant Constant & Trend 

Morn-RH -2.08 

(0.250) 

-2.06 

(0.564) 

-6.18 

(0.000) 

-6.19 

(0.000) 

132.0 

(0.36.) 

0.218 

(0.146) 

Min-Temp -6.06 

(0.111) 

-6316 

(0.000) 

-00316 

(0.011) 

-00.58 

(0.011) 

0.014 

(0.463) 

0.012 

(0.146) 

Max-Temp -8.666 

(0.000) 

-8.628 

(0.000) 

-21.09 

(0.000) 

-21.14 

(0.000) 

0.189 

(0.463) 

0.013 

(0.146) 

Eve-RH -8.843 

(0.000) 

-8.912 

(0.000) 

-29.27 

(0.000) 

-29.89 

(0.000) 

0.518 

(0.463) 

0.227 

(0.146) 
 

Source : Own estimation using Eviews and R programs. (**) We use the Augmented Dickey-Fuller (ADF) to take 

account the autocorrelation  n::n error terms. (**): The b KPSS (1992) test differs from the other unit root tests by 
assuming trend-stationary time series under the null hypothesis (so, if the according p.value is greater than the choosing 

significance levels (1%, 5%, 10 %...), the decision is: the time series is stationary; which is the case for this study 

 
TABLE 3 

 

ARIMA (2, 0, 3) – ARCH (1) models results for the maximum temperature time Series 

 

Variable Coefficient Std. Error z-Statistic Prob. 

Mean Equation 

AR(1) 1.566042 5.18E-06 302417.8 0.0000 

AR(2) -0.56627 0.00014 -4046.01 0.0000 

MA(1) -0.80699 0.00886 -91.0841 0.0000 

MA(2) -0.00251 0.010187 -0.24531 0.8062 

Variance Equation 

C 3.608132 0.018889 191.0208 0.0000 

 

0.165781 0.010635 15.58752 0.0000 

Fitted Adequacy 

R-squared 0.866786 Log likelihood -18046.1 

Adjusted R-squared 0.866739 Durbin-Watson stat 2.173431 
 

Source : Own estimation using Eviews software. Here we selected the normal distribution for the 

conditional errors process. Before estimated variance equation, the estimate coefficient of the  was 

statistically significant. Note:  is for the  estimate coefficient 

 
 

this was well validated by the unit root tests where “trend” 

component is not significant for these time series (Table 2). 

 

6. ARCH models results  
 

6.1. Identification of the mean equation using 

ARIMA process 
 

 To highlight some of the difficulties of ARCH 

models given in this section. Starting from an initial 

ARMA representation (Tables 3-6), the study has 

gradually introduced into the more complex model with 

hypotheses taking into account the heteroskedasticity of 

the residues or their non-normality. Heteroscedasticity is 

taken into account by the introduction of an ARCH effect 

(Variance equation), while non-normality is incorporated 

using a thick-tailed distribution, the Student’s                           

t-distribution.  After identification of mean equations of 

the time series, study proceeded to test for the presence of 

ARCH effect by using the LM test, it is the test of 

significance of the coefficients of the regression 2
t  

on 

2
qt , which allows to determine the order  of the ARCH 

process knowing that an ARCH process of order 3 seems
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Fig. 3. Conditional variance plots of the four time series [Source : Plots using Eviews software (10 Version)] 

 
 

a maximum, beyond that, the model will be justifiable 

from a GARCH (Generalized ARCH) type process.  We 

cite also the test developed by Breusch and Pagan 

(1979)’s LM test (BP) and the White (1980)’s general test, 

the tests statistic are calculated under the null hypothesis 

(H0: No heteroscedasticity); furthermore, these tests are 

based on OLS residuals.  

 

For our study, because the p-value is <0.05, we reject 

the null hypothesis and conclude the presence of              

ARCH (1) effects. 

 

Through our selection of distributions, we observed 

that the coefficients in the equation of the mean have 

decreased slightly but remain very close to those in  

Tables (3-6). The estimates of ARCH (q) process with 

selected distributions are presented in Tables (3-6). In 

general, all estimates of parameters are significantly 

different from zero at five percent level of significance 

level in all models and their magnitudes are fairly close 

across different models. To compare the models, both log 

likelihood and Akaike Information Criterion (AIC) are 

presented. 

6.2. Validation of estimated models and forecasting 

results 

 

For the validation step, the following three aspects of 

the residuals from fitted GARCH model should be tested : 
 

 The standardized residuals from the GARCH models 

should approach normal distribution (if we assumed the 

conditional distribution of errors terms as normal 

distribution). For this point, this study used  Shapiro-Wilk 

(S-W) test and Jarque-Bera normality test. Histogram of 

the residuals and quantilequantile (Q-Q) plots were also 

used as visual tool to check normality. 

 

In the present case, the residuals didn’t follow a 

normal distribution because the p-values of Shapiro-Wilk 

(S-W) test and Jarque-Bera were close to zero: p – value  

= 0.000; both below the level of significance ; 

furthermore, it is observed here clearly that normality 

assumption was rejected based on the Q-Q plot (Fig. 5).  

 

A second step for validation of GARCH modeling            

is to check that the standardized squared residuals
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                                              Minimum Temperature                                                                   Maximum Temperature 

 
 
                                                  Morning Evaporation                                                                      Evening Evaporation 

 
 

Fig. 4.  ACF plots of estimated models (for detecting the remaining of auto-correlation in the Squared Standardized Residuals).                 
Source : Plotting from R program 

 

 
TABLE 4 

 

ARIMA (2, 1, 1) – GARCH (1, 2) models results with a t-student errors distribution for the evening evaporation time series 

 

Variable Coefficient Std. Error z-Statistic Prob. 

Mean Equation 

AR(1) 1.569021 0.033112 47.38499 0.0000 

AR(2) -0.570978 0.032911 -17.34918 0.0000 

MA(1) -0.941486 0.036274 -25.95465 0.0000 

MA(2) 0.107544 0.021307 5.047261 0.8062 

Variance Equation 

C 0.869745 0.16758 5.190032 0.0000 

 

0.358683 0.033595 10.67653 
 

 

-0.192248 0.03158 -6.087642 
 

GARCH(1) 0.864372 0.008788 98.35275 0.0000 

Fitted Adequacy 

R-squared 0.832814 Log likelihood -29944.53 

Adjusted R-squared 0.832755 Durbin-Watson stat 2.08021 
 

Source : Own estimation using Eviews software. Where, we selected the t-student distribution for the conditional errors 

process. Note:   and are for the ARCH(1) and ARCH(2) estimate coefficients 
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                     Minimum Temperature                                                             Maximum Temperatures 

 

                                                                                
 

                 Morning Evaporation                                                                  Evening Evaporation 

 

                                                                               
 

Fig. 5.  Q.Q plots of estimated models (for detecting the normality assumption of the conditional distributions). Source : Plotting 

from R program 

 
TABLE 5 

 

ARIMA (2, 0, 1) – ARCH (1) models results with generalized error distribution for the minimum temperature time series 
 

Variable Coefficient Std. Error z-Statistic Prob. 

Mean Equation 

AR(1) 1.485814 9.49E-07 1565856 0.0000 

AR(2) -0.48598 0.000194 -2504.083 0.0000 

MA(1) -0.784435 0.006614 -118.595 0.0000 

Variance Equation 

C 2.519735 0.016807 149.9252 0.0000 

 

0.20461 0.007925 25.81689 0.0000 

Fitted Adequacy 

R-squared 0.91713 Log likelihood -18046.1 

Adjusted R-squared 0.91711 Durbin-Watson stat 2.173431 
 

Source : Own estimation using Eviews software. Here we selected the generalized error  distribution distribution for the 

conditional errors process. Note:  is for the ARCH (1) estimate coefficient 

   
 

should not be auto-correlated. This study has used                   

a Box & Pierce (1970) and Ljung & Box (1978)               

statistics tests for this purpose. It can be observed                 

from the ACF of squared standardized residuals (Fig. 4), 

which are not auto-correlated, because all auto- 

correlation terms are inside the confidence intervals;                  

the same result was found for ACF of standardized 

residuals.  
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     Minimum Temperatures                                                            Maximum Temperatures 

 
 

Morning Evaporation                                                                  Evening Evaporation 

     
 
 

Fig. 6. Plots of forecasting results. Source: Plotted by using R program. In the X-axe the range (8300-8500) corresponds to the 

number of values from time series included in plot, here we include the past 200 observations.  The lines in bleu are the 

forecasting where the dashed in grey correspond to the prediction intervals , the dark gray one is for the 80% levels and 
the light gray is for the 95% 

 

 
 

TABLE 6 

 

ARIMA (1, 1, 1) – ARCH (1) models results with normal distribution for the morning evaporation time series 

 

Variable Coefficient Std. Error z-Statistic Prob (<) 

Mean Equation 

AR(1) 0.2727 0.0172 15.826 0.0001 

MA(1) -0.7481 0.0105 -71.126 0.0001 

Variance Equation 

C 54.18 0.7120 76.088 0.0001 

 

0.261 0.0118 22.057 0.0001 

Fitted Adequacy 

R-squared 0.194842 Log likelihood -29956.9 

Adjusted R-squared 0.194747 Durbin-Watson stat 2.002 
 

Source : Own estimation using Eviews software. Here we selected the normal distribution for the conditional errors process. 

Note:  is for the ARCH(1) estimate coefficient 
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TABLE 7 

 

Forecasting results of ARIMA-GARCH models for the five time series 

 

Period 
Minimum Temperature Morning Evaporation 

M.F. L.I. U.I. C.S.D. M.F. L.I. U.I. C.S.D. 

1 April, 2020 17.55 14.08 21.03 0.385 37.73 21.10 54.36 0.39 

2 April, 2020 17.48 13.28 21.67 0.391 38.05 19.28 56.82 0.39 

3 April, 2020 17.52 12.91 22.14 0.397 38.18 18.21 58.14 0.40 

4 April, 2020 17.59 12.64 22.53 0.403 38.23 17.36 59.14 0.40 

5 April, 2020 17.65 1243 22.88 0.409 38.24 16.59 59.90 0.41 

6 April, 2020 17.67 12.12 23.21 0.414 38.24 15.78 60.64 0.42 

7 April, 2020 17.68 11.8 23.53 0.419 38.25 15.17 61.34 0.42 

8 April, 2020 17.70 11.59 23.82 0.423 38.26 14.53 52.01 0.42 

9 April, 2020 17.73 11.37 24.09 0.427 38.26 13.85 52.67 0.43 

10 April, 2020 17.86 11.16 24.35 0.431 38.27 13.21 63.30 0.43 

                        Evening Evaporation Maximum Temperature 

1 April, 2020  17.09 -1.94 1.536 0.385 39.65 35.53 43.77 0.38 

2 April, 2020  17.71 -4.42 13..6.  0.391 38.94 34.04 43.89 0.39 

3 April, 2020  18.02 -5.42 555.. 0.397 38.54 33.10 43.97 0.40 

4 April, 2020  18.18 -6.15 53516 0.403 38.33 32.59 44.08 0.40 

5 April, 2020  18.26 -6.81 51553 0.409 38.19 32.18 44.20 0.41 

6 April, 2020  18.33 -7.44 51535 0.414 38.09 31.85 44.48 0.41 

7 April, 2020  18.34 -8.05 55543 0.419 37.99 31.54 44.59 0.42 

8 April, 2020  18.36 -8.67 5.554 0.423 37.80 31.25 44.63 0.42 

9 April, 2020  18.37 -9.29 56515 0.427 37.75 30.98 44.68 0.43 

10 April, 2020  18.36 -9.91 56533 0.431 37.72 30.14 44.72 0.43 
 

Source : Own estimation using R program.  

Note : M.F: it’s the mean forecast of the time series, i.e., the ARIMA models part. L.I and U.I : are-respectively the lower and upper Intervals 

of the mean forecast (for risque ). C.S.D: is the conditional standard deviation (which is the predictive volatility) generated by the 
GARCH models 

 

 

A third step for validating GARCH model is to run 

the ARCH-LM test on the residuals. This test can also be 

conducted to check for remaining ARCH effects in the 

residuals; for our estimating results, there is no ARCH 

effects (the p – value of L-M tests for the four models is 

upper than 0.7), so alternate hypothesis of presence of 

heteroscdacity is reject. Forecasting results are presented 

in Table 7, we noted here that ARIMA models are mainly 

efficient for the short term forecasting, so we are limited 

our forecasting for 10 days, however the shorter the term, 

the more accurate forecasts. 

 

7. Conclusions 

 

Time series models are crucial tool for future 

projection as well as policy implication. Present 

investigation has compared the forecasting performance    

of ARIMA, GARCH and ARCH models using weather 

data for Hoshangabad districts. These results shows                 

that predicted future value of the monitored variables and 

the estimated actual value of these variables using a fitting 

GARCH as proposed. The results revealed absence of 

trend in weather time series data along with volatility 

which is a significant finding. Considering the impetus of 

knowing about the behavior of weather in advance will 

provide right path for farmers in deciding right 

management about their strategies for improvement in 

production of crops and government about their 

interventions. This result also highlights the inherent 

volatility which is important for climate change studies. 

This result would enable the local research station to 

better capture the volatility in weather while predicting the 

weather situation. The enhanced accuracy from weather 

prediction would also help farmers in better decision 

making on farm.   
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