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THE IMPACT OF DATA UNCERTAINTY ON 

IDENTIFYING PRECIPITATION TRENDS IN 

INDIA 

 

1. The hydrological cycle is significantly affected 

by precipitation, which is a crucial component that 

displays spatial and temporal variations due to both 

climate change and human activities (IPCC, 2007). The 

analysis of precipitation's temporal and spatial variability 

is crucial for ecosystem functioning, agricultural 

productivity, and water resource management (Brunsell et 

al., 2010). The average temperature of the Earth has 

increased by 0.6 °C in the 20th century, according to the 

IPCC, 2007. Climate prediction models anticipate a 

significant temperature shift ranging from 1.4 to 5.4°C. 

Kumar & Jain, 2010 have stated that changes in rainfall 

distribution could affect the distribution of runoff, soil 

moisture, and groundwater reserves, while increasing the 

frequency of droughts and floods. Therefore, investigating 

the variations in rainfall patterns is crucial for water 

resource planning and management and designing 

appropriate strategies to deal with floods and droughts. 

 

In the last two decades, trend analysis has been 

widely used as a popular approach to examine hydro-

meteorological variables. Several techniques have been 

developed and applied to analyze trends in these variables, 

each with its own limitations and advantages. Two 

categories of trend analysis methods include parametric 

and non-parametric techniques. In recent years, non-

parametric methods have become more popular among 

researchers for trend analysis due to their insensitivity to 

outliers and applicability to non-normally distributed 

series with missing values (Ahmadi et al., 2018). The 

Mann-Kendall (MK) test is a well-known non-parametric 

method proposed by Mann, 1945 and Kendall, 1975, and 

it has been recommended by the World Meteorological 

Organization (WMO) for analyzing hydro-meteorological 

time series trends (Kumar et al., 2009). 

 

In India, the India Meteorological Department (IMD) 

uses a gridded rainfall product developed by Pai et al., 

2014 that relies on rain gauges to monitor precipitation 

levels. Rain gauges are commonly used to estimate area-

averaged precipitation over land surfaces by leveraging a 

network of uniformly distributed rain gauge stations. 

However, the optimal density and distribution of these 

stations have been the focus of research, as inadequate 

gauge density or poor station placement can lead to 

significant errors in estimating the areal rainfall of a 

region (Mishra et al., 2011). Moreover, studies have 

shown that the distance between rain gauge stations and 

the grid point can also affect the accuracy of rainfall 

estimates (Roy Bhowmik & Das, 2007). 

 

The APHRODITE (Asian Precipitation-Highly-

Resolved Observational Data Integration Toward 

Evaluation of Water Resources) project was launched with 

the objective of developing high-resolution, reliable and 

rain gauge-based precipitation products over the entire 

Asian region (Yatagai et al., 2005, 2009). These products 

were initially created to validate high-resolution climate 

model simulations and to make localized precipitation 

forecasts in response to future climate change caused by 

the anthropogenic greenhouse effect (Yatagai et al., 

2005). The APHRODITE dataset is particularly useful for 

addressing the challenges of bias correction and 

downscaling of coarse-resolution climate simulation 

outputs, particularly in mountainous areas, because it uses 

an interpolation method that accounts for orographic 

effects and incorporates substantial rain gauge data. As a 

result, the APHRODITE dataset has become a valuable 

resource for researchers and has been widely used in many 

studies for trend estimation, dry/wet spells, and extreme 

event prediction (Kim et al., 2019; Kishore et al., 2016; Li 

et al., 2018; Malik et al., 2016; Soraisam et al., 2018).  

 

The analysis of rainfall trends in the West Coast 

Plains of India was conducted by Saini et al., 2020, using 

the Rainfall gridded dataset developed by Pai et al., 2014. 

Various statistical techniques such as Modified Mann-

Kendall’s test, Innovative Trend Analysis (ITA), Linear 

Regression,  Weibull’s Recurrence Interval, Sen’s Slope 

test, Pearson’s Coefficient of Skewness, Consecutive 

Disparity Index, Kurtosis, etc were employed to examine 

the trends on monthly, seasonal, and decadal timescales. 

The results indicated significant decreasing rainfall trends 

in January and July months, whereas August and 

September months showed positive trends.  

 

Singh, 2021, utilized ITA to examine the trends in 

seasonal and annual rainfall. The study revealed 

increasing trends in most sub-divisions of peninsular and 

MAUSAM, 75, 3 (July 2024), 895-904 

 

 

 

 

 
 

Homepage: https://mausamjournal.imd.gov.in/index.php/MAUSAM 



 

 

                          MAUSAM, 75, 3 (July 2024) 

896 

northwest India. However, winter rainfall displayed 

decreasing trends in most sub-divisions of the country. Rai 

& Dimri, 2020, studied rainfall seasonality using an 

individual seasonality index and linear regression for the 

period 1971-2015. Their findings indicated declining 

trends in the seasonality index, suggesting shorter dry 

periods resulting in more consistent rainfall throughout the 

year in some parts of India during the recent period. 

Praveen et al., 2020, analyzed the long-term Spatio-

temporal changes in rainfall across India from 1901 to 

2015 at the meteorological divisional level. The results 

indicated that most of the meteorological divisions 

exhibited significant negative trends in annual and 

seasonal scales.  

 

These studies highlight the complex and varied 

changes in rainfall patterns across different regions of 

India. Although various investigations have conducted 

trend analyses, none of them have endeavoured to 

evaluate the impact of uncertainties, including rain gauge 

density and missing data, on trend analysis in India. 

APHRODITE products entail extensive rain gauge data 

and information on rain gauge density for each grid. 

Accordingly, the current study endeavours to examine the 

influence of uncertainty on trend estimation using this 

data. 

 

2. Study area and data used - India, situated 

between approximately 8° N and 37° N latitude, is 

characterized by diverse climatic conditions due to its 

geographical location. The southern part of the country 

has tropical weather, while the northern region is 

dominated by the Himalayan range. The India 

Meteorological Department (IMD) classifies a calendar 

year into four seasons: winter (January and February) 

characterized by low temperatures, low humidity, and 

clear skies; pre-monsoon (March to May) with high 

temperatures and hot, dry winds; monsoon (June to 

September) with heavy rainfall across the country; and 

post-monsoon (October to December), which serves as a 

transition period from the monsoon to winter. This 

seasonal classification system is useful in understanding 

the climatic patterns in India, which are critical for various 

sectors such as agriculture, water management and 

disaster management. 

 

The APHRODITE dataset provides daily 

precipitation data at a horizontal resolution of 0.25°, 

covering the Monsoon Asia region. The data is primarily 

sourced from a rain-gauge-observation network and is 

available for the period 1951 to 2015 (V1101: 1951- 2007, 

V1901: 2008-2015). The interpolation algorithm used to 

generate the dataset takes into account the local 

topography between the rain gauge and the interpolated 

point  and  the  “number  of  observations”  information  is  

 
 

Fig. 1. Average Annual Rainfall (1951-2015) 

 

 

 
 

Fig. 2. Average RSTN for the period (1951-2015) 

 

 

provided for each day on each grid. The count “ratio of 

station grids” (RSTN) is used to indicate the number of 

grids with at least one rain-gauge observation. The RSTN 

information is provided with the product on a daily basis 

and helps to determine whether each grid-box value is an 

interpolation or reflects an observed value within the grid 

box or nearby. When the 0.25 degree product is created, 

each grid box has 25 grids of 0.05 degree. For which, 

RSTN=4(%) means there is one grid with a station and 

RSTN=8(%) means there are two grids with a station.  

 

Fig. 1 shows the average annual accumulated rainfall 

over India for the period (1951-2015) and Fig. 2 shows the 

average RSTN values for each grid. To prepare Fig. 1, for 

each year and each grid, accumulated annual rainfall was 

calculated and then for each grid, the accumulated annual 

rainfall  was  averaged  temporally.  However,  for  Fig. 2, 
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Fig. 3. Flow chart of methodology adopted for each grid 

 

 

temporal average of RSTN values was taken for each grid. 

It can be seen that a large part of India is having average 

rainfall of less than 1000 mm whereas eastern regions 

received average rainfall of up to 1500 mm. There are 

some locations such as the western Ghats and East India, 

where the rainfall reaches up to 6000 mm in a year. 

 

Apart from the high rainfall variability and missing 

observations (RSTN), rain gauge observations also have 

measurement errors. The major source of error is the 

systematic measuring error which results from 

evaporation out of the gauge and aerodynamic effects 

when droplets are drifted by the wind across the gauge 

funnel. Since the data set does not specify the magnitude 

of measurement errors, a 2% error in daily precipitation 

measurement was assumed in the present study. 

 

3. Mathematical formulation and Methodology - 

In this study, the weighted linear regression (WLR) 

proposed by Soni et al., 2019, was used to enhance the 

accuracy of trend estimates for gridded rainfall products. 

The traditional approach of linear regression (LR)-based 

trend analysis assumes that every data point contributes 

equally precise information to the trend. However, for 

gridded rainfall products, the variability of information 

content changes each year due to missing values (rain 

gauge density, RSTN). As a result, this assumption made 

by LR does not hold for such products. Weighted linear 

regression addresses this issue by assigning weights to 

each data point. 

 

To use the WLR method, weights must be assigned 

to each data point. However, assigning weights to each 

data point can be challenging when dealing with data that 

have measurement errors, large variability, strong 

seasonality and missing values, whether at random or not 

(Taylor, 1997). To address this issue, this study assumes 

that daily (d) precipitation data in a given month (m) and 



 

 

                          MAUSAM, 75, 3 (July 2024) 

898 

year (y) are independent samples from a normal 

distribution with a mean, µy,m and standard deviation, σy,m, 

taking into account measurement errors that are also 

normally distributed with a known standard deviation, 

σy,m,d. This allows for appropriate weighting of data about 

measurement errors and missing values when estimating 

monthly and seasonal/annual rainfall anomalies. The 

process for determining these weighted anomalies and 

their standard errors is described in section 3.1, while 

section 3.2 outlines the WLR method for trend analysis 

using these weighted anomalies and their standard errors, 

as well as the LR method. The flow chart of the 

methodology adopted for each grid is shown in Fig. 3. 

 

3.1. Anomalies and their standard errors - To 

eliminate the impact of seasonality, anomalies were 

utilized instead of actual values in the trend analysis. 

 

3.1.1. Monthly scale - Monthly Mean - The initial 

stage involved the computation of monthly mean (µy,m) 

and standard deviation (σy,m) using daily rainfall values 

(xy,m,d) and their associated additive measurement errors. 

The measurement errors were assumed to conform to a 

normal distribution with zero mean and standard 

deviation, σy,m,d. As the daily observations were 

considered independent, the log-likelihood of the data (L) 

can be expressed using Equation 1, wherein the unknown 

parameters areµy,m and σy,m. 

 

 

 

( )
( )
( )

















+
=

+

−−

=


2

,,
2

,

2
,,,

days

2

2
,,

2
,1d

,,

1
log, dmymy

mydmyx

dmymy

N

mymy eL





     

(1) 

 

 

To maximize the log-likelihood function, Nelder-

Mead simplex direct search method was utilized to 

determine the optimal values for µy,m and σy,m. The 

summation was conducted over the number of daily 

measurements available in the month (Ndays), with any 

missing values excluded. The standard error of the 

monthly mean (εy,m) was derived using 
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Long-term monthly mean 

 

The process of calculating the long-term monthly 

mean ( )mμ and standard deviation ( )mσ for each month is 

analogous to that used for computing the monthly mean 

(µy,m) and standard deviation (εy,m). In this case, the log-

likelihood function was optimized using µy,m and εy,m and 

as inputs. 
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The calculation involves adding up all the years 

(Nyears) with available monthly means, in order to obtain 

the summation. Equation 5 was then used to determine the 

standard error of the long-term monthly mean ( )m . 
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Monthly anomalies 

 

The monthly anomalies ( )my,μ~ and their standard 

errors ( )my,
~ were estimated from y,mμ and y,m using 

 

mymy ,,my, μμμ~ −=                                                  (7) 
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respectively. 

 

3.1.2. Seasonal (or annual) scale–From my,μ~  and

my,
~ the seasonal (or annual) anomalies (µy) and their 

standard deviation (σy) were calculated for each year by 

maximizing log likelihood function given in 
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Here the summation is performed over all the months 

in the season (or year) for which monthly anomalies were 

present. The standard error (εy) of the seasonal (or annual) 

anomalies were calculated from  
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3.2. Trend analysis-The trends in Rainfall data were 

calculated by two different methods as described below. 

 

3.2.1. Linear regression (LR) - The initial approach 

involved calculating annual and seasonal rainfall 

anomalies without factoring in data uncertainty, leading to 

the creation of simple anomalies (SA). Linear regression 

(LR) was then applied to determine trends in the annual 

and seasonal SSR anomalies. 

 

3.2.2. Weighted linear regression (WLR) - The 

second approach involved using daily rainfall data to 

calculate the monthly means (µy,m) and their standard error 

(εy,m), while taking into account the variability of the data, 

measurement uncertainties (assumed 2%), and missing 

values. On all the grids, RSTN=0 is replaced with 

RSTN=1, to avoid the zero division errors. This was done 

using: 

 
 

Fig. 4. Trends in annual precipitation using LR method for the 

period 1951-2015. The stippling’s ‘.’ and ‘o’ in the figure 
represent significance of trends at 95% and 99% CL, 

respectively 
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The standard error of the monthly mean depended on 

the number of stations in the given month. The uncertainty 

due to missing values was also factored in, resulting in 

lower weights for the corresponding years in the WLR and 

propagating to the standard error of the annual and 

seasonal anomalies. The resulting anomalies were referred 

to as weighted anomalies (WA). 

 

The trends in the annual and seasonal anomalies 

were then identified using the WLR, where weights were 

inversely proportional to the square of the standard error 

in the anomalies (refer to Appendix A). The general 

equation for weighted regression is provided in µy = Aty + 

B. Equation 14, where µy represents the anomalies and    

ty  represents  the  year  for  the index y. The equations for  
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TABLE 1 

 

Trend statistics over the entire India estimated using LR method for the period 1951-2015 

 

Season 
Positive Trends Negative Trends 

Total 95% 99% NS Total 95% 99% NS 

Winter 1385 117 48 1268 3254 1218 743 2036 

Pre-monsoon 1813 436 239 1377 2826 1193 764 1633 

Monsoon 1666 586 437 1080 2973 1603 1306 1370 

Post monsoon 1217 105 61 1112 3422 1568 994 1854 

Annual 1489 467 346 1022 3150 1805 1527 1345 

 

 

calculating the slope (A) and the intercept (B), along with 

their uncertainties, are presented in Appendix A. 

 

µy = Aty + B                                                           (14) 

 

4. Results and discussion – 4.1. Trends of Rainfall 

over India using Linear Regression (1951-2015) - The 

spatial distribution of trends estimated using the LR 

method for the entire period of 1951-2015 is depicted in 

Fig. 4, where the stippling’s ‘.’ and ‘o’ indicate significant 

trends at 95% and 99% Confidence Level (CL), 

respectively. The analysis reveals that a large part of 

India, particularly over the western Ghats, experienced 

significant decreasing trends in precipitation, reaching up 

to -25 mm/year. However, some regions such as Jammu & 

Kashmir and parts of Northeast India, exhibited 

significant positive trends as well. 

 

Further insights into the trends are presented in  

Table 1, which outlines the statistics of the trends 

observed during various seasons. The analysis shows that 

out of the total 4642 grids, 1489 grids exhibited positive 

trends, while 3150 grids showed negative trends on an 

annual scale. Notably, approximately 31% of positive 

trends and 57% of negative trends were significant at 95% 

CL. During the winter and premonsoon seasons, the 

number of significant negative trends dropped to around 

37% and 42%, respectively. Similarly, the proportion of 

significant positive trends during these seasons was 

relatively low at approximately 8% and 24%, respectively.  

 

4.2. Recent trends of Rainfall over India using 

Weighted Linear Regression - The spatial distribution of 

trends estimated using the WLR method for the entire 

period 1951-2015 is illustrated in Fig. 5. In comparison to 

the trends estimated using the LR method, we observe 

significant positive trends in many parts of India, 

including Rajasthan, Gujarat, Jharkhand, Orissa, West 

Bengal, Tamil Nadu, and Andhra Pradesh. 

 
 

Fig. 5. Trends in annual precipitation using WLR method for the 

period 1951-2015.  The stippling’s  ‘.’ and ‘o’ in the figure 
represent significance of trends at 95% and 99% CL, 

respectively 

 

 

 
TABLE 2 

 

Trend statistics over the entire India estimated using WLR method 

for the period 1951-2015 

 

Season 
Positive Trends Negative Trends 

Total 95% 99% NS Total 95% 99% NS 

Winter 1727 148 51 1579 2912 664 238 2248 

Pre-monsoon 3186 700 337 2486 1453 147 65 1306 

Monsoon 2327 630 413 1697 2312 581 341 1731 

Post monsoon 1364 59 21 1305 3275 592 275 2683 

Annual 2274 673 399 1601 2365 613 353 1752 
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TABLE 3 

 

Effect of incorporating uncertainty in Trend analysis for the period 1951-2015 

 

LR         WLR 
Positive Negative 

TOTAL 95% 99% NS TOTAL 95% 99% NS 

Positive 

TOTAL 86.23% 36.20% 22.10% 50.03% 13.77% 0.54% 0.07% 13.23% 

95% 95.50% 68.74% 49.68% 26.77% 4.50% 0.43% 0.00% 4.07% 

99% 94.80% 71.39% 53.76% 23.41% 5.20% 0.29% 0.00% 4.91% 

NS 82.00% 21.33% 9.49% 60.67% 18.00% 0.59% 0.10% 17.42% 

Negative 

TOTAL 31.43% 4.25% 2.22% 0.00% 68.57% 19.21% 11.17% 0.00% 

95% 25.21% 2.99% 1.44% 22.22% 74.79% 28.48% 17.95% 46.32% 

99% 21.81% 2.42% 1.11% 19.38% 78.19% 30.71% 19.97% 47.48% 

NS 39.78% 5.95% 3.27% 33.83% 60.22% 6.77% 2.08% 53.46% 

 

 

5. Table 2 presents the statistics of these trends 

during different seasons. On an annual scale, 2274 grids 

exhibited positive trends, while 2365 grids showed 

negative trends. However, only about 25-30% of the grids 

showed significant trends at an annual timescale.  

 
5.1. Effect of adding uncertainty in Trend analysis -

To estimate the impact of data uncertainty on trend 

analysis, we conducted a grid-level analysis, which 

revealed interesting findings. As presented in Table 3, 

when using the WLR method instead of the LR method, 

about 86% of positive trends and 68% of negative trends 

remained unchanged. However, we observed that 23-26% 

of significant positive trends and 46% of significant 

negative trends were converted to non-significant trends. 

Additionally, approximately 0.5% of positive and 2-3% of 

negative significant trends reversed to significant negative 

and positive trends, respectively. We also noted that about 

4-6% of non-significant negative trends converted to 

significant positive trends and approximately 30% of 

significant negative trends changed their significance level 

from 99% to 95% CL. As per the Table 1, total number of 

grids with positive trends are lesser than the grids with 

negative trends in all the seasons. However, a reversal is 

seen in the Table 2 during pre-monsoon and monsoon 

season.  The major reason for the same is the higher 

rainfall mean and standard deviation during these two 

seasons compared to other seasons. In the WLR method, 

standard error and thus the weight for the regression is 

proportional to both RSTN and rainfall variability. Hence 

higher rainfall values as well as high variability during 

these seasons result in larger differences between trend 

estimated using LR and WLR methods. These results 

emphasize the importance of considering data uncertainty 

in trend analysis and highlight the need for more robust 

methods to account for such uncertainties. 

 

6. Summary and Conclusions - In this study, we 

investigated the impacts of uncertainties in gridded 

rainfall data arising from rain gauge density and seasonal 

variations. The daily precipitation data with a horizontal 

resolution of 0.25° were obtained from the APHRODITE 

(Asian Precipitation - Highly-Resolved Observational 

Data Integration Towards Evaluation) dataset developed 

by the Research Institute for Humanity and Nature 

(RIHN) and the Meteorological Research Institute of 

Japan Meteorological Agency (MRI/JMA). These datasets 

were primarily derived from the rain gauge observations 

network, such as IMD for India. Additionally, the datasets 

provide information on the number of observations for 

each day on each grid, represented as the "ratio of station 

grids (RSTN)." This approach enabled us to account for 

the effects of the spatial and temporal variability of rain 

gauge density, which are crucial for improving the 

accuracy of precipitation estimates. 

 

Through the application of simple linear regression, 

the study estimates the trends over the entire India, 

revealing that a considerable portion of the country has 

experienced decreasing trends in precipitation, reaching 

up to -25 mm/year, with only small patches of positive 

trends, particularly over the western Ghats. The analysis 

indicates that out of the total grids, 1489 (31% significant 

at 95% CL) exhibited positive trends on an annual scale, 

while 3150 (57% significant at 95% CL) showed negative 

trends. 
 

Interestingly, the comparison of the LR method with 

the WLR method reveals a significant difference in the 

trend estimates for certain regions. While the LR method 
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estimates negative trends over large parts of India, 

including Western (Rajasthan & Gujrat), Eastern (States 

of Jharkhand, Orissa & West-Bengal) and south India 

(States of Tamil Nadu and Andhra Pradesh), the WLR 

method gives significant positive trends. Specifically, a 

total of 2274 grids showed positive trends, whereas 2365 

were negative, with approximately 25-30% of the grids 

exhibiting significant trends at an annual timescale. 

 

In general, the application of the WLR method 

resulted in comparable positive and negative trends as the 

LR method, with approximately 86% positive and 68% 

negative trends remaining unchanged. However, a 

significant proportion of the trends changed when using 

the WLR method. Specifically, approximately 23-26% of 

significant positive trends and 46% of significant negative 

trends observed using the LR method were converted to 

non-significant trends with the WLR method. 

Additionally, around 0.5% of positive significant trends 

and 2-3% of negative significant trends were reversed, 

resulting in significant negative and positive trends, 

respectively. Notably, the WLR method also converted 

about 4-6% of non-significant negative trends to 

significant positive trends. These results underscore the 

importance of carefully selecting appropriate statistical 

methods for detecting precipitation trends to avoid 

erroneous conclusions. 

 

The conclusions of the study can be enumerated as: 

 

(i) The LR method revealed that at an annual scale, 

about 31% of grids (1489) showed significant positive 

trends at a 95% confidence level (CL), while 57% (3150) 

showed significant negative trends at a 95% CL. 

However, the WLR method showed that a total of 25-30% 

of grids had significant trends at an annual timescale, with 

2274 showing positive trends and 2365 showing negative 

trends. 

 

(ii) Precipitation trends over India ranged from about -25 

to +25 mm/year at an annual timescale. 

 

(iii) The WLR method preserved 86% of positive and 

68% of negative trends obtained by the LR method. 

 

(iv) The incorporation of uncertainty into the WLR 

method led to the conversion of 23-26% of significant 

positive trends and about 46% of significant negative 

trends obtained using the LR method into non-significant 

trends. 

 

(v) Some significant trends were reversed, with 0.5% of 

positive trends becoming significant negative trends and 

2-3% of negative trends becoming significant positive 

trends. Additionally, 4-6% of non-significant negative 

trends were converted into significant positive trends. 

 
This study emphasizes the significance of 

incorporating missing records and data variability over 

time for precise trend analysis. Neglecting these 

uncertainties in trend estimation could lead to erroneous 

trends, emphasizing the need to consider them in trend 

analysis. The disparate trends observed across the country 

underline the necessity of utilizing multiple methods to 

estimate precipitation trends to enhance comprehension of 

the spatial and temporal variations in India's precipitation 

patterns. Additionally, persistent monitoring and analysis 

of precipitation trends can assist in informed decision-

making for water resource management and adaptation 

strategies amidst the changing climate conditions. 
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APPENDIX A 

 

The seasonal (or annual) SSR anomalies (µy) and corresponding standard errors (εy) were employed in weighted linear 

regression (WLR) to find the trends. The equation of the trend line fitted by the WLR method is given by the Equation 13 

in which A and B represent the slope and the intercept, respectively. 

 

µy = Aty + B                  Equation 13 

 

A and B were found using Equation 14 and Equation 15. 
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In the equations above, ty  and µy represent year and seasonal (or annual) SSR anomaly, respectively, for they thdata point, 

and Nyears denotes the number of years for which data are available. The weights (wy) are inversely proportional to the 

square of the standard error (εy) of SSR anomaly µy. The  model error (σM) is given by Equation 17 and the uncertainties in 

slope ΔA and intercept (ΔB) are given by Equation 18 and Equation 19, respectively 
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where sTi' are given by, 
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