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सार – मौसम आकँड़� के समय श्रृ ंख ा � ं ेषण उनके प�र �तरतख पपै नर क  �खँा करने त ख, समय श्रृ ंख म  ं ल 

और द� र कखं के प�र तरन� के प  खरनलमखन ंनखने म  म�लत म�   प णर मखा यम �ो सकते ��। इस अा ययन म  फप र कनं 
एक क्त तकनीक� के मखा यम से 1901 से 2007 तक क  अ �ध के भखरत के मख�सक न य नतम और अ�धकतम तखपमखन 
के द� र मपमोर�   य �खर क  �खँा क  नई �प। प�रणखम दकखर ते ��  क समय श्रृ ंख को क  समखशयी फप र कनं� एक क्त 
म ा रन ए रे� (ए आर एफ आई एम ए) प रयख के अनलसखर ा कषेीक्त  कयख �ख सकतख �प। दोन� श्रृ ंखएर द� र मपमोर� 
क ैेकनप�र�ै सल�नि� ात करते �लए 0.5 से कम एक करण के अनलसखर एक क्त पखई नई। श्रृ ंख के ा �भन न पपमखन� पर 
त ख ा �भन न समय कखं �ध म  दोंन को देृने के �ंए �खर  े ंेै  फल ैर के सख  आ �्त डोमेन म   े ंेै पदध�त 
कख अनलपयोन  कयख नयख। ापछंे कल छ  ष� म  तखपमखन क  दोन� श्रृ ंखलर म  क  खनीय त ख  पि�  क प�र �तरतख को 
�खनने के �ंए म�ला भेदन ा � ं ेषण (एम आर ए)  कए नए। न य नतम तखपमखन म  प�र �तरतख अ�धकतम तखपमखन से 
अ�धक पखई नई। �खंखर क द� रअ �ध म  तखपमखन श्रृ ंखलर म  कोई क पष ै म�   प णर प ि्  त न��र �प त खाप तखपमखन के 
पपै नर म  प�र तरन के सर केत ��। ए आर एफ आई एम ए म डं क  प  खरनलमखन ामतख क  �खँा सखपेा मखा य �नरपेा 
प�तकत तल�ै के सरमरध म  क  नई।    

 
 

 ABSTRACT. Time series analysis of weather data can be a very valuable tool to investigate its variability pattern 
and, maybe, even to predict short- and long-term changes in the time series. In this study, the long memory behaviour of 
monthly minimum and maximum temperature of India for the period 1901 to 2007 by means of fractional integration 
techniques has been investigated. The results show that the time series can be specified in terms of autoregressive 
fractionally integrated moving average (ARFIMA) process. Both the series were found to be integrated with orders of 
integration smaller than 0.5 ensuring the long memory stationarity. Wavelet methodology in frequency domain with Haar 
wavelet filter was applied in order to see the oscillation at different scale and at different time epochs of the series. 
Multiresolution analysis (MRA) was carried out to explore the local as well as global variations in both the temperature 
series over the years. The variability in minimum temperature is found to be more than maximum temperature. Though 
there is no clear significance trend in the temperature series in the long run, but there are pockets of change in the 
temperature pattern. The predictive ability of ARFIMA model was investigated in terms of relative mean absolute 
percentage error.  
 

 
Key words – Long memory, Stationarity, Validation, Wavelet. 
 

 
1.  Introduction 
 
 Large number of research papers have been 
published on long memory and fractionally integrated 
processes since the initial publication of the work of 
Granger (1980); Granger and Joyeux (1980) and Hosking 
(1981) which parameterized the processes of Hurst (1951) 
on the time series with hyperbolically decaying 
autocorrelations. The long memory or long term 
dependence property describes the high-order correlation 
structure of a time series. If a series exhibits long memory, 
there is persistent temporal dependence even between 

distant observations. Such series are characterized by 
distinct but non-periodic cyclical patterns. The presence of 
long memory dynamics causes nonlinear dependence in 
the first moment of the distribution and hence a potentially 
predictable component in the series dynamics. 
Fractionally integrated processes can give rise to long 
memory (Beran, 1994).  
 
 A popular class of models for time series with long 
memory behaviour is the autoregressive fractionally 
integrated moving average (ARFIMA) model by Granger 
and Joyeux (1980). This kind of models extended classical 
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ARIMA models by assuming the differencing parameter d 
as a fractional value. It is well known that ARFIMA 
models are linear time series model. Fractional integration 
is part of the larger classification of time series, 
commonly referred to as ‘long memory’ models. The 
recent empirical evidence suggests that temperature series 
may be well described in terms of fractionally integrated 
processes (Gil-Alana, 2004). Fractionally integrated I(d) 
processes have attracted growing attention among 
empirical researchers. In fact this is because I(d) processes 
provide an extension to the classical dichotomy of I(0) and 
I(1) time series and equip us with more general 
alternatives in long range dependence (Shimotsu, 2010). 
Empirical research continues to find evidence that I(d) 
processes can provide a suitable description of certain 
long range characteristics.  
 
 Understanding the nature and scale of possible 
climate changes in India is of importance to the policy 
makers and farmers as it gives them a chance to be 
prepared for better mitigation and adaptation measures. 
For that purpose time series analysis of weather data can 
be a very valuable tool to investigate its variability pattern 
and, maybe, even to predict short- and long-term changes 
in the time series. Various researchers have carried out 
studies on temperatures. Woodcock (1984) described 
some experimental MOS forecasts of daily maximum and 
minimum temperature for seven Australian cities. Raj 
(1998) evolved a scheme for predicting minimum 
temperature at Pune by analogue and regression methods. 
Mohan et al. (1989) developed a method for forecasting 
maximum temperature over Ozar situated in Maharastra 
using maximum and dew point temperature of the 
previous day. In the present investigation monthly 
minimum temperatures in India, for the period 1901–2007 
were examined by means of fractional integration 
techniques. Dhimri et al. (2005) have carried out forecast 
of minimum temperature at Manali, India. Paul et al. 
(2014) have investigated the trend in mean surface 
temperature in different agro-climatic zones in India. Paul 
et al. (2015) have also investigated the structural break in 
mean surface temperature in different agro-climatic zones 
in India and reported that there is significant structural 
break during 1970’s. However, in none of the above 
studies, long memory nature in maximum and minimum 
surface temperature in India has been investigated. In the 
present investigation, an attempt has been made to apply 
long memory model for forecasting maximum and 
minimum surface temperature in India with more 
accuracy. To this end, nonparametric wavelet technique 
has also been applied to study the pattern of maximum 
and minimum surface temperature in India over the last 
century or so both globally as well as locally.                     
Some applications of this technique in modelling     
climate variables may be found in Paul et al. (2013),                         

Paul et al. (2011); Paul and Birthal (2015). The paper is 
organized as follows: section 2 describes the data set used 
in the present investigation; section 3 describes the long 
memory definition, ARFIMA model, testing stationarity 
and testing of presence of long memory followed by 
section 4 which deals with results and discussion. 
 
2.  Data 
 
 For the present investigation, all India monthly 
maximum and minimum temperature data during the 
period January, 1901 to December, 2007 is used. The data 
is collected form Indian Institute of Tropical Meteorology, 
Government of India. The data for the period January 
1901 to December, 2006 have been used for model 
building and the remaining data have been used for model 
validation purpose.  
 
3.  Methodology 
 
 3.1. Long memory process 
 
 Long memory in time-series can be defined as 
autocorrelation at long lags (Robinson, 1995). According 
to Jin and Frechette (2004), memory means that 
observations are not independent (each observation is 
affected by the events that preceded it). The 
autocorrelation function (acf) of a time-series yt is defined 
as :  
 
 ( ) ( )tttK yyy var/,cov 1−=ρ       (1)  
 
 for integer lag k. A covariance stationary time-series 
process is expected to have autocorrelations such that     

0
lim

=
∞→ kk
ρ . Most of the well-known class of stationary 

and invertible time-series processes have autocorrelations 
that decay at the relatively faster exponential rate,                    

so that k
k m≈ρ , where |m|<1 and this property is                   

true, for example, for the well-known stationary and 
invertible ARMA(p, q) process. For long memory 
processes, the autocorrelations decay at an hyperbolic rate 
which is consistent with 12C −≈ d

k kρ , as k increases 
without limit, where C is a constant and d is the long 
memory parameter. 
 
 3.2. ARFIMA Model 
 
 Fractional integration is the primary conceptual 
framework for describing long memory in financial time-
series. Fractional integration is a generalization of integer 
integration, under which time-series are usually presumed 
to be integrated of order zero or one. For example, an 
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autoregressive moving-average process integrated of order 
d [denoted by ARFIMA(p, d, q)] can be represented as : 
 
 ( ) ( ) ( ) tt

d uLyLL θϕ =−1                                 (2) 
 
 where, ut is an independently and identically 
distributed (i.i.d.) random variable with zero mean and 
constant variance, L denotes the lag operator; and ( )Lϕ   
and ( )Lθ  denote finite polynomials in the lag operator 
with roots outside the unit circle. For d = 0, the process is 
stationary, and the effect of a shock to u (t) on y (t + j) 
decays geometrically as j increases. For d = 1, the process 
is said to have a unit root, and the effect of a shock to u(t) 
on y (t + j) persists into the infinite future. In contrast, 
fractional integration defines the function (1 - L)-d for non-
integer values of the fractional differencing parameter d. It 
turns out that for -0.5< d< 0.5 the process y(t) is stationary 
and invertible. A detail description of ARFIMA model can 
be found in Robinson (2003). 
 
 3.3. Estimation procedures 
 
 We deal with some well known estimation methods 
of the long memory parameter d. The first one is the semi 
parametric method based on an approximated regression 
equation obtained from the logarithm of the spectral 
density function of a model. This method is proposed by 
Geweke and Porter-Hudak (1983). The second is the 
Gaussian semi parametric method developed by Robinson 
(1995).  
 
 3.4. Testing of Long Memory 
 
 H = 1 - d, a Hurst exponent produced by the rescaled 
range analysis, or R/S, analysis and applied to economic 
price analysis by Booth et al. (1982) and Helms et al. 
(1984). For a given time-series, the Hurst exponent 
measures the long-term non-periodic dependence, and 
indicates the average duration the dependence may last.  
 
 The time period spanned by the time series of length 
T is divided into m contiguous sub-periods of length n 
such that m*n = T. In each sub-period Xij, the elements 
have two subscripts. The first subscript (i = 1,…,n) 
denotes the number of elements in each sub-period and the 
second one (j = 1,…,m) denotes the sub-period index. For 
each sub-period j the R/S statistic is calculated as follows: 
 

( ) ( ) ( ) ( )∑∑
=

≤≤
=≤≤

− −−−=
k

i
jijnk

k

i
jij

nk
jj xxxxSSR

1
1

11

1 minmax/

    (3) 
 where, Sj is the standard deviation for each sub-
period. In (3), the k deviations from the sub-period mean 

have zero mean; therefore the last value of the cumulative 
deviations for each sub-period will always be zero. 
Because of this, the maximum value of the cumulative 
deviations will always be greater or equal to zero, while 
the minimum value will always be less or equal to zero. 
Rescaling the range is crucial since it allows diverse 
phenomena and time periods to be compared, which 
means that R/S analysis can describe time series with no 
characteristic scale. The (R/S)n is computed by the average 
of the (R/S)j values for all the m contiguous sub-periods 
with length n as  
 
 ( ) ( ) jn SRmSR // 1−=                 (4) 
 
 Eq. (4) computes the R/S value which corresponds to 
a certain time interval of length n. This is repeated by 
increasing n to the next integer value, until n = T/2, since 
at least two sub-periods are needed, to avoid bias. 
As n increases, the following holds: 
 
 ( )[ ] nHSR n loglog/log += α       (5) 
 
 When 0.5<H<1, the long memory structure exists. If 
H ≥ 1, the process has infinite variance and is 
nonstationary. If 0<H<0.5, anti-persistence structure 
exists. If H = 0.5, the process is white noise.  
 
 3.5. Geweke and Porter-Hudak (GPH) estimate 
 
 The GPH estimation procedure is a two-step 
procedure, which begins with the estimation of d. This 
method is based on least squares regression in the spectral 
domain, exploits the sample form of the pole of the 
spectral density at the origin: ( ) 0,~ 2 →− λλλ d

xf . To 
illustrate this method, we can write the spectral density 
function of a stationary model Xt , t = 1, . . . , T as: 
 

 ( ) ( )λλλ εff
d

x

−















=

2
sin4 2  

 
 where, ( )λεf  is the spectral density of tε  , assumed 
to be a finite and continuous function on the interval 
[ ]ππ ,− . Taking the logarithm of the spectral density 
function ( )λxf  the log-spectral density can be expressed 
as : 
 

( )[ ] ( )[ ] ( )
( )0

log
2

sin4log0loglog 2

ε

ε
ε

λλλ
f
fdffx +














−=  

 
 Let, ( )jxI λ  be the periodogram evaluated at the 

Fourier frequencies Tjj /2πλ = ; j = 1, 2, . . . , m; T is the  
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Fig. 1. All India minimum temperature in degree centigrade (dark 
line is seasonally adjusted series and light line is average 
monthly minimum temperature) 

 

 
 

Fig.  2. All India maximum temperature in degree centigrade (dark 
line is seasonally adjusted series and light line is average 
monthly minimum temperature) 

 
 
number of observations and m is the number of considered 
Fourier frequencies, that is the number of periodogram 
ordinates which will be used in the regression: 
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 where, ( )[ ]0log εf   is a constant, log [4sin2 (λ/2)] is 
the exogenous variable and log[Ix(λj)/fx(λj)] is a 
disturbance error. The GPH estimate requires two major 
assumptions related to asymptotic behaviour of the 
equation: 
 
 H1: for low frequencies, we suppose that 

( ) ( )[ ]0/log εε λ ff  is negligible. 
 
 H2: the random variables ( ) ( )[ ]jxjx fI λλ /log ;                    
j = 1, 2, . . ., m are asymptotically iid. 
 
 Under the hypotheses H1 and H2, we can write the 
linear regression 
 

 ( )[ ] j
j

jx edI +



















−=

2
sin4loglog 2 λ

αλ  

 where, ( )6/,~ 2πciide j − .  
 
 Let Yj = - log [4sin2(λj/2)]  the GPH estimator is the 
OLS estimate of the regression log ( )jxI λ  on the constant  
α and yj. The estimate of d is 
 

 

( ) ( )[ ]

( )∑

∑

=

=

−

−

= m

j
j

m

j
jxj

GPH

yy

Iyy

d

1

2

1

log
ˆ

λ

, where myy
m

j
j /

1
∑
=

=  

 
 The parameter m is selected so that m = Tu, with        
u = 0.5; 0.6; 0.7. Robinson (1995), Hurvich et al. (1998) 
and Tanaka (1999) have analyzed the GPH estimate in 
detail. Under the assumption of normality for Xt, it has 
been proved that the estimate is consistent and 
asymptotically normal. An alternative semiparametric 
estimator has been proposed by Robinson (1995). 
 
 3.6. Wavelets    
 
 Wavelets are fundamental building block functions, 
analogous to the trigonometric sine and cosine functions. 
As with a sine or cosine wave, a wavelet function 
oscillates about zero. This oscillating property makes the 
function a wave.  However, the oscillations for a wavelet 
damp down to zero, hence the name wavelet. If (.)ψ  is a 
real-valued function defined over the real axis ( )∞∞− ,  
and satisfies two basic properties: (i) Integral of (.)ψ  is 

zero, i.e., 0)( =∫
∞

∞−

duuψ  (ii) Square of (.)ψ  integrates to 

unity, i.e., 1)(2 =∫
∞

∞−

duuψ , then the function (.)ψ  is called 

a wave. A good description of wavelets can be found in 
Daubechies (1992); Ogden (1997) and Percival and 
Walden (2000). 
 
 3.7. Maximal Overlap Discrete Wavelet Transforms 

(MODWT) 
 
 The Maximal Overlap Discrete Wavelet Transforms 
(MODWT) is a linear filtering operation that transforms a 
series into coefficients related to variations over a set of 
scales. It is similar to DWT, in that, both are linear 
filtering operations producing a set of time-dependent 
wavelet and scaling coefficients. Both have basis vectors 
associated with a location t and a unit less scale 

 1 2 −= j
jτ for each  decomposition  level  j =1,.., J0. Both 
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TABLE 1 
 

 Descriptive Statistics of maximum and minimum temperature 
 

Descriptive statistics Maximum temperature Minimum temperature 

Mean 30.24 18.33 

Median 30.7 19.7 

Maximum 38.2 25.4 

Minimum 22.5 8.6 

Std. Deviation 3.81 5.15 

CV 12.60 28.10 

Skewness -0.12 -0.39 

Kurtosis 2.13 1.6 
 
 

TABLE 2 
 

Testing stationarity of seasonally adjusted temperature series 
 

Test 
Test Statistic 1% 

critical 
value 

5%   
critical 
value Max temp Min temp 

Augmented Dickey 
Fuller (ADF) 

-40.821 -12.174 -3.438 -2.864 

Philips and Peron 
(PP) 

-12.190 -27.966 -3.438 -2.864 

 
 
 
are suitable for the analysis of variance (ANOVA) and for 
multiresolution analysis (MRA). However, MODWT 
differs from DWT in the sense that it is a highly 
redundant, nonorthogonal transform (Percival and 
Walden, 2000). It retains downsampled values at each 
level of the decomposition that would otherwise be 
discarded by DWT. The MODWT is well defined for all 
sample sizes N, whereas for a complete decomposition of 
J levels, DWT requires N to be a multiple of 2J.  
 
 3.8. MODWT coefficients 
 
 For a redundant transform, like MODWT, an N 
sample input time-series will have an N sample resolution 
scale for each resolution level. Therefore, features of 
wavelet coefficients in a multiresolution analysis (MRA) 
will be lined up with original time-series in a meaningful 
way. For a time-series X with arbitrary sample size N, the 
jth level MODWT wavelet ( jW~ ) and scaling ( jV~ ) 
coefficients are defined as:  
 

    ∑
−

=
−≡

1

0
mod,,

~~ jL

l
Nltljtj XhW  and   

     ∑
−

=
−≡

1

0
mod,,

~~ jL

l
Nltljtj XgV                                           (6) 

 
 where, 2/

,, 2/~ j
ljlj hh ≡  are jth level MODWT 

wavelet filters, and 2/
,, 2/~ j
ljlj gg ≡  are jth level MODWT 

scaling filters, Lj is  width of jth level equivalent wavelet 
and scaling filters. For a time-series X with N samples, 
MODWT yields an additive decomposition or MRA given 
by: 
 

       ,SDX
0

0

J

J

1j
j

~~
+=∑

=

                                                   (7) 

 
 where, 
 

      ∑
−

=
+=

1

0
mod,,,

~  ~  ~ N

l
Nltjljtj WuD  and   

     

 ∑
−

=
+=

1

0
mod,,,

~  ~  ~ N

l
Nltjljtj VvS                                       (8) 

 
 lju ,

~  and ljv ,
~  being the filters obtained by 

periodizing ljh ,
~

 and ljg ,
~ . According to eq. (7), at a scale 

j, a set of coefficients [Dj] each with the same number of 
samples (N) as in the original signal (X) is obtained. These 
are called wavelet “details” and capture local fluctuations 
over whole period of a time-series at each scale. Set of 
values 

0JS  provide a “smooth” or overall “trend” of the 

original signal and adding Dj to 
0JS , for j = 1, 2,…, 0J , 

gives an increasingly more accurate approximation for it. 
This additive form of reconstruction allows prediction of 
each wavelet subseries (Dj, 0JS ) separately and adding 
individual predictions an aggregate forecast is generated.  
 
 3.9. Choosing number of levels 
 
 A time-series can be completely or partially 
decomposed into a number of levels. For complete 
decomposition of a series of length N = 2J using DWT, 
maximum number of levels in the decomposition is J. In 
practice, a partial decomposition of level 0J  ≤ J suffices 
for many applications. A 0J  level DWT decomposition 

requires that N be an integral multiple of 02J .  The 
MODWT can accommodate any sample size N and                
in  theory,  any 0J . In  practice, largest level is commonly 
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Fig. 3. Histogram of maximum temperature 
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Fig. 4. Histogram of minimum temperature 
 

 
 

Fig. 5. Autocorrelation function (ACF) of seasonally adjusted 
minimum temperature series up to 200 lags 

 
 

 
selected such that ( )N log J 20  ≤   in order to preclude 
decomposition at scales longer than total length of the 
time-series. In particular, for alignment of wavelet 
coefficients with the original series, condition  N  

0
<JL   

(i.e., width of equivalent filter at 0J th level is less than 
sample size) should be satisfied to prevent multiple 
wrappings  of  the  time-series at level J0. Selection  of 0J  

 
      

Fig. 6. Autocorrelation function (ACF) of seasonally adjusted 
maximum temperature series up to 200 lags 

 

 
 

Fig. 7. Observed (marker) vs predicted (line) of minimum temperature 
 

 
 

Fig. 8. Observed (marker) vs predicted (line) of maximum temperature 
 
 
 
determines the number of octave bands and thus number 
of scales of resolution in the decomposition.  
 
4.  Results and discussion 
 
 A perusal of the Figs. 1 and 2 indicate that both the 
series are stationary. In order to test for stationarity, two 
tests namely Augmented Dickey-Fuller unit root test (Said 
and Dickey, 1984) and Philips-Peron unit root test (Philips 
and Peron, 1988) are conducted. The descriptive statistics 
for monthly maximum and minimum temperature have  
been computed and are reported in Table 1. A perusal of 
Table 1 reveals, the variability in minimum temperature is 
more than maximum temperature. The same can also be 
observed from the histogram plotted in Figs. 3 and 4. The 
results of the stationarity tests are given in Table 2. A 
perusal of Table 2 reveals that both the test statistics reject 
the null hypothesis of presence of unit root indicating that 
series are stationary.   
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TABLE 3 
 

Parameter estimate of ARFIMA (0,d,0) 
 

Parameters 
Maximum temperature Minimum temperature 

Estimate Standard error P Value Estimate Standard error P Value 

const 30.025 0.137 <0.001 17.543 0.093 <0.001 

d 0.262 0.022 <0.001 0.217 0.021 <0.001 

Log likelihood 406.956 452.398 

Akaike Information 
Criteria (AIC) -807.912 -898.797 

Bayesian Information 
Criteria (BIC) 3038.09 2947.200 

 
 

TABLE 4 
 

Validation of models 
 

Temperature MAE RMSPE RMAPE (%) 

Maximum 0.46 0.54 1.51 

Minimum 0.44 0.56 2.72 

 
 
 
 4.1. Structure of autocorrelations 
 
 For a linear time series model, typically an 
autoregressive integrated moving average 
[ARIMA(p,d,q)] process, the patterns of autocorrelations 
and partial autocorrelations could indicate the plausible 
structure of the model. At the same time, this kind of 
information is also important for modelling nonlinear 
dynamics. The long lasting autocorrelations of the data 
suggest that the processes are nonlinear with time-varying 
variances. The basic property of a long memory process is 
that the dependence between the two distant observations 
is still visible. For the series of daily wholesale price, 
autocorrelations were estimated up to 100 lags,                        
i.e., j = 1,..., 100. The autocorrelation functions of these 
series are plotted in Figs. 5 and 6. A perusal of figures 
indicate that, these do not decay exponentially over time 
span, rather, there is hyperbolic decay of the 
autocorrelations functions towards zero and they show no 
clear periodic patterns. There is no evidence that the 
magnitude of autocorrelations become small as the time 
lag j, becomes larger. No seasonal and other periodic 
cycles were observed. 
 
 Accordingly, ARFIMA model was fitted to the 
above seasonally adjusted dataset. The best ARFIMA 
model has been selected on the basis of minimum Akaike 
Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) values. It is found the both the               
maximum as well as minimum temperature series follow 

ARFIMA (0, d, 0) process. The value of long memory 
parameter for maximum and minimum temperature are 
found to be 0.262 and 0.217 respectively. Both values are 
also significant at 1% level as reported in Table 3. 
 
 4.2. Diagnostic checking and validation 
 
 The model verification is concerned with checking 
the residuals of the model to see if they contained                   
any systematic pattern which still could be removed                  
to improve the chosen ARFIMA. For this                         
purpose, autocorrelations of the residuals were computed 
and it was found that none of these autocorrelations                    
was significantly different from zero at any reasonable 
level. This proved that the selected ARFIMA model                  
was an appropriate model for forecasting the data under 
study.  
 
 One-step ahead forecasts of temperature series using 
naïve approach for the period January, 2007 to December, 
2007 in respect of above fitted model are computed. For 
measuring the accuracy in fitted time series model, Root 
mean square prediction error (RMSPE), Mean absolute 
error (MAE) and Relative mean absolute prediction error 
(RMAPE) are computed by using the formulae given 
below and are reported in Table 4.  
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Fig. 9. MRA of Maximum temperature at level 7 D1, D2, D3, D4, 
D5, D6, D7 and S7 (From bottom to top) 
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 A perusal of above table indicates that for both the 
temperature series data, RMAPE is less than 5% 
indicating the performance of the model is satisfactory. 
The fitted vs observed maximum as well as minimum 
temperature series are plotted in Figs. 7 and 8 
respectively. Both the figures justify the accuracy of the 
model fitting. 
 
 4.3. Modelling of temperature series by Wavelet 

approach 
  
        For computation of MODWT of temperature               
series  by  Wavelet  approach,  methodology  discussed  in 

 
 

Fig. 10.  MRA of Minimum temperature at level 7 D1, D2, D3, D4, 
D5, D6, D7 and S7 (From bottom to top) 

 
 
 
methodology section is followed. Here, we take 0J  as 7. 
Haar wavelet is used for analysing the data on a scale by 
scale basis to reveal its localized nature as exhibited by 
MRA coefficients at level 7 in Figs. 9 and 10. A perusal 
indicates that localized variation in the data is detected at 
lower scale, whereas global variation is detected at higher 
scale. The wavelet coefficients are related to differences 
(of various order) of (weighted) average values of portions 
of Xt concentrated in time. Coefficients at the top (below) 
provide “high frequency” (“low frequency”) information. 
Wavelet coefficients do not remain constant over time and 
reflects changes in the data at various time-epochs. 
Locations of abrupt jumps can be spotted by looking for 
vertical (between levels) clustering of relatively large 
coefficients. 
 
5. Conclusions 
 
 Long memory time series have been analysed by 
using ARFIMA models. Model parameter d reflects the 
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long memory in the maximum and minimum temperature 
series. It is found that in the both the series long memory 
parameter is significant. The study has revealed that the 
ARFIMA model could be used successfully for modelling 
the temperature series. The predictive ability of ARFIMA 
model was investigated in terms of relative mean absolute 
percentage error. The model has demonstrated a good 
performance in terms of explained variability and 
predicting power. Multiresolution analysis (MRA) was 
carried out to explore the local as well as global variations 
in both the temperature series over the years. The 
variability in minimum temperature is found to be more 
than maximum temperature. The study reveals that there 
are pockets of change in the temperature pattern (both in 
maximum as well as in minimum temperature) which may 
be clearly visible by vertical clustering of coefficients in 
MRA.  
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