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 सार –  कृ�ष, जलवाय ु प�रवतर्  और बाू व सूखे जसैी पाकृकतक आपदाओ ं के �लए जल ससंाध् पबधं् के 
�व�भ् ् ्  �तेीय पयारवररीय मामल� के समाधा् के �लए वषार पटै्र जा््ा क�ठ् है। इ् पटै्र के अध ् यय् के �लए 
मुख ् य साध् सांख  ् कयक�य संगर्, मॉड�लगं और पवूार्ुमा्् आकँड़ ेह�। जल मौसम �व�ा् और पयारवररीय �ते� के 
�व�भ् ् ्  अ्पुयरग� म� समय शृखंला �वश ् लेषर तथा पवूार् मुा् का अध ् यय् पमुख साध् ब् गया है। समय शृखंला 
आकँड़� के �वश ् लेषर के �लए सबसे पभावी पदधकत बॉक्  स और जे्�क् ् स का ए आर आई एम ए (स ् वसमाशयी एक�कृत 
मू�वगं औसत) मॉडल है। इस अध ् यय् म� कुल 420 �बदंओु ंके 1980-2014 क� अव�ध के �डबगूू से �लए गए मा�सक 
वषार आकँड़� के �लए ए आर आई एम ए मॉडल ब्ा्े के �लए बॉक्  स-जे्�ेक् ् स पदधकत का उपयरग कर्े का पयास 
�कया गया। हम्े जाँच क� और पाया �क ए आर आई एम ए (0,0,0) (0,1,1)12 मॉडल �दए गए डाटा सेट के �लए 
अ्कूुल है। इस पकार आ्े वाले वष� के �लए मा�सक वषार के पटै्र का पवूार् मुा् कर्े के �लए इस मॉडल का उपयरग 
�कया जा सकता है िजससे क्ररयकतारओ ंकर कृ�ष, बाढ, जल माँग पबधं् आ�द कर पाथ�मकता दे्े म� मदद �मलेगी।  

 
 
ABSTRACT. Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of 

water resources management, with implications for agriculture, climate change, and natural calamity such as floods and 
droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study 
of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental 
fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated 
Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins 
methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a 
total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. 
As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the 
decision makers to establish priorities in terms of agricultural, flood, water demand management etc. 

 
Key words –  Seasonal Autoregressive Integrated Moving Average (SARIMA), Additive decomposition,                

Q-Q plot, Normwn.test.  
 
 
1.  Introduction 
 
 The hydrological cycle, regulated mainly by rainfall, 
is the most important subsystem of the Earth’s climate 
system for life on the planet. Rainfall affects the 
environment and society in various ways ranging from 
water availability for livelihood and agriculture to the 
functioning of various industries, hydroelectric power 
generation etc and thus affect the economy of a country 
like India. Rainfall is an important parameter affected by 
global climate change. The global climate changes may 
influence long-term rainfall patterns impacting the 
availability of fresh water along with the danger of 

increasing occurrences of droughts and floods. For 
example, Gu et al. (2007) have reported increasing levels 
of rainfall in the tropics associated with climate change 
(specially the global warming).  
 
 The annual migration of the Intertropical 
Convergence Zone (ITCZ) is the key component affecting 
the rainfall and thus climate in the Indian Ocean and the 
surrounding areas. The ITCZ migrates northward across 
the Indian Ocean in March-May and reaches its 
northernmost position during boreal June-September. 
During June to September, a strong low-level monsoonal 
air flow is generated by a strong pressure gradient between 
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the low-pressure cell over the Tibetan Plateau and a high-
pressure cell over the Southern Indian Ocean. North of the 
equator, flow of a strong southwesterly air, Somali or 
Findlater Jet [Findlater (1969)] transports large amount of 
moisture and is released as monsoon precipitation over 
some parts of Southern Arabia and the Indian 
subcontinent. The release of latent heat through 
condensation of moisture is an additional and important 
forcing of the Indian Summer Monsoon as it further 
strengthens and maintains the surface low pressure over 
the Asian landmass [Webster et al. (1998)]. During 
October-November, the ITCZ retreats southward and 
reaches its southernmost position at approximately 25º S 
in January. The reversed pressure gradient during the 
winter months generates the moderate and dry north-east 
monsoon [Fleitmanna et al. (2007)]. 

 
 The North-Eastern part of India with 66% forest 
cover is one of the hotspot region of rainfall in the globe, 
which makes it an important site from a meteorological 
perspective. Precipitation over this region increases 
sharply at the monsoon onset in May, and lasts until 
September. The increased rainfall over this region due 
mainly to orographic uplift of moisture laden air from the 
Bay of Bengal. The rainfall in the North-East India exhibit 
a peculiar pattern due to its inhomogeneous terrain and 
topography. As such the monsoon rainfall over this region 
possesses a weak out of phase relationship with that over 
homogeneous region of the central and western India on 
inter-annual time scales [Goswami et al. (2010)] and 
references therein). They have also reported increase in 
extreme events of heavy rainfall over the region during 
last three decades. Knowar et al. (2012), have  found an 
East-West asymmetry (centred at 85º E) of Indian 
Summer Monsoon Rainfall over south Asia, western 
region showing increasing trend in monsoon rainfall while 
eastern region including the north-East India has shown a 
decreasing trend. Such a decreasing rainfall will result in 
decreasing water availability thereby affecting mainly the 
agriculture crucially. Again North-Eastern state Assam is 
prone to heavy flood during monsoon season of every 
year, which affects the life and property of population as 
well as the economy of the state drastically. As monsoon 
rain significantly determines the intensity and amplitude 
of flood in this region, so it is probable that reasonably 
appropriate rainfall prediction can help out the society and 
the state from heavy lost of wealth and economy every 
year.  
 

Several investigators have used the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
model for statistical analysis and prediction of various 
species. For example Dan et al. (2014); Shumway and 
Stoffer (2006); Ediger and Akbar (2007); Kaushik and 
Singh (2008); Momani (2009); Abdul-Aziz et al. (2013); 

MuttalebAlhashimi (2014) etc. have used this technique. 
Roy and Das (2012) used the SARIMA model for 
statistical analysis of temperature in Dibrugarh district. 
However, there is a lapse of time series analysis and 
forecasting of meteorological data in Dibrugarh district. 
Keeping this point in mind, in this paper, we have 
examined the monthly rainfall (in mm) pattern of 
Dibrugarh, a location in the North-East India (section 2) 
for the period 1980 - 2014. An attempt to forecast the 
rainfall for successive year has also been made using the 
SARIMA statistical model (section 3). 
  
2.   The study location and prevailing meteorology 
 
 The present study location (Dibrugarh; 27.4° N,  
94.9° E, 111 m amsl), situated on the southern bank of 
river Brahmaputra in eastern Assam, close to the North-
Eastern boundary of the Indian subcontinent. The 
Dibrugarh district extends from 27° 5' 38'' N to 27° 42' 30'' 
N latitude and 94° 33' 46'' E to 95° 29' 8'' E longitude. It is 
bounded by Dhemaji district on the North, Tinsukia 
district on the East, Tirap district of Arunachal district               
on the South-East and Sibsagar district on the North  and 
South-West. The area stretches from the North Bank of 
the mighty Brahmaputra, which flows a length of 95 km 
through the northern margin of the district, to the Patkai 
foothills on the South. The Burhi Dihing, a major tributary 
of the Brahmaputra with its network of tributaries and 
wetlands flows through the district from east to west.  
 
 The Himalayan foothills in the north, which are 
nearly 100 km away from the site and the other hills and 
mountain ranges in the east and south prevent the rain 
bearing monsoon winds from escaping this region on one 
hand, while they do not allow the dry and cold winds of 
central Asia to enter the northeast region.  The Dibrugarh 
town experiences mild climate with low temperature and 
high rainfall. On the basis of the climatic characteristics 
such as distribution of temperature, rainfall, rainy days, 
humidity, presence of fogs and thunderstorms, the climate 
of the area may be classified into four seasons: (a) Winter 
(b) Pre-monsoon (c) Monsoon and (d) Retreating 
monsoon. 
 
(a)  Winter (December-February) : The winter covers the 
months of December, January and February. In this 
season, fair weather prevails occasionally associated with 
fogs and haze. December and January are the driest 
months and January is the coldest. The minimum 
temperature ranges between 8 °C and 10 °C and the 
maximum between 27 °C and 29 °C. The average rainfall 
in the season is 20 cm. 
 
(b)  Pre-Monsoon (March-May) : The months of March, 
April and May constitute the pre-monsoon season. From 
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March the land surface gets steadily heated and the 
temperature starts rising. Strong convection develops due 
to the local depressions formed especially in the 
afternoon. The nor'westers locally called Bordoichilla 
appears during the period. Rainfall ranges between 59 and 
160 cm and maximum temperature ranges between             
28 °C and 32 °C. This season is, in fact, a transitional    
phase between the dry cool winter and the warm moist 
monsoon. 
 
(c) Monsoon (June-September) : With the onset of 
monsoon in early June, heavy rainfall occurs. Widespread 
low clouds and high humidity together maintain almost 
uniform temperature over the area. The maximum 
temperature ranges between 33 °C and 37 °C. The average 
annual rainfall during the period is 300 cm. The 
occurrence of thunderstorms is the most conspicuous 
characteristics of the monsoon weather. This is the season 
of dominant agricultural operation in the area. 
 
(d) Retreating Monsoon (October-November) :  The 
monsoon withdraws from the area in the last week of 
September or first week of October. The cool north-
easterly winds originating over the lofty mountains of the 
Arunachal Himalayas brings the temperature down. The 
orographic low is replaced by high pressure and a flat 
pressure gradient occurs. Rainfall decreases abruptly and 
the sky becomes progressively clear. Sunny days prevail 
till the end of November. 
 
3.  Data and methodology 
  
 The data used in this paper are completely secondary 
in nature and collected from two weather stations, one is 
Mohanbari under India Meteorological Department and 
another is Dibrugarh University under Indian Space 
Research Organisation. The two stations are within a 
circle of ~5 km radius from the Dibrugarh town. We, 
therefore, can assume that the two stations measure same 
precipitation and hence we can pool the data of two 
stations. In this study, approximately 3% of observations 
are found to be missing. When a series does not have too 
many missing observations, it may be possible to perform 
some missing data analysis, estimation, and replacement. 
A crude missing data interpolation method is used in this 
study. We have taken the mean for the overall series in the 
place of missing data. 
 
 The methodology and the theorems propounded by 
Box and Jenkins (1970) called the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
has been used. This is an advance technique of forecasting 
requires long seasonal time series data. This model 
decomposes historical data into an Autoregressive (AR) 
process, where there is a memory of past values, an 

Integrated (I) process, which accounts for stabilizing or 
making the data stationary plus a Moving-Average (MA) 
process, which accounts for previous error terms making it 
easier to forecast. The steps involving in Box and Jenkins 
(1970) methodology are given below: 
 
Phase 1 
 
(a)   Data Preparation : Transform data to stabilize 
variance and difference data to obtain stationary series. 
 
(b)  Model Selection : Examine autocorrelation function 
(ACF) and partial autocorrelation function (PACF) to 
identify potential models. 
 
Phase 2 
 
(a)    Estimation : Estimate parameters in potential 
models. Select the best model using suitable criterion. 
 
(b)  Diagnostic : Check ACF and PACF of residuals. 
Examine residuals follow white noise or not. If it does not 
follow white noise, select another model by model 
selection criterion. 
 
Phase 3 

 
(a)  If residuals follow white noise, use the model for 
forecasting.  
 

3.1  Multiplicative seasonal autoregressive 
integrated moving average  

 
 The multiplicative seasonal autoregressive integrated 
moving average (SARIMA) model, of Box and Jenkins 
(1970) is given by 
 

S D d S
p S t Q tΦ (B ) (B) X μ Θ (B ) (B)e∇ ∇ = +φ θ                    (1) 

 
where et is the usual white noise process. The 

general model is denoted by ARIMA (p, d, q) (P, D, Q)S. 
The ordinary autoregressive and moving average 
components are represented by the following polynomials 
φ(B) and θ(B) of orders p and q, respectively,  

 
p

p BBB φφφφ −−−= ....-1(B) 2
21                  (2) 

 
q

q
2

21 B....BB1(B) θθθθ ++++=                          (3) 
 
 and the seasonal autoregressive and moving average 
components are represented by the following 
polynomials )(P

SBΦ and )(BS
QΘ  of order P and Q 

respectively, 
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S S 2S PS
P 1 2 PΦ (B ) 1 Φ B Φ B ... Φ B= − − − −                             (4) 

 
 S S 2S QS

Q 1 2 Q(B ) 1 B B ... BΘ = +Θ +Θ + +Θ                            (5) 
 

Seasonal difference components are represented by: 
 

d d D S D
S(1 B) and (1 B )∇ = − ∇ = −  

 
3.2  Estimation of multiplicative seasonal  

ARIMA(p, d, q)(P, D, Q)S
  

  
 There are several methods such as method of 
moments, maximum likelihood, and least squares that can 
be employed to estimate the parameters in the tentatively 
identified model. Box and Jenkins (1970) favour estimates 
chosen according to the maximum likelihood (ML) 
criterion.  In ML method, we maximize likelihood 
function or equivalently log likelihood function with 
respect to parameters to be estimated. Statisticians 
frequently prefer the ML approach in estimation problems 
because the resulting estimates often have attractive 
statistical properties like unbiasedness and efficiency. 
However, finding ML estimates of SARIMA model is 
cumbersome due to presence of non linear equations            
and so it, requires software. In this study, we have             
tried to estimate the parameters by ML method using R 
software. 
 

 Let wt be the transformed series of d d
s tx∇ ∇   form 

an ARIMA(p,q) × (P,Q) process and {et} has 0 mean and 
variance 2σ . The joint density is given by Box and 
Jenkins (1970) : 
 

1/ 22 n / 2 2
n nf (w / , , , , ) (2 ) M exp( S / 2 )−φ θ Φ Θ σ = πσ − σ (6) 

 
where,  

S = S( , , , , ) [ { ; , , , , }]
n

t
t

E e wφ θ σ φ θ σ
=∞

Φ Θ = Φ Θ∑  is 

the unconditional expectation of et given φ, θ, Φ, Θ, σ  
and w. Also Θ)Φ,,(MσMσ 1212 θ,nn φ−− = is the n × n 
covariance matrix of the difference series. 
 
 The log likelihood is given by : 
 

2 2
nL Const (1 / 2)n 1nσ (1/ 2)1n M (S / 2σ )= − + −               (7) 

 
Following Box and Jenkins (1970), we will assume              

that for moderate and large values of n, the                    
term (1/2) ln nM  in Eq. (7) is dominated by                     

(S/2σ2). Discarding this term, we approximate Eq. (7),  by 

 
Fig. 1. Decomposition of time series by additive method during                 

1980-2014 
 

 
Fig. 2.  ACF and PACF of the original data 

 
 

2 2L Const (1 / 2)n1nσ (S / 2σ )= − −                                  (8) 
 

The quantities )Θ̂andΦ̂,ˆ,ˆ( θφ  which maximize 
Eq.(7) are called maximum likelihood estimator. After 
obtaining Θ̂andΦ̂,ˆ,ˆ θφ , the estimate 2σ̂  of σ2 is given 
by Ansley et al. (1977): 

 
n/Sσ̂2 =                                                              (9) 

 
4.   Results and discussion 
 

The long term rainfall records consisting of monthly 
total rainfall data for 35 years, starting on January 1980 to 
December, 2014 has been used in this study. We                
have plotted year in X-axis and observed rainfall data in     
Y-axis in Fig. 1. But it seems difficult to determine                    
the trend of the data set whether it is upward, downward 
or no trend. Therefore, to examine the trend, we 
decompose the data by additive decomposition method            
by  the  statistical software R as depicted in Fig. 1. Thus, a  
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Fig. 3. ACF and PACF of the difference data 

 
 
 

slight downward trend of rainfall pattern from 1980 to 
2014 could be obtained. From Fig. 1, it is also observed 
that the presence of strong seasonal cycle in the rainfall 
data set.  
 
 Fig. 2 consists of plots of ACF and PACF taking 48 
lag values in X-axis and autocorrelation values in Y-axis 
for the monthly rainfall series. Here a slowly declining 
sinusoidal wave followed by ACF and strong significant 
peaks at seasonal lag values 6, 12, 24, 48 with alternating 
sign have been observed. This alternating sign                   
signifies that if negative correlation occurs at lag                    
value 6 then next positive significant value occurs at lag 
12 and so on. Note that autocorrelation at lag 0 is             
always 1 by definition. This indicates strong seasonality 
and non-stationarity of the data set. According to                   
B-J methodology we must ensure that the time series 
being analyzed is stationary before we fit SARIMA 
model. In order to obtain a stationary series, we decide to 
first take 12-month differences of data to remove the 
seasonal influence. We plot the ACF and PACF for the 
differenced series by using the transformation t t t 1 2X X X −′ = −  
(Fig. 3). 
 

In Fig. 3, it is observed that the ACF has a                
single negative spike at the seasonal lag 12 and the              
PACF exponentially decrease at the seasonal level.                 
In both ACF and PACF, no other significant 
autocorrelation at non seasonal lag values are                  
observed. So, we might tentatively conclude that                           
the time series values are described by seasonal                  
moving average model of order Q = 1, i.e., (0, 0, 0)              
(0, 1, 1)12. 
 
 For the ARIMA (0, 0, 0) (0, 1, 1)12 model obtained 
above,  we  estimate  the parameters by using the theory as 

 
Fig. 4.  Diagonistic checking of residuals 

 
 
 
mentioned in section 3.2. The maximum likelihood 
estimate of Θ obtained from R software is as follows:   
 

Θ̂ = – 0.8580 (s.e. = 0.0336) 
and then estimated model from Eq. (1) is given by  

 
12 12

t t(1 B )x {1 ( 0.8580)B }e− = + − , which can be 
written as 
 

t t 12 t t 12x x e 0.8580e− −= + +                  (10) 
 
The coefficient is significant. The constant term of 

the model is omitted due to seasonal difference. 
 
 If the model fits well, the standardized residuals 
estimated from this model should behave as an                       
i.i.d. (independent and identically distributed) sequence 
with mean zero and variance σ2. Such a sequence is 
referred to as white noise. Fig. 4 displays a plot                        
of the standardized residuals, the ACF of the residuals  
and the p-values of the Q-statistic at lag 1 through 12. 
From standardized plot of  residuals, it is observed                   
that little amount of residuals outside the limit of                        
-3 and +3 which is accounted as outliers for the                 
model. Also, this figure shows, none of the 
autocorrelations is individually statistically significant and 
nor the Ljung - Box - Pierce Q-statistics are statistically 
significant. We cannot reject the null hypothesis of 
independence in this residual series. Using the white  
noise  test (from the normwn.test package in R : Perform a  
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Fig. 5. Normal Q-Q plot of residuals 

 
 

 
Fig. 6. Plot of predicted values with original series (1980-2014) 
           Red lines: observed data, Black points: predicted values 

 
 

 
univariate test for white noise), we obtain the p-value of 
0.5711 which means the residuals series is white noise 
(with mean 0 and variance σ2). In addition to this, a 
normal probability plot or a Q-Q plot can help in 
identifying departures from normality (Fig. 5). As we can 

see from Fig. 5, the residuals are departed from normal 
distribution, although we cannot reject the model. 
Because, we checked normality of residuals for all 
possible values of p, d, q, P, D, Q and found that residuals 
do  not follow normal distribution. Among them, residuals 
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Fig. 7.  Predicted rainfall values of 2015 with actual observations 

 
 
for the above mentioned model give better result. Hence, 
we need not look for another ARIMA model. 
 

Now, the actual observations are plotted with 
predicted values from 1980-2014 in Fig. 6 where red line 
represents actual rainfall values whereas black point 
represents predicted. Similarly, we plot predicted values 
of complete 2015 in Fig. 7 with actual observations of 
2015. From Fig. 7, it is observed that the amount of 
predicted rainfall of 2015 is less than the actual values in 
most of the cases (months). However, the predicted 
rainfall shows same picture as in the case of actual rainfall 
data.   
 
5.  Conclusion 
 
 In this paper, the monthly rainfall record in the 
Dibrugarh region has been studied using the Box-Jenkins 
(SARIMA) methodology. The estimation and diagnostic  
analysis results revealed that the models’ are adequately 
fitted to the historical data. The residual analysis, 
confirmed that there is no violation of assumptions in 
relation to model adequacy except normality of residuals 
is not full filled. The reason may be due to the presence of 
missing values in the original data set which are 
interpolated by software. Our selected ARIMA (0, 0, 0) 
(0, 1, 1)12 model give us one year predicted monthly 
rainfall that can help decision makers to establish 
strategies for Dibrugarh, Assam, India. The forecasted 
rainfall data revealed a decline rainfall during upcoming 
year 2015 from the previous years. This may be consistent 
with the decadal declining rainfall trend as discussed in 
the introduction section. It may be noted that  this model 
predicts the pattern but sometimes there is  difference 
between the actual and predicted values. As such the 
predicted rainfall pattern may add to the existing 
knowledge of weather forecasting in North-East India, 

particularly in Assam where flood is a major challenge  
for the society every year. Weather forecaster in this 
region may be benefited with the presented statistical 
model. 
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