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सार — 1 नवबंर, 1977 से 30 अ�लै, 2022 के बीच �हसार �जले के िलए एक� �कए गए दैिनक जलवायु 
डेटा का �व�ेषण �कया गया है और इस अधययन म� �स्ु्  �कया गया है। डेटा सेट को दो भाग� म� �वभा�ज् 
�कया गया था: �िशकण और पर�कण डेटा। यह अधययन अिधक्म ्ापमान, नययन्म ्ापमान, सापेक आ�र्ा 
(एम), सापेक आ�र्ा (ई), ्ेज धयप के घटें और वषार के िलए �फट �कए गए एआरआईएमए, राजय सथान और 
मौसमी होलट-�वटंसर मॉडल के प�रणाम �स्ु्  कर्ा है। मॉडल नवबंर 1977 से अ�लै 2013 ्क के डेटा पर 
�िश�क् �कए गए थे। शीषर चयिन् एआरआईएमए मॉडल को मयलयांकन मानदंड� के आधार पर चनुा गया था, जसेै 
�क अकाइक सयचना मानदंड, मयल माधय वगर ��ुट, माधय िनरपेक ��ुट, माधय िनरपेक �ि्श् ��ुट, इन-स�पल 
एमएसई और महतवपयणर गुणांक� क� अिधक्म सखंया। सटेट सपेस मॉडल का चयन अकाइक सयचना मानदंड 
(AIC), बायेिसयन सयचना मानदंड (BIC), रट मीन स्वयैडर एरर (RMSE), मीन एबसोलययट एरर (MAE), 

इन-स�पल मीन स्वयैडर एरर (MSE) और मीन एबसोलययट पस�टेज एरर (MAPE) के नययन्म मान� के आधार पर 
�कया गया था। मौसमी होलट-�वटंसर मॉडल को ए�ड�टव सपेिस�फकेशन और 365 क� अविध के साथ �फट �कया गया 
था। व�ै�क चना उतपादन �विभनन ज�ैवक और अज�ैवक ्नाव� पर अतयिधक िनभरर है। महतवपयणर ज�ैवक ्नाव� म� 
से एक, फययजे�रयम �वलट, चने क� उतपादक्ा को काफ� हद ्क सीिम् कर दे्ा है, �जससे कई देश� म� 10 से 
40% ्क का आिथरक नकुसान हो्ा है और ्ापमान और आ�र्ा अनकुय ल होने पर यह 100% ्क बढ़ जा्ा है। 
मौसम का पयवारनमुान पौध� क� बीमार� के �बधंन म� महतवपयणर है ्य��क यह मौसम क� �सथि् रोगजनक �वकास 
और �सार को कैसे �भा�व् कर्ी है, इसका �व�ेषण करके रोग के �कोप क� भ�वषयवाणी करने म� मदद कर्ा 
है, �जससे �कसान� को समय पर िनवारक उपाय करने म� मदद िमल्ी है। 
 

ABSTRACT. The daily climate data collected for Hisar district between November 1, 1977 and April 30, 2022, 
has been analyzed and presented in this study. The data set was divided into two parts: training and testing data. This 
study presents the results of ARIMA, state space, and seasonal Holt-Winters models fitted for maximum temperature, 
minimum temperature, relative humidity (M), relative humidity (E), bright sunshine hours, and rainfall. The models were 
trained on data spanning from November 1977 to April 2013. The top selected ARIMA models were chosen based on 
evaluation criteria, such as the Akaike information criterion, root mean squared error, mean absolute error, mean absolute 
percentage error, in-sample MSE, and the maximum number of significant coefficients. The state space models were 
selected based on minimum values of the Akaike information criterion (AIC), Bayesian information criterion (BIC), Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), in-sample Mean Squared Error (MSE), and Mean Absolute 
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PercentageError (MAPE). The seasonal Holt-Winters models were fitted with additive specifications and a period of 365. 
Global chickpea production is highly dependent on various biotic and abiotic stresses. One of the critical biotic 
stresses, Fusarium wilt, significantly limits chickpea productivity causing economic losses ranging from 10 to 40% in 
many countries and escalates to 100% when temperature and humidity are favourable. Weather forecasting is crucial in 
plant disease management as it helps to predict disease outbreaks by analyzing how weather conditions influence 
pathogen development and spread, allowing farmers to take timely preventative measures. 
 

Key words – ARIMA, State space, Seasonal Holt-Winters, Time series data, Forecasting, Climate patterns. 
 

 
1. Introduction 
 

Weather forecasts is an application of Science and 
Technology to predict the state of atmosphere based on 
the data collected on temperature and precipitation. The 
attributes of weather make it inevitably difficult to predict 
weather phenomena with accuracy. It is crucial not only 
for disaster management, but also for other industries, like 
agriculture, etc. The search for an accurate forecasting 
tool thus takes on methodological significance. The 
availability and extraction of data, along with 
technological advancements, have revolutionized and 
changed meteorological forecasting. Sophisticated 
numerical models, machine learning algorithms, and 
artificial intelligence (AI) techniques have supplemented 
and, in some cases, supplanted traditional forecasting 
methods, which were based on empirical observations and 
statistical analysis (Carbonell et al., 2013). The goal of 
this study is to evaluate the applicability of different 
modelling approaches for meteorological forecasting. 

 
Chickpea (Cicer arietinum) is an important Rabi 

pulse crop grown worldwide and plays a vital role for its 
nutritional value in the diets of millions of people, 
especially in developing countries, providing an essential 
source of protein, calcium, iron, phosphorus, and other 
minerals (Merga, B. & Haji, J. 2019) Approximately 12 
million tonnes of chickpea are produced annually, with 
India contributing approximately 64%, followed by 
Australia holding 7% of the global share (ABARES 2021) 
The environmental factors, viz., atmospheric temperature, 
relative humidity, soil temperature, soil moisture and 
rainfall plays a vital role in prevalence of Fusarium wilt in 
chickpea (Merkuz and Getachew, 2012). Wilt disease 
sometimes escalates to 100% when the relative humidity 
is greater than 60% and the temperature ranges between 
10 and 25 °C (Pande et al., 2013). 
 

 Monitoring the weather parameters before cropping 
season or during the intercrop period helps in determining 
the efficiency of over wintering propagules in initiating 
the epidemics. For most plant diseases such as Fusarium 
wilt, the initial inoculum determines the severity and rate 
of epidemics which is governed by those overwintering 
propagules. Epidemiology deals with the population of 
pathogen on host under the influence of environment in a 
particular time, it is therefore essential to study the effects 
of all environmental factors, which involved in buildup of 
epidemic. For this purpose it is important to collect 

detailed information regarding the host, pathogen and 
environmental factors which may lead to development of 
epidemics. Understanding the epidemiology of chickpea 
wilt disease will enable us to precisely forecast its 
development, which will ultimately help the farmers to 
take up plant protection measures more accurately. 

 
Hisar district, located in the state of Haryana, India, 

is an important agricultural region known for its 
production of crops such as wheat, cotton, chickpeaand 
mustard. The district's economy is heavily dependent on 
agriculture, which is highly sensitive to climate variability 
and weather conditions. Accurate weather forecasting is 
crucial for farmers in Hisar district to make informed 
decisions regarding crop management, irrigation 
scheduling, and pest control. Moreover, the district has 
experienced significant climate change in recent years, 
with increasing temperatures and changing precipitation 
patterns (Mishra et al., 2014a, 2014b). These changes 
have posed challenges to agricultural productivity and 
highlighted the need for reliable weather forecasting tools. 
By focusing on Hisar district, this study aims to provide 
insights into the effectiveness of different modeling 
approaches in capturing the unique climate characteristics 
of the region and supporting agricultural decision-
makingespecially w.r.t. chickpea wilt. 

 
The use of time series analysis as a method for 

researching data trends is growing in popularity. Then, to 
get there, we employ machine learning and error-free deep 
learning. Even when the weather is only slightly off, 
farmers never the less suffer a great deal from the 
weather's unpredictable character. Time series modelling 
is widely used to increase the veracity of weather 
forecasts. Sunlight, humidity, and temperature are all 
crucial for the growth and development of plants. The dew 
point temperature and relative humidity can be used to 
determine the amount of moisture in the air (Shrestha, 
2019). In addition, plants require other conditions, like the 
proper temperature and adequate sunlight. According to 
Easterling et al. (2000), preliminary findings from this 
study indicate that there may be a narrower maximum-
minimum temperature difference, which could have 
detrimental effects on agriculture. Between 1950 and 
2008, there were significant regional variations in 
temperature and humidity, among other climatic 
parameters (Mishra et al., 2014a, 2014b). Mishra et al. 
(2014b) state that throughout the previous few decades, 
precipitation has declined, temperatures have climbed 
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over most of India, and as a result, so have the frequency 
of droughts and soil moisture for agricultural 
development. Utilizing state-of-the-art technology and 
analytical techniques, meteorologists and climate 
scientists work to produce forecasts that address long-term 
climate patterns in addition to short-term changes. A 
number of modelling techniques, from the conventional to 
the cutting edge, have been developed in this pursuit.  

 
Despite the advancements in weather forecasting 

techniques, there remains a gap in the literature regarding 
the comprehensive evaluation and comparison of different 
modeling approaches for meteorological forecasting in 
specific regions. While numerous studies have applied 
various forecasting methods to weather data, few have 
conducted a thorough assessment of multiple techniques 
using a wide range of evaluation criteria and focusing on a 
particular district. Moreover, the majority of existing 
studies have focused on short-term forecasting, leaving 
room for exploration of long-term forecasting 
performance (Mishra et al., 2020; Mohammed et al., 
2021; Yonar et al., 2022). 

 
This study aims to address this gap by conducting a 

comprehensive evaluation of three prominent modeling 
techniques - ARIMA, state space, and seasonal Holt-
Winters models - for meteorological forecasting in Hisar 
district for chickpea wilt disease. By utilizing a long-term 
daily climate dataset spanning over 30 years and 
employing a rigorous evaluation framework, this study 
provides a detailed comparison of the models' 
performance in capturing the unique climate 
characteristics of the region. The study also explores the 
strengths and weaknesses of each modeling approach and 
their suitability for different meteorological variables. By 
addressing this gap, the study contributes to the existing 
body of knowledge on weather forecasting and offers 
valuable insights for researchers, meteorologists and 
decision-makers in Hisar district and similar agricultural 
regions. 

 
In this study, we investigate these modelling 

approaches in detail with the aim of addressing the 
following important questions: 

 
(i) Which modelling approaches perform better in 
forecasting of the weather? 
 
(ii) How well do various modelling approaches meet the 
requirements as evaluated based on various criteria, 
including AIC, BIC, RMSE, MAE, MAPE and in-sample 
MSE for weather forecasting? 
 
(iii) What is the strength and weakness of the models 
selected in the study? 

(iv) Do the selected models react to the nature of the 
data? 
 
(v) Is there any model that fits all? 

 
Three different modelling approaches were used in 

this extensive study, which covered 44 years from 
November 1977 to April 2022, to forecast meteorological 
variables such as maximum temperature, minimum 
temperature, relative humidity (M), relative humidity (E), 
bright sun shine hours, and rainfall. The modelling 
approaches used were ARIMA, state space, and seasonal 
Holt-Winters models. A comprehensive analysis utilising 
a number of metrics, including AIC, BIC, RMSE, MAE, 
MAPE, and in-sample MSE, was conducted to evaluate 
these models. This study highlights the value of carefully 
weighing different modelling strategies and assessing each 
one's effectiveness to highlight the role that model 
selection plays in meteorological forecasting. The 
dynamic nature of weather events makes it difficult to 
predict weather patterns with any degree of accuracy. 
Precise weather forecasting has implications for disaster 
management, agriculture and other businesses, in addition 
to every day preparation. Thus, the search for robust 
forecasting methods is important from a methodological 
perspective. The study is divided into different sections: 
data and methodology of the study, the findings and 
discussion and followed by conclusions. 
 
2. Methodology 

 
Location of the study : Haryana state is located in 

NW India, contributed tremendously to the success of the 
Green Revolution in India. The data pertains tothe 
Agrometeorology observatory in Chaudhary Charan Singh 
Haryana Agricultural University Hisar located in Haryana 
State. The district Hisar lies at the 29° 5'5"N latitude and 
75° 45'55"E longitudes. The climate of Haryana is 
strongly influenced by north-westerly cold and south-
westerly monsoon winds. 
 

ARIMA Model : Autoregressive Integrated Moving 
Average (ARIMA) models are a class of statistical models 
used for analyzing and forecasting time series data. 
ARIMA models are composed of three key components: 
autoregressive (AR), differencing (I) and moving average 
(MA) (Box et al., 2015). 

 
The AR component represents the relationship 

between an observation and a certain number of lagged 
observations. It captures the idea that the current value of 
a time series can be predicted based on its past values. The 
AR (p) model is defined as: 

 
y_t = φ_1 y_{t – 1} + φ_2 y_{t – 2} + … + φ_py_ 

{t – p} + ε_t 
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where y_t is the value of the time series at time t, 
φ_1, φ_2, … , φ_p are the autoregressive coefficients and 
ε_t is the error term. 

 
The I component refers to the degree of differencing 

required to make the time series stationary. Differencing 
involves computing the differences between consecutive 
observations to remove the trend and stabilize the mean of 
the time series. The first-order differencing is defined as: 

 
y't = y_t – y {t – 1} 
 
where y'_t is the differenced series. 
 
The MA component represents the relationship 

between an observation and a residual error from a 
moving average model applied to lagged observations. 
The MA (q) model is defined as: 

 
y_t = ε_t + θ_1 ε_{t – 1} + θ_2 ε_{t – 2}+ … + 

θ_qε_{t – q} 
 
where θ_1, θ_2, … , θ_qare the moving average 

coefficients. 
 
ARIMA models combine these three components to 

capture the complex patterns in the data. The ARIMA 
(p,d,q) model is defined as: 

 
(1 – φ_1B – φ_2 B^2 - … -φ_pB^p) (1 – B)^dy_t= (1 
+ θ_1 B + θ_2 B^2 + … + θ_qB^q) ε_t 
 
Where B is the backshift operator and 𝑑𝑑 is the degree 

of differencing. 
 
The selection of the appropriate ARIMA model 

involves identifying the values of p, d and q that best fit 
the data. This is typically done through the examination of 
the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots, as well as the use 
of information criteria such as the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion 
(BIC) (Mishra et al., 2020; Mohammed et al., 2021). 

 
State Space Models (SSMs) : State space models 

(SSMs) are a flexible class of models that represent a time 
series as a system of equations consisting of an 
observation equation and a state equation (Durbin & 
Koopman, 2012). The observation equation describes the 
relationship between the observed data and the 
unobserved state variables, while the state equation 
describes the evolution of the state variables over time. 

 
The general form of a state space model is given by: 
 
Observation equation : y_t = Z_tα + ε_t 

State equation: α_{t + 1} = T_tα_t + R_tη_t 
 
Where y_t is the observed time series, α_t is the state 

vector, Z_t is the observation matrix, T_t is the transition 
matrix, R_t is the selection matrix, ε_t is the observation 
error and η_t is the state error. The errors ε_t and η_t are 
assumed to be independent and normally distributed with 
mean zero and covariance matrices H_t and Q_t, 
respectively. 

 
State space models can accommodate a wide range 

of specifications, including trend, seasonal and irregular 
components. The most common types of state space 
models are the local level model, the local linear trend 
model and the basic structural model (BSM) (Yadav            
et al., 2022). 

 
The local level model is the simplest form of a state 

space model, where the observation equation is given by: 
 
y_t = µ_t + ε_t 
and the state equation is given by: 
 
µ_{t + 1} = µ_t + η_t 
 
where µ_t is the level component, representing the 

underlying mean of the time series. 
 
The local linear trend model extends the local level 

model by incorporating a slope component to capture the 
trend in the data. The observation equation remains the 
same, while the state equation becomes: 

 
µ_{t + 1} = µ_t + v_t + η_t 
 
v_{t + 1} = v_t + ξ_t 
 
where v_t is the slope component, representing the 

rate of change in the level. 
 
The basic structural model (BSM) further extends 

the local linear trend model by including a seasonal 
component. The observation equation is given by: 

 
y_t = µ_t + γ_t + ε_t 
 
and the state equations are given by: 
 
µ_{t + 1} = µ_t + v_t + η_t 
 
v_{t + 1} = v_t + ξ_t 
 
γ_{t + 1} = –γ_t – γ_{t – 1} – … –γ_{t–s+2} + ω_t 
 
where γ_t is the seasonal component with a period of 

s and ω_t is the seasonal error term. 
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State space models are typically estimated using the 
Kalman filter, which recursively updates the estimates of 
the state variables as new observations become available 
(Durbin & Koopman, 2012). The Kalman filter also 
provides a way to compute the likelihood function, which 
can be used for parameter estimation and model selection. 
 

Seasonal Holt-Winters models : Seasonal Holt-
Winters models, also known as triple exponential 
smoothing, are an extension of the classical Holt-Winters 
exponential smoothing method that incorporates 
seasonality (Hyndman et al., 2008). These models are 
particularly useful for forecasting time series with 
recurring seasonal patterns. 

 
The seasonal Holt-Winters model consists of three 

smoothing equations : the level equation, the trend 
equation, and the seasonal equation. The model can be 
formulated in two ways: additive and multiplicative, 
depending on whether the seasonal component is added or 
multiplied to the level and trend components. 

 
The additive seasonal Holt-Winters model is given 

by: 
 
Level : ℓ_t = α[y_t – s_{t – m}] + (1 – α) [ℓ_{t 

– 1} + b_{t – 1}] 
 
Trend : b_t = β[ℓ_ t– ℓ_{t – 1}] + (1 – β) b_         

{t – 1} 
 
Seasonal : s_t = γ(y_t– ℓ_t) + (1 – γ) s_{t – m} 
 
Forecast : ŷ_{t + h|t} = ℓ _t+ hb_t + s_{t – m + 

h_m^+} 
 
where ℓ_t is the level component, b_t is the trend 

component, s_t is the seasonal component with a period of 
m, α, β and γ are the smoothing parameters for the level, 
trend and seasonal components, respectively and h_m^ + 
= [(h – 1) modm] + 1. 

 
The multiplicative seasonal Holt-Winters model is 

given by: 
 
Level : ℓ_t = α[y_t/ s_{t – m}] + (1 – α) [ℓ_{t 

– 1} + b_{t – 1}] 
 
Trend : b_t = β[ℓ_ t – ℓ_{t – 1}] + (1 – β) b_         

{t – 1} 
 
Seasonal : s_t = γ(y_t / ℓ_t) + (1 – γ) s_{t – m} 
 
Forecast : ŷ_{t + h|t} = (ℓ_ t + hb_t) s_{t – m            

+ h_m^+} 
 

The selection of the appropriate seasonal Holt-
Winters model (additive or multiplicative) depends on the 
characteristics of the time series and therelationship 
between the seasonal variation and the level of the series. 
The smoothing parameters (α, β and γ) can be estimated 
by minimizing the sum of squared errors or using 
maximum likelihood estimation (Hyndman et al., 2008). 

  
Daily climate data collected for Hisar district 

between November 1, 1977 and April 30, 2022 & 
chickpea wilt disease incidence (during cropping season) 
was used in this study. The dataset was divided into two 
parts: training data and testing data. A chronological split 
was employed to ensure that the models were trained on 
historical data and tested on future data, mimicking a real-
world forecasting scenario (Mishra et al., 2020; Yadav           
et al., 2022). 

 
The data from November 1, 1977 to April 30, 2013 

(80% or 6,524 observations) were used as the training 
dataset, while the data from May 1, 2013 to April 30, 
2022 (20% or 1,631 observations) were used as the testing 
dataset. This chronological split allows for the assessment 
of the models' performance in forecasting future values 
based on historical patterns and trends (Mishra et al., 
2020; Yadav et al., 2022). 

 
The models were fitted to the training data, and their 

performance was evaluated using various metrics such as 
AIC, BIC, RMSE, MAE, MAPE and in-sample MSE. 

 
The use of a chronological split, as opposed to a 

random split, is particularly important in time series 
forecasting because it preserves the temporal structure of 
the data (Box et al., 2015; Hyndman & Athanasopoulos, 
2018). Random splitting may lead to the inclusion of 
future observations in the training set, which can result in 
overly optimistic performance estimates and may not 
reflect the true forecasting ability of the models 
(Hyndman & Athanasopoulos, 2018). 

 
By using a chronological split, the study ensures that 

the models are evaluated on their ability to forecast future 
values based solely on past observations, providing a more 
realistic assessment of their performance (Mishra et al., 
2020; Yadav et al., 2022). This approach is consistent 
with the common practice in time series forecasting and 
allows for a fair comparison of the different modeling 
techniques (ARIMA, state space, and seasonal Holt-
Winters) used in the study (Box et al., 2015; Durbin & 
Koopman, 2012; Hyndman et al., 2008). 

 
For the ARIMA models, the appropriate orders of p, 

d, and q were determined using the ACF and PACF plots, 
as well as the AIC and BIC values. The selected models 
were then used to forecast the testing data, and their 
performance was compared using the evaluation metrics. 



 
 
                          MAUSAM, 76, 2 (April 2025) 

356 

The state space models were specified based on the 
characteristics of the time series and the presence of trend 
and seasonal components. The local level, local linear 
trend, and basic structural models were fitted to the data, 
and their parameters were estimated using the Kalman 
filter. The best-performing models were selected based on 
the evaluation metrics. 

 
The seasonal Holt-Winters models were applied with 

both additive and multiplicative specifications and the 
smoothing parameters were estimated by minimizing the 
sum of squared errors. The performance of the models 
was assessed using the evaluation metrics, and the best-
performing specification was selected for each 
meteorological variable. 

 
The choice of ARIMA, state space, and seasonal 

Holt-Winters models for this study was based on several 
factors. First, these techniques have been widely used in 
the field of time series forecasting and have proven to be 
effective in capturing various patterns and characteristics 
of time series data (Box et al., 2015; Durbin & Koopman, 
2012; Hyndman et al., 2008). Second, these methods are 
capable of handling different types of time series, 
including those with trend, seasonality, and irregular 
components, which are common in meteorological data 
(Mishra et al., 2020; Yadav et al., 2022). 

 
ARIMA models were selected for their ability to 

capture the autocorrelation structure of the time series and 
their flexibility in modeling both stationary and non-
stationary data (Box et al., 2015). These models have been 
successfully applied in various fields, including 
meteorology, hydrology, and environmental sciences 
(Mishra et al. 2024; Yadav et al., 2024; Ray et al. 2023a; 
Ray et al. 2023b; Mishra et al. 2023a; Mishra et al. 
2023b; Mishra et al. 2023c; Mishra et al., 2020; 
Mohammed et al., 2021; Yonar et al., 2022; Raghav             
et al., 2022). 

 
State space models were chosen for their ability to 

provide a flexible and unified framework for modeling 
time series data (Durbin & Koopman, 2012). These 
models can accommodate a wide range of specifications, 
including trend, seasonal, and irregular components, and 
can be easily extended to incorporate exogenous variables 
or interventions (Yadav et al., 2022). Moreover, state 
space models have been shown to outperform other 
methods in terms of forecasting accuracy and 
computational efficiency (Yadav et al., 2022). 

 
Seasonal Holt-Winters models were selected for their 

ability to capture the seasonal patterns in the time series 
data (Hyndman et al., 2008). These models are 
particularly useful for forecasting time series with 
recurring seasonal patterns, such as those observed in 
meteorological variables (Mishra et al., 2021). The 

seasonal Holt-Winters models have been successfully 
applied in various domains, including energy, tourism, 
and retail (Hyndman et al., 2008). 

 
Other techniques, such as artificial neural networks 

(ANNs) and deep learning methods, were not considered 
in this study due to their higher complexity and 
computational requirements. 

 
While advanced machine learning techniques, such 

as deep learning and ensemble methods, have 
demonstrated promising results in handling complex 
systems (Al khatib et al., 2023) and capturing intricate, 
unseen non-linear patterns (Al khatib, 2023), they often 
necessitate substantial amounts of data and extensive 
hyperparameter tuning to achieve optimal performance. 
Conversely, the selected time series forecasting 
techniques, namely ARIMA, state space, and seasonal 
Holt-Winters models, offer a more straightforward 
implementation and interpretation process. These models 
have been proven to deliver accurate forecasts with a 
lower computational burden (Box et al., 2015; Durbin & 
Koopman, 2012; Hyndman et al., 2008), making them an 
attractive choice for many forecasting applications. The 
relative simplicity and effectiveness of these techniques 
make them valuable tools for practitioners and researchers 
seeking reliable and efficient forecasting solutions. 

 
From November 1, 1977 to April 30, 2022, the MAX 

Temperature in Hisar district has increased during the 
period from (8 °C) to (45.6 °C). Average MAX 
Temperature in Hisar district was (26.19 °C). Kurtosis 
value was (-0.26) and the value of skewness was (0.37) 
which is close to 0.5 indicating the distributions is 
mesokurtic. The minimum Temperature in Hisar district 
has increased during the period from (-3.5 °C) to (30.5 
°C). Average minimum Temperature in Hisar district was 
(9.53 °C). Kurtosis value was (-0.30) and the value of 
skewness was (0.45) which is close to 0.5 indicating the 
distributions is mesokurtic. The Relative Humidity (M) in 
Hisar district has increased during the period from (11%) 
to (100%). Average Relative Humidity (M) in Hisar 
district was (85.47%). Kurtosis value was (2.47) 
indicating that the distribution is flat and has thin tails 
(Platykurtic distributions) and the value of skewness was 
(-1.58), the negative skew refers to a longer or fatter tail 
on the left side of the distribution. The Relative Humidity 
(E) in Hisar district has increased during the period from 
(4%) to (100%). Average Relative Humidity (E) in Hisar 
district was (41.47%). Kurtosis value was (0.37) 
indicating the distributions is mesokurtic. The value of 
skewness was (0.83), indicating there is an opportunity of 
rising in Relative Humidity (E) in Hisar district. The 
Bright Sun Shine Hours in Hisar district has increased 
during the period from (0 h) to (74.80 h). Average Bright 
Sun Shine Hours in Hisar district was (7.23 h). Kurtosis
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TABLE 1 
 

Descriptive statistics for MAX Temperature, MIN Temperature, Relative Humidity (M), Relative Humidity (E),  
Bright Sun Shine Hours and Rainfall between November 1, 1977 and April 30, 2022 with No.of Susceptible wilt 

 

 MAX 
Temperature 

MIN 
Temperature 

Relative Humidity 
(M) 

Relative Humidity 
(E) 

Bright Sun Shine 
Hours Rainfall No. of susceptible 

Chickpea genotype 
Length 8155 8155 8155 8155 8155 8155 42 
Mean 26.19 9.53 85.47 41.47 7.23 0.36 1448.95 
STD 6.58 5.45 13.70 18.23 2.93 2.38 933.35 
Mini 8 -3.5 11 4 0 0 86 
max 45.6 30.50 100 100 74.80 58.20 3436 

kurtosis -0.26 -0.30 2.44 0.37 34.75 164.17 -0.93 
skew 0.37 0.45 -1.58 0.83 0.53 11.14 0.37 

Median 25.4 9 90 38 8.1 0 1302 
 

 
TABLE 2 

 
ARIMA Model fitted for MAX Temperature, MIN Temperature, Relative Humidity (M), Relative Humidity (E),  

Bright Sun Shine Hours and Rainfall for training data set (1977-11-01 to 2013-04-30) 
 

 MODEL Akaike Information 
Criterion (AIC) 

Bayesian Information 
Criterion (BIC) MAE RMSE MAPE in-sample 

MSE 

MAX 
Temperature 

ARIMA 
(6,0,4) 

27885.451 27966.850 1.476 2.047 6.152 4.189 

MIN  
Temperature 

ARIMA 
(4,0,3) 

30067.543 30128.592 1.811 2.419 - 5.853 

Relative 
Humidity (M) 

ARIMA 
(4,0,1) 

46580.051 46627.534 6.055 8.585 8.350 73.697 

Relative 
Humidity (E) 

ARIMA 
(4,0,1) 

49653.015 49700.498 7.633 10.864 21.319 118.036 

Bright Sun Shine 
Hours 

ARIMA 
(3,1,3) 

29787.646 29835.128 1.600 2.372 - 5.625 

Rainfall 
ARIMA 
(0,0,2) 

30143.0692 30170.1967 0.6650 2.4449 - 5.9777 

 

 
TABLE 3 

 
State Space Models fitted for MAX Temperature, MIN Temperature, Relative Humidity (M), Relative Humidity (E),  

Bright Sun Shine Hours and Rainfall for training data set (1977-11-01 to 2013-04-30) 
 

 Component Value Std.Err t-stat Prob 
Akaike 

Information 
Criterion (AIC) 

Bayesian 
Information 

Criterion (BIC) 
MAE RMSE MAPE in-sample 

MSE 

MAX 
Temperature level 29.82 2.374 12.56 0.0000 28488.504 28780.184 1.531 2.135 6.407 4.557 

MIN 
Temperature level 15.44 3.000 5.147 2.7225e-07 30939.531 31231.210 1.892 2.595 - 6.736 

Relative 
Humidity (M) level 74.85 6.228 12.02 0.0000 46800.954 47092.633 6.023 8.727 8.131 76.154 

Relative 
Humidity (E) level 28.70 10.51 2.730 0.0064 50082.834 50374.513 7.829 11.250 20.916 126.573 

Bright Sun Shine 
Hours level 7.004 1.567 4.470 7.9659e-06 30531.966 30823.645 1.682 2.514 - 6.322 

Rainfall level 0.3685 0.0304 12.13 0.00 30500.5800 30792.2594 0.7399 2.4264 - 5.8872 
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TABLE 4 
 

Seasonal Holt-Winters models fitted for MAX Temperature, MIN Temperature, Relative Humidity (M), Relative Humidity (E),  
Bright Sun Shine Hours and Rainfall for training data set (1977-11-01 to 2013-04-30) 

 
Model parameters Specifications 

Additive, Period = 365 
Parameter type Value MAE RMSE MAPE in-sample MSE 

MAX Temperature 
Smoothing level 0.7968 

1.892 2.549 7.784 6.498 Smoothing growth 4.9520e-04 
Smoothing seasonal 1.0000 

MIN Temperature 
Smoothing level 0.8324 

2.308 3.046 - 9.278 Smoothing growth 9.9043e-05 
Smoothing seasonal 1.0000 

Relative Humidity (M) 
Smoothing level 0.3243 

7.373 10.211 9.803 104.257 Smoothing growth 1.9177e-06 
Smoothing seasonal 0.3734 

Relative Humidity (E) 
Smoothing level 0.5645 

9.704 13.250 26.852 175.560 Smoothing growth 3.3134e-06 
Smoothing seasonal 0.4866 

Bright Sun Shine Hours 
Smoothing level 0.2523 

1.979 2.796 - 7.816 Smoothing growth 5.3929e-05 
Smoothing seasonal 0.2503 

Rainfall 
Smoothing level 0.0036 

0.7889 2.8322 - 8.0216 Smoothing growth 2.4595e-04 
Smoothing seasonal 0.3122 

 
 
value was (34.75) indicating the data follows a 
Leptokurtic distribution which shows heavy tails on either 
side, which means there are outliers in the data. The value 
of skewness was (0.53), indicating there is an opportunity 
of rising in Bright Sun Shine Hours in Hisar district. The 
Rainfall in Hisar district has increased during the period 
from (0 mm) to (58.2 mm). Average Rainfall in Hisar 
district was (0.36 mm). Kurtosis value was (164.17) 
indicating the data follows a Leptokurtic distribution 
which shows heavy tails on either side, which means there 
are outliers in the data. The value of skewness was 
(11.14), indicating there is an opportunity of rising in 
Rainfall in Hisar district (Table 1). The positive skewness 
value of number of susceptible wilt showing it is 
continuous to increase due to high temperature.  

 
The top selected ARIMA models are shown in 

(Table 2). These models were chosen based on several 
evaluation criteria, including the Akaike information 
criterion, root mean squared error, mean absolute error, 
mean absolute percentage error, in-sample MSE, and the 
maximum number of significant coefficients. These 
criteria were used to assess the fit and predictive 
performance of the models, in order to identify the most 
suitable models for the data. 

 
(Table 3) presents the parameter estimates of the 

state space models. The best-fit model on the training 
dataset (covering the period 1977-11-01 to 2013-04-30) 

was determined based on the minimum values of the 
Akaike information criterion (AIC), Bayesian information 
criterion (BIC), root mean squared error (RMSE), mean 
absolute error (MAE), in-sample MSE, and mean absolute 
percentage error (MAPE). This model was deemed to be 
the most suitable for all the time series data. 

 
(Table 4) presents the parameter estimates of the 

Seasonal Holt-Winters models. The best-fit model on the 
training dataset (covering the period 1977-11-01 to 2013-
04-30) was determined based on the minimum values of 
the Akaike information criterion (AIC), Bayesian 
information criterion (BIC), root mean squared error 
(RMSE), mean absolute error (MAE), in-sample MSE, 
and mean absolute percentage error (MAPE). This model 
was deemed to be the most suitable for all the time series 
data. The comparison between (Table 2), (Table 3) and 
(Table 4) reveals that the ARIMA models outperformed 
the state space models and the Seasonal Holt-Winters 
models on the training datasets for all-time series, as the 
ARIMA models had minimum values for most of the 
evaluation criteria. This suggests that the ARIMA models 
were able to fit the training data well and make accurate 
predictions for disease forecasting. 

 
(Table 5) presents a comparison between the best 

ARIMA models, the best state space models, and the best 
Seasonal Holt-Winters models on the testing dataset, 
based on the lowest values of RMSE, MAE, and MAPE.
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TABLE 5 
 

RMSE, MAE and MAPE for testing data set (2013-05-01 to 2022-04-30 or 1631 observations) 
 

 
ARIMA Models State Space Models The  Seasonal Holt-Winters models 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 
MAX Temperature 2.0513 1.5247 6.56 2.1454 1.559 6.71 2.4357 1.8603 7.95 
MIN Temperature 2.4334 1.8808 30.032 2.6009 1.9393 29.73 2.8563 2.2058 33.61 

Relative Humidity (M) 8.26 5.94 7.46 8.45 5.75 7.14 9 6.49 8.05 
Relative Humidity (E) 10.64 7.78 16.44 11.13 8.07 16.89 12.28 9.35 20.26 

Bright Sun Shine Hours 2.344 1.81 - 2.5246 1.8954 - 2.7093 2.0954 - 
Rainfall 1.6578 0.6541 - 1.6889 0.676 - 1.9247 0.7473 - 

 
 

TABLE 6 
 

Forecasting from 01-05-2022 to 15-05-2022 using best forecasting models for MAX Temperature, MIN Temperature,  
Relative Humidity (M), Relative Humidity (E), Bright Sun Shine Hours and Rainfall 

 
Day MAX Temperature MIN Temperature Relative Humidity (M) Relative Humidity (E) Bright Sun Shine Hours Rainfall 

01-05-2022  36.27252 19.36631 60.73727 22.06919 7.617534 0.304668 
02-05-2022  30.78198 17.26388 65.49211 35.42409 7.923903 0.304666 
03-05-2022  30.56198 13.83812 78.9696 37.36564 7.909538 0.304667 
04-05-2022  28.7759 12.07032 83.75834 36.60512 7.253911 0.304667 
05-05-2022  28.99401 11.65567 84.14759 33.69769 7.994461 0.304667 
06-05-2022  28.46426 12.75567 87.19973 36.59393 7.536779 0.304667 
07-05-2022  26.29718 14.91809 82.04528 41.24115 4.32974 0.304667 
08-05-2022  27.54832 15.54328 83.00792 65.05045 4.001364 1.500999 
09-05-2022  23.24091 11.70074 90.08463 53.43904 3.865136 0.861298 
10-05-2022  24.8028 12.23895 93.47965 51.48433 5.524162 0.229384 
11-05-2022  24.56987 11.29509 94.27622 45.3928 4.661742 0.278587 
12-05-2022  25.82683 10.58293 94.75571 39.90797 6.776208 0.31355 
13-05-2022  25.96296 9.75018 95.87267 44.00372 7.188675 0.305098 
14-05-2022  26.06307 9.505876 97.78636 41.03003 7.077499 0.30401 
15-05-2022  25.68105 8.8968 96.91505 39.6458 6.475179 0.304736 

 

 
The results show that the ARIMA model outperformed the 
state space model and Seasonal Holt-Winters models in 
predicting MAX Temperature, MIN Temperature, 
Relative Humidity (E), Bright Sun Shine Hours and 
Rainfall (Kour et al., 2011). The prediction accuracy of 
the ARIMA model was found to be very high, as all the 
values of the accuracy criteria (AIC, BIC, RMSE, MAE, 
and MAPE) were lower than the values of the 
corresponding criteria for the state space model and 
Seasonal Holt-Winters models. According to (Al khatib, et 
al., 2021) using anew forecasting method did not 
guarantee more robust forecasts than traditional ones in all 
cases, there are more factors that have effects on the 
accuracy of forecasting models including frequency of the 
data, complexity of data, number of observations, the 
seasonality in time series, cyclic variations of time series, 
stationarity of time series, trending behaviour of time 
series, the long of out-sample forecast and randomness of 
the data (Mishra et al., 2023). However, it should be noted 
that the ARIMA model may suffer from overfitting issues, 
as it has good performance on the training dataset but may 

not generalize well to other data, such as the testing set. In 
contrast, the state space model was found to be better than 
the ARIMA model in predicting Relative Humidity (M) 
due to the presence of some outliers in the data. The state 
space model is capable of flexibly capturing the complex, 
non-linear nature of the data series with different 
specifications, structural breaks, shifts, time-varying 
parameters, missing data, and stationarity is not required. 
The state space model is also suitable for dynamic time 
series models that include unobserved components, while 
the ARIMA model requires stationary data and may 
require differencing to remove trend and seasonal effects. 
The model that performs better on the testing dataset is 
generally considered to be the better model. This is 
because the testing dataset is used to evaluate how well a 
model generalizes to new data, which is more important 
than how well it fits the training data. However, it's 
important to note that there are many factors that can 
affect model performance, and it's possible for a model to 
perform poorly on both the training and testing datasets, 
for example the Seasonal Holt-Winters models in this
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Fig. 1. Actual and forecast values for MAX Temperature with (Total Signal-Residuals diagnostics) 
during the period 01-05-2022 to 15-05-2022 using ARIMA models  

 
 

 

 
 

Fig. 2. Actual and forecast values for MIN Temperature with (Total Signal - Residuals diagnostics) 
during the period 01-05-2022 to 15-05-2022 using ARIMA models  
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Fig. 3. Actual and forecast values for Relative Humidity (M) with (Total Signal - level- seasonal-
Residuals diagnostics) during the period 01-05-2022 to 15-05-2022 using State Space model 

 

 
 

Fig. 4. Actual and forecast values for Relative Humidity (E)with (Total Signal - Residuals diagnostics) 
during the period 01-05-2022 to  15-05-2022 using ARIMA model 
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Fig. 5. Actual and forecast values for Bright Sun Shine Hourswith (Total Signal - Residuals diagnostics) 
during the period 01-05-2022 to 15-05-2022 using ARIMA model 

 
 
study. Overall, the results of state space models were close 
to results of ARIMA models, which highlight the 
importance of considering multiple modeling approaches 
and evaluating their performance on both training and 
testing data to identify the most suitable models for a 
given dataset. 
 

According to the results presented in (Table 6), the 
Max Temperature is expected to reach 25.68 °C on15-05-
2022 with a negative growth rate of -24.68% during the 
period 01-05-2022 to 15-05-2022. The Min Temperature 
is expected to reach 8.8968 °C on15-05-2022with 
anegative growth rate of -54.06% during the period 01-05-
2022 to 15-05-2022. The Relative Humidity (M) is 
expected to reach 96.91% on 15-05-2022 with a positive 
growth rate of 0.59% during the same period. The 
Relative Humidity (E) is expected to reach 39.64% on15-
05-2022 with a positive growth rate of 0.79% during the 
same period. The Bright Sun Shine Hours is expected to 
reach 6.47 hours on -05- 15-05-2022 with a negative 
growth rate of -14.99% during the same period. The 
rainfall is forecasted to reach 0.3047 mm on 15-05-2022 
and remain constant throughout the same period. 

 
3. Forecasting 
 

After developing the top models, forecasting was 
conducted for MAX Temperature, MIN Temperature, 

Relative Humidity (M), Relative Humidity (E), Bright Sun 
Shine Hours and Rainfall. The most important for 
chickpea wilt disease is Temperature, R.H. & sunshine 
hours. The residuals of the chosen models were found to 
be stationary and white noise for all-time series, indicating 
that the models were able to capture the underlying 
patterns and trends in the data. Using the best-fit models, 
predicted values were generated for the period from 01-
05-2022 to 15-05-2022 and are presented in the figures 
(Fig. 1 to Fig. 6). The figures show that the predicted 
values and forecasted lines are generally close to the 
actual values, demonstrating the effectiveness of the 
selected models. The forecast results suggest that there 
will be a decrease in MAX Temperature, MIN 
Temperature, and The Bright Sun Shine Hours (Fig. 1, 
Fig. 2 and Fig. 5). However, the forecast suggests that 
there will be an increase in The Relative Humidity (M) 
and The Relative Humidity (E) (Fig. 3 and Fig. 4). There 
will be no change in rainfall during the same period               
(Fig. 6). 

 
4. Conclusions 

 
In this study, three different types of models, namely 

ARIMA, state space and seasonal Holt-Winters models 
were used to forecast the maximum temperature, 
minimum temperature, relative humidity (M), relative
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Fig. 6. Actual and forecast values for Rainfallwith (Total Signal -Residuals diagnostics) during the 
period 01-05-2022 to 15-05-2022 using ARIMA model 

 

 
humidity (E), bright sun shine hours, and rainfall for a 
period of 30 years from November 1977 to April 2013. 
The models were evaluated based on various criteria, 
including AIC, BIC, RMSE, MAE, MAPE and in-sample 
MSE. The top selected ARIMA models. The state space 
models were selected based on the minimum values of 
AIC, BIC, RMSE, MAE, in-sample MSE and MAPE and 
the best-fit model was found to be suitable for all the time 
series data. Finally, seasonal Holt-Winters models 
werealso fitted, and the models' parameters were 
evaluated based on MAE, RMSE, MAPE and in-sample 
MSE. The comparison presented in this study revealed 
that the ARIMA model was the top-performing model in 
predicting MAX Temperature, MIN Temperature, 
Relative Humidity (E), Bright Sun Shine Hours, and 
Rainfallfor prediction of wilt disease in chickpea. The 
accuracy of the ARIMA model was exceptional, with 
lower values for all evaluation criteria compared to the 
state space model and Seasonal Holt-Winters models. 
However, it's important to mention that the ARIMA 
model may suffer from overfitting issues and may not 
generalize well to other datasets. On the other hand, the 
state space model demonstrated its strength in predicting 
Relative Humidity (M), where the ARIMA model 
struggled due to outliers in the data. The state space 
model's flexibility in capturing the complex, non-linear 
nature of data series, and its ability to handle dynamic 

time series models makes it a suitable alternative to the 
ARIMA model. It is worth noting that there is no one-
size-fits-all solution when it comes to modeling, and it's 
essential to consider various modeling approaches and 
evaluate their performance on both training and testing 
datasets. Overall, the study underscores the importance of 
careful consideration and evaluation of different models to 
identify the most suitable approach for a given dataset. 
The results show that the models with the best-fit 
parameters were able to forecast the different 
meteorological variables accurately. Overall, this study 
provides valuable insights into the prediction of 
meteorological variables and demonstrates the usefulness 
of different modeling techniques in this contextwhich will 
be helpful directly or indirectly in management of plant 
disease like Fusarium wilt of chickpea. 

 
Disclaimer : The contents and views presented in this 
research article/paper are the views of the authors and do 
not necessarily reflect the views of the organizations they 
belongs to. 
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