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सार— कोहरे के कारण आम तौर पर वातावरण में दृश्यता कम हो जाती है। सीममत दृश्यता का पररवहन, ववशेष 
रूप से ववमान संचालन पर महत्वपणूण प्रभाव पड़ता है। कम दृश्यता का सटीक पवूाणनमुान मुख्य रूप से हवाई अड्ड ेकी 
गततववधियों की कुशल योजना आदि ववमानन सेवाओ ं के मलए आवश्यक है। पररष्कृत संख्यात्मक मौसम पवूाणनमुान 
(NWP) मॉडल के उपयोग के बावजिू, कोहरे और सीममत दृश्यता का पवूाणनमुान चनुौतीपणूण बना हुआ है। कोहरे की 
पवूाणनमुान की जदटलता सूक्ष्म-स्तरीय कारकों को समझने में सीमाओ ं के कारण है जो कोहरे की उत्पवि, तीव्रता, 
तनरंतरता और क्षय का कारण बनते हैं। यह अध्ययन जलवाय ुसंबिंी कम दृश्यता वाले महीनों (नवबंर से फरवरी) में 
कोहरे (सतह दृश्यता <1000 मीटर) और घने कोहरे (सतह दृश्यता <200 मीटर) की घटना की जांच करता है ताकक कम 
दृश्यता की घटनाओ ंकी तनरंतरता का ववश्लेषण ककया जा सके और मेंढक प्रवण इंडो-गांगेय मैिान (IGP) क्षेत्रों की 
ववमशष्ट स्स्िततयों में उनका पवूाणनमुान लगाया जा सके। एक प्रतततनधि स्टेशन, जय प्रकाश नारायण अतंराणष्रीय (JPNI) 
हवाई अड्डा, पटना, भारत में उपकरण गुणविा डेटासेट की उपलब्िता को िेखते हुए ववचार ककया गया है। ववश्लेषण में 
मशीन लतनिंग (एमएल) एल्गोररिम की वववविता का उपयोग करके श्ृखंला की िीघणकामलक और अल्पकामलक दृढ़ता और 
पवूाणनमुान की जांच की जाती है। ववस्ताररत अवधि में व्यापक ववश्लेषण करने के मलए, बड़े पमैाने पर कोहरे और घने 
कोहरे की समय श्ृखंला के बीच समानता तनिाणररत करने के मलए डेरेंडडे उतार-चढ़ाव ववश्लेषण (डीएफए) का उपयोग 
ककया जाता है। बाइनरी टाइम सीरीज़ को िेखने और यह पता लगाने के मलए माकोव चेन मॉडल का उपयोग ककया जाता 
है कक अल्पावधि (1-5 घटें) में कम दृश्यता वाली घटनाए ँ (जसेै कोहरा और घना कोहरा) ककतने समय तक चलती हैं। 
अतंतः, हम कम दृश्यता (कोहरा या घना कोहरा) के उिाहरणों के मलए एक से पांच घटें के अग्रकाल के साि एक 
तात्कामलक पवूाणनमुान का ववश्लेषण करते हैं। यह तात्कामलक पवूाणनमुान माकोव चेन मॉडल, दृढ़ता ववश्लेषण और मशीन 
लतनिंग (एमएल) ववधियों सदहत ववववि पद्िततयों का उपयोग करके उत्पन्न की जाती है। अतं में, स्िावपत करें कक इस 
पवूाणनमुान समस्या में सबसे अनकूुल और ववश्वसनीय पररणाम ववशेषज्ञों के ममश्ण मॉडल को तनयोस्जत करके प्राप्त 
ककए जाते हैं जो दृढ़ता-आिाररत ववधियों और एमएल एल्गोररिम को एकीकृत करता है। 

 

ABSTRACT. Fog typically results in reduced atmospheric visibility. Severely limited visibility has a significant 
impact on transportation, particularly the operations of aircraft. Precise forecasts of low visibility are essential for 

aviation services, primarily for the efficient planning of airport activities. Despite the utilization of sophisticated 

numerical weather prediction (NWP) models, the prediction of fog and limited visibility remains challenging. The 
intricacy of fog prediction is due to limitations in understanding the micro-scale factors that lead to fog genesis, 

intensification, persistence, and dissipation. This study investigates the occurrence of fog (surface visibility <1000 m) and 

dense fog (surface visibility <200 m) throughout the climatological low-visibility months (November to February) to 
analyze the persistence of low-visibility events and predict them in the specific conditions of the fog prone Indo-Gangetic 

Plain (IGP) regions. A representative station, Jay Prakash Narayan International (JPNI) Airport in Patna, India, has been 

considered given the availability of instrumental quality datasets. The analysis investigates the long-term and short-term 
persistence and prediction of the series using a diverse variety of machine learning (ML) algorithms. To conduct a 

comprehensive analysis over an extended period, detrended fluctuation analysis (DFA) is employed to determine the 
similarities between the time series of large-scale fog and dense fog. A Markov chain model is used to look at the binary 

time series and figure out how long low-visibility events (like fog and dense fog) last in the short term (1-5 hours). 
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Ultimately, we analyze a short-term forecast (Nowcast) with a lead time of one to five hours for instances of low 

visibility (fog or dense fog). This nowcasting is generated utilizing diverse methodologies, including Markov chain 

models, persistence analysis and machine learning (ML) methods. Finally, establish that the most favorable and reliable 
results in this prediction problem are attained by employing a Mixture of Experts model that integrates persistence-based 

methods and ML algorithms. 
 

Key words-  Aviation services, The potential of persistence, Machine learning algorithms, The nowcasting of 

low-visibility events. 
 
 

1. Introduction 

 

Low visibility caused by fog (surface visibility 

<1000 meters and relative humidity >90%) (IMD, 

Ministry of Earth Sciences, 2021; World Meteorological 

Organization, 2019) and dense fog (surface visibility        

< 200 m) are highly unfavorable weather conditions for 

the operations of airports, mainly during the landing and 

take-off of the flight (Fernández-González et al., 2019; 

Haeffelin et al., 2016; Shankar and Sahana, 2023b). 

(Herman and Schumacher, 2016; Pahlavan et al., 2021; 

Singh et al., 2018; Singh  and Kant, 2006; Stolaki     et al., 

2009) have identified it as one of the most challenging 

weather conditions because it significantly reduces the 

capacity of airport operations, especially runways (Guijo-

Rubio et al., 2018; Mohan et al., 2015). To mitigate the 

risk of runway incursions and other potential incidents or 

accidents that may occur  during low-visibility events (fog 

or dense fog), air traffic controllers may impose 

limitations on the use of taxiways, increase the time 

interval between takeoffs and landings, or, in extreme 

cases, suspend airport operations altogether (Hosea, 2019; 

Koyuncu et al., 2022). The occurrence of mishaps with 

low visibility has greatly increased due to the surge in 

aviation traffic in recent decades (Gultepe et al., 2007; 

Lakra and Avishek, 2022). Airport Traffic Management 

(ATM) implements specific low-visibility procedures 

(LVP) to ensure the safety of operations at the airport 

under low-visibility occurrences (Shankar and Giri, 2024). 

Subsequent decreases in visibility may necessitate a 

temporary cessation of airport operations or the temporary 

closure of the airport. Furthermore, the rates of missed 

approaches are increasing, which creates a burden and 

pressure on ATM officials. Consequently, meteorological 

officials associated with aviation services frequently 

encounter difficulty in accurately forecasting low 

visibility (Kutty   et al., 2019; Parde et al., 2022; Pithani 

et al., 2019). Nevertheless, this is an exceedingly difficult 

undertaking that requires a thorough knowledge of the 

topographical features of the area and a comprehension of 

the meteorological processes that influence the onset or 

dissipation of low visibility (fog or dense fog) (Da Rocha 

et al., 2015; Müller et al., 2010). To assist forecasters in 

improving their ability to predict occurrences of low 

visibility specific to aviation services, numerous strategies 

have been developed. Numerical weather prediction has 

gained significant popularity as a methodology to predict 

low-visibility (fog or dense fog) events. Several authors 

(Román-Cascón et al., 2012;  Román-Cascón et al., 2019; 

Singh et al., 2018; Van Der Velde et al., 2010) have 

pointed out that numerical weather prediction isn't very 

good at predicting when low visibility events (fog or 

dense fog) occur because fog is very sensitive to small-

scale changes specific to the local conditions, like 

topography, wind speed, or the stability of the atmosphere. 

Also, NWP requires very high-end computing facilities 

whose operations are expensive and time-consuming 

(Dhangar et al., 2021; Niu et al., 2010; Smith et al., 

2018). Alternative methodologies involve employing 

statistical techniques to forecast occurrences of low 

visibility (Román-Cascón et al., 2016). Initially, linear 

regression was used as an approach to predict low-

visibility events (Koziara, et al., 1983). However, the 

advancement of machine learning (ML) has led to the 

development of more effective algorithms for predicting 

these challenging events. These algorithms utilize non-

linear methodologies such as artificial neural networks 

(Cornejo-Bueno et al., 2021; Fabbian et al., 2007; Miao et 

al., 2020), fuzzy logic (Miao et al., 2012), Bayesian 

networks (Boneh et al., 2015; Chmielecki and Raftery, 

2011), or support vector machines (Cornejo-Bueno et al., 

2017; Lo et al., 2020) to achieve higher accuracy and 

reliability. Although there has been much research on 

different prediction methods, many causative factors of 

low-visibility events and the optimization of the models 

have not been adequately utilized in the development of 

low-visibility forecasting systems. Low-visibility events 

(fog or dense fog) are persistent (Price et al., 2015). The 

persisting nature of these occurrences is widely 

recognized, although less research has been conducted on 

harnessing the potential of these predictive systems 

(Pérez-Ortiz et al., 2018; Salcedo-Sanz et al., 2021a). 

Recent studies have focused on various aspects of 

weather, such as rainfall, hydrology, wind, sea surface 

temperature, and solar radiation. Some specific studies 

have been conducted on rainfall and hydrology (Pelletier 

and Turcotte, 1997; Yang and Fu, 2019), on the wind 

(Gadian et al., 2004; Jiang, 2018; Koçak, 2008), on sea 

surface temperature (Monetti and Havlin 2003; Zhang and 

Zhou, 2015) and solar radiation (Voyant and Notton, 

2018). However, low visibility events (fog and dense fog) 

have not been extensively studied and documented in the 

fog-prone IGP regions of India, except a few studies in 

mid-latitude countries (Belo-Pereira and Santos, 2016;  

Cornejo-Bueno et al., 2020; Guijo-Rubio et al., 2018; 

Salcedo-Sanz et al., 2021a).  None of these                  

types  of  studies  have been carried out in the specific 

context  of  the  fog - prone  Indo - Gangetic  Plains (IGP). 
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The studies have found that low visibility events have 

been occurring frequently, particularly in the Indo-

Gangetic Plain (IGP) of the Indian subcontinent, which 

has different onset and dissipation mechanisms for low-

visibility events than mid-latitude countries (Parde et al., 

2022; Smith et al., 2023). Below is a succinct overview of 

the study's primary objectives and contributions while 

underscoring the novelty and distinctiveness of the 

research outcomes. 

 

• Investigating the persistence of low-visibility events 

in the fog-prone Indo-Gangetic Plains (IGP) regions, both 

in the long-term and short-term, to develop a 

comprehensive understanding of their dynamics. 

 

• Introducing a novel approach termed Mixture of 

Experts (MoE) time series models that seamlessly 

integrate the persistence characteristics of low-visibility 

events with advanced machine learning (ML) techniques. 

This innovative model not only enhances robustness but 

also offers efficient computational performance, requiring 

minimal resources for implementation. 

 

• Proposing an alternative forecasting technique for 

low-visibility events with a lead time of up to 5 hours, 

showcasing superior accuracy compared to existing 

methods such as persistence models and traditional ML 

approaches. This research underscores the effectiveness of 

the MoE model in achieving higher accuracy and 

reliability in low-visibility event forecasting. 

 

• The subsequent sections of the paper are structured 

in the following manner: Following Section 2 gives a brief 

overview of the dataset. Section 3 with an explanation of 

the methodologies taken into consideration for this 

analysis, Section 4 provides results about the persistence 

of low-visibility events over long and short periods. 

Section 5 presents the primary discoveries of this 

investigation and finishes the report with some concluding 

reflections on this research. Please note that a list of 

acronyms has been appended to the article for enhanced 

readability. 

 
2. Study areas and dataset 

 
2.1.  Study areas 

 
The specific sites within the Indo-Gangetic Plain 

(IGP) regions, which are sandwiched between the 

southern Plateau and the Northern Himalaya (as shown in 

Fig. 1) (Shankar et al., 2022), are the focus of analysis of 

the persistence of the low-visibility events (fog or dense 

fog) and proposed nowcasting using a mixture of expert 

models by combining the ML and analysis of persistence 

models of the low-visibility events (fog and dense fog). 

The sites of Jay Prakash Narayan International (JPNI) 

Airport, which lies in the IGP region, have been taken into 

consideration for the evaluation of the proposed models. 

There are two primary justifications for this particular 

choice: The Automatic Weather Observing Station 

(AWoS) facilitates ongoing surveillance of meteorological 

data sets, encompassing visibility measurements that offer 

ample training data for our models (Shankar and Sahana, 

2023b). Furthermore, limited visibility leads to notable 

social and economic repercussions in the IGP regions 

(Kulkarni et al., 2019; Sawaisarje et al., 2014). Low-

visibility incidents have had a significant negative impact 

on the operational effectiveness of aviation services in 

recent years, causing delays, rescheduling, diversion, and 

cancellations of flights (Shankar and Sahana, 2023a). 

Hence, the provision of precise forecasts about the 

prediction of low-visibility events in advance of one to 

five hours can effectively contribute to the mitigation and 

improvement of the economic repercussions experienced 

by aviation services. 

 
2.2.  Dataset 

 
The instrumental quality hourly surface visibility and 

associated meteorological parameters of the JPNI Airport 

Patna (the representative station of the IGP regions) for 

the climatologically low visibility month (November to 

February) for the entire period November 2014 to 

February 2023 (36 months). In these four months 

(November to February) of a calendar year, radiation, 

advection and combinations of these two are at their most 

severe stages. An analysis was conducted on the datasets 

to determine the long-term and short-term persistence of 

fog (surface visibility < 1000 m) and dense fog (surface 

visibility < 200 m) in the time series. As per World 

Meteorological Organization (WMO) guidelines, the 

accuracy of the instruments is checked regularly for the 

target. Variables i.e. low visibility events (fog and dense 

fog) which are measured by the visibility instruments 

(Transmissometers or scatter meter), as well as the surface 

meteorological parameter taken from the Automatic 

Weather Observing System (AWoS) at Patna Airport. The 

IMD's certification standards are 0.1 °C for air 

temperature and 1% for relative humidity, 0.2 m/s for 

wind speed, and 0.5 mm for precipitation etc. Input 

features outlined in Table 1, along with time, are utilized 

as inputs in the ML algorithms to predict the occurrence 

of low visibility (fog or dense fog). These variables are 

selected based on their relevance, feature selection 

methods based on principal component analysis (PCA), 

and local knowledge of the mechanisms of the onset and 

dissipation of low-visibility events (fog or dense fog). The 

correlation heat map for the optimal feature settings is 

depicted in Figs. 2 (a) and (b) for fog and dense fog, 

respectively. The data clearly shows a positive 
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Fig. 1. This illustrates the geographical position of the JPNI Airport Patna, India. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 2 (a & b). Correlation heat map with the selected meteorological feature with (a) fog and (b) dense fog. 
 

TABLE 1 
 

Details of the target low visibility (fog or dense fog) and the associated meteorological features utilized in the proposed study 

 

Type Input Features /Target Variables Unit Value Range 

Meteorological  

Data as Input 

Dry Bulb Temperature °C 0-34 

Dew Point Temperature °C 0-24.9 

Relative Humidity % 13.6 -100 

Wind Speed knots 0-25 

Wind Direction Degrees 0-360 

Station Level Pressure hPa 998.2-1019.1 

Visibility m 0-8000 

Target  

(Low Visibility) 

Fog Surface visibility<1000 m 40 hours (Highest persistence) 

Dense Fog Surface Visibility<200 m 13 hours (highest Persistence) 
 

Source : India Meteorological Department 
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correlation between fog and dense fog and meteorological 

parameters such as relative humidity, station level 

pressure and cloud amount. Conversely, there is a 

negative correlation with wind direction, wind speed, air 

temperature and dew point temperature. The cloud 

amount, air temperature and relative humidity have the 

highest correlation coefficients. To enhance the Naive 

persistence prediction, we used five previous time steps 

(time windows for input variables) to consider these 

predictive parameters (t-1, t-2, t-3, t-4 and t-5). 

  

3. Methodology 

 

The primary contribution of this work is to present a 

prediction based on the best suitable combination using 

the potential of persistence and machine learning for low-

visibility (fog and dense fog) events with a lead time of 1 

to 5 hours. Also, the suggested mixture of expert (MOE) 

models enhances the performance of the machine learning 

models by incorporating the potential of persistence in 

situations of low visibility. The suggested methodology 

has a high potential for practical application in the 

forecasting of critical low-visibility (fog or dense fog) 

events in aviation services. Fig. 3 depicts the methodology 

used for analyzing persistence and predicting low 

visibility in real time. All the ML models and their 

proposed Mixture of Experts (MOE) models have been 

developed using the Python programming language on the 

Anaconda Platform. The details methodology used in the 

analysis of the persisting nature of low-visibility long-

term and short-term persistence is outlined in the 

subsequent subsection. The evaluation of the performance 

of these models is conducted by utilizing the performance 

metrics outlined in sub-section 3.4. 
 

 

Fig. 3.  Illustrates the process block diagram for analyzing and predicting 

low visibility (fog or dense fog) using persistence. The detailed 
procedures (step by step) of the applied methodology (data input, data 

preprocessing, persistence, parameter setting (model optimization), 

prediction, proposed MOE, and model evaluation) in the predictions of 
the low-visibility events (fog and dense fog). 

3.1. Long-term persistence: detrended fluctuation 

analysis 

 
The detrended fluctuation analysis (DFA) approach is 

a robust tool for identifying the scaling properties of long-

term persistence based on the inherent dynamics of time 

series. This highly effective technique may accurately 

identify and eliminate any misinterpretations included in 

the data sets. (Peng,  et al., 1994) pioneered the use of the 

DFA approach for analyzing DNA time series. (Bunde, et 

al., 2000) and (Kantelhardt, et al., 2001) expanded and 

broadened the DFA approach. The DFA approach has 

been utilized in various fields, such as temperature records 

(Talkner, 2000; Blender, 2003; Govindan, et al., 2002), 

precipitation processes (Jiang and Li, 2017), relative 

humidity records (Chen and Lin, 2007) and SST (Luo, et 

al., 2015), among others. The DFA algorithm consists of 

three primary phases (Hu et al., 2001). Begin by 

eliminating the recurring patterns in time series data for 

fog and no fog, as well as dense fog and no dense fog, 

represented as binary values (0 or 1).  

 
The time series profile Yj is subsequently established 

in the following manner: 

 

𝑌𝑗 = ∑ 𝑥𝑖
𝑗
𝑖=1                                                                      (1) 

 

The profile 𝑌𝑗 is divided into Ns =|
𝑁

𝑠
|, non-

overlapping segments {𝑌𝑗
𝑘 |1≤k≤Ns} of equal length s. 

 
Also, determine the local least squares straight line, 

which assesses the local trend of each element. As a 

result, the piece-wise functions are obtained by 

compounding each linear fitting. 

 

𝑍𝑗
𝑠=[𝑍𝑗

1….𝑍𝑗
𝑘….𝑍𝑗

𝑁𝑠]                                              (2) 

 
The superscript "s" represents the period for the 

linear fitting of each segment.  

 
• Then, by varying the temporal window length s, the 

fluctuation is obtained as the root-mean-square 

error obtained from this linear piece-wise function and the 

profile Yj: 

 

F(s)=√
1

𝑁
∑ (𝑍𝑗

𝑠 − 𝑌𝑗)2𝑁
𝑘=1                                          (3) 

 
The function F(s) increases as the time windows 

follow the power law F(s) ∝𝑠𝛼 within a stable range of 

time scales. The scaling exponent α, sometimes referred to
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Figs. 4 (a & b). Represents a binary system (a) First-order (b) N-order Markov process. 

 

as the correlation exponent, represents the gradient of the 

linear regression line that has been fitted. The Hurst 

exponent (H) and the scaling exponent α in the DFA 

technique are equivalent concepts that have the same 

interpretation in this particular situation (Graves et al., 

2017). The Hurst coefficient, denoted as H (or α in this 

case), provides a quantification of the potential simple 

power-law scaling of the power spectrum S(f) with 

frequency f. It is commonly used as an indicator of the 

long-term persistence of time series, which is frequently 

described as "self-similar" behavior (Mann, 2011).  

 

  S(f)~𝑓−β        (4) 

 

Where, the scaling exponent β is β = 2α-1. 

 

It is important to highlight that the time series is 

uncorrelated when the coefficient α = 0.5, demonstrating 

the absence of long-term persistence in the time series. 

For values (0.5 < α ≤ 1), the time series exhibits positive 

long-term correlation. This indicates that there is long-

term persistence within the proper range of scales. The 

process exhibits anti-persistence when the value 0 < α ≤ 

0.5. When α > 1, the persistence is high enough to cause 

the time series to exhibit non-stationary behavior. 

 

3.2. Short-term persistence: markov chain models 

(mcms) 

 

Various statistical techniques have been used for 

weather forecasting (Wilks, 2011). MCMs are statistical 

techniques employed for the short-term forecasting of 

meteorological data series. Due to their utilization of 

localized meteorological data, MCMs possess a reduced 

computing burden and the capability to promptly provide 

forecasts after measurements (Cazacioc, 2005). In the 

subject of meteorology, various interconnected processes 

can be understood by considering fundamental first-order 

Markov chain models (e.g. temperature, precipitation, 

etc.) (Chatfield, 1973; Fowler, 2007). In the current 

situation of low-visibility events, consider a discrete 

binary variable that has two alternative states. When the 

time series for fog or dense fog is converted into a binary 

variable, it can indicate either the occurrence of fog (value 

1) or the absence of fog (value 0). The probability of fog 

occurring on an hourly basis can be categorized into four 

conditions based on the assumption that the current 

likelihood of fog is dependent on the fog occurrence in the 

preceding hour. This assumption follows the principles of 

a first-order Markov chain (Katz, 1977). Fig. 4 illustrates 

a schematic diagram explaining the characteristics of a 

first-order and N-order MCM. 
 

p00 = P(Xt=0|Xt-1=0) 
 

p01 = P(Xt=1|Xt-1=0) 
 

p10 = P(Xt=0|Xt-1=1) 
 
 

p11 = P(Xt=1|Xt-1=1)                                                  (5) 

 

By utilizing the conditional relative frequencies, the 

transition probabilities are calculated as follows: 

 

𝑝 ̂00 =
𝑛00

𝑛0
𝑝 ̂01 =

𝑛01

𝑛0
𝑝 ̂10 =

𝑛10

𝑛1
𝑝 ̂11 =

𝑛11

𝑛1
              (6) 

 

In equation (6), nij represents the count of transitions 

from state i to state j and ni represents the count of 

occurrences of state i followed by any other data point. 

Specifically, ni = ni0 + ni1. The subscripts, i, j ∈{ 0, 1}, 

correspond to the state. The Naive persistence operator 

can be classified as a first-order Markov chain model, 

where the formula x (t + 1) = x(t) ensures that the state is 

preserved at any given time. The following transition 

probability matrix is an alternative way to represent it: 

 

  𝑃 = [
1 0
0 1

]                                                                  (7) 

 

The transition probabilities of a higher-order Markov 

chain model take into account the time frames under 
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consideration. Higher-order chains violate the memoryless 

property of first-order Markov chains. Second-order 

Markov chains incorporate the states at periods t-2 and t-1 

to forecast the state at time t. Similarly, the third-order 

Markov chain considers the states at times t-3, t-2 and t-1 

to predict the state at time t. The transition probabilities 

are stated as follows:  

 

𝑝𝑖2𝑖1→𝑖 = 𝑃(𝑋𝑡=i|𝑋𝑡−1=𝑖1,𝑋𝑡−2=𝑖2) i,i1, i2 ∈{ 0, 1} (8) 

 

𝑝𝑖3𝑖2𝑖1→𝑖 = 𝑃(𝑋𝑡=i|𝑋𝑡−1=𝑖1,𝑋𝑡−2=𝑖2,𝑋𝑡−3=𝑖3),          

i,i1, i2, i3 ∈{ 0, 1}                                                (9) 

 

For higher orders: 

 

𝑝𝛼→𝑖 = 𝑃(𝑋𝑡=i|𝑋𝑡−1=𝛼1,… . . 𝑋𝑡−𝑁=𝛼𝑁 ),  i∈{ 0, 

1},α=(𝛼1,…𝛼𝑁)∈ { 0, 1}𝑁                                          (10) 

 

α is a tuple consisting of N elements that encompass 

all considered time frames. 

 

3.3. Machine learning algorithms for classification 

tasks 

 

This study employs advanced ML algorithms as 

classification tasks, specifically Support Vector Machines 

(SVMs) and Extreme Learning Machines (ELMs), to 

predict the occurrence of fog/no fog or dense fog/no dense 

fog in the specific condition of the IGP regions, i.e., Patna 

Airport, India. These algorithms have been proven to be 

effective in similar research (Cristianini and J., 2000; 

Salcedo-Sanz et al., 2014; Sumathi and Paneerselvam, 

2020). Support Vector Machine (SVM) is a widely 

recognized statistical learning technique built on kernels 

(Schölkopf and Smola, 2002). The ELM is a very efficient 

and quick-to-train algorithm that relies on a pseudo-

inverse calculation. It is important to note that the 

algorithms used in this study are specifically designed to 

address classification tasks (Ding et al., 2014; María        

et al., 2016). 

 

3.3.1. Support vector machine 

 

The standard Support Vector Machine (SVM) 

formulation is known as a maximum margin classifier. 

This means that the SVM's decision function is a 

hyperplane that effectively separates samples from 

different classes. In this context, class 1 represents a state 

of either fog (surface visibility <1000 m) or dense fog 

(surface visibility < 200 m), while class -1 (equivalent to 

0) represents a state of no fog or no dense fog. The SVM 

approach addresses the following challenges: given a 

labeled training dataset. {(xi, yi)}n
i = 1, where xi ∈ RN and 

yi ∈{-1, +1}, and given a non-linear mapping 

Φ(.):RN→Rp(N<<p). Φ(.):RN→Rp (N<<p). 

𝑚𝑖𝑛⏟
𝑤,𝑏,𝜁

||𝑤|| + 𝐶 ∑ 𝜁𝑖                                               𝑁
𝑖=12

1
(11) 

s.t. yi((w,Φ(xi))+b)+ζi-1  ≥ 0;           𝑖 = 1, … , 𝑛 

ζi ≥ 0 I = 1,2,..,n 

 

 

Fig. 5. Linear decision hyperplane in a non-linearly modified feature 

space H. The soft margin is defined by including the slack variables ζi. 

 

The positive slack variables ζi are used to account for 

acceptable mistakes. The parameters w and b, shown in 

Fig. 5, represent the separating hyperplane RN. 
 

where, ζi are positive slack variables allowing for the 

handling of permissible errors and w and b constitute a 

separating hyperplane in RN, shown in Fig. 5. 
 

The objective function of Equation (11) comprises 

two terms with distinct interpretations. One term aims to 

minimize the accumulated errors,  ∑ 𝜁𝑖
𝑛
𝑖=1 , while the other 

term minimizes the Euclidean norm of the model weights, 

||w||2. This norm can be shown to be equivalent to 

maximizing the margin, which represents the separation 

between classes. It is important to note that the hard 

margin of the SVM can be achieved by solely maximizing 

the margin without considering errors in the objective 

function. Adding the slack variables ζi, dealing with data 

that can't be separated, and using the soft margin SVM 

method can help solve the problem. This method lowers 

the training error traded off against the margin. It's more 

likely that the transformed samples can be separated 

linearly in the higher-dimensional feature space Rp 

(N<<p) if the right non-linear mapping Φ:RN→Rp is 

chosen appropriately. The user is usually required to 

modify the regularization hyper parameter C, which 

controls the classifier's ability to generalize. According to 

(Schölkopf and Smola, 2002), Equation (11)'s dual 

problem counterpart resolves the main issue. This leads to 

the decision function displayed below for any test sample 

x*∈RN: 
 

𝑓(𝑥 ∗) = 𝑠𝑔𝑛(∑ 𝑦𝑖  𝛼𝑖

𝑛
𝑖=1 𝐾(𝑥𝑖, 𝑥 ∗) + 𝑏)              (12) 
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The Lagrange multipliers αi correspond to the 

restrictions of the primary issue (12). The training samples 

xi with non-zero Lagrange multiplier αi ≠ o are referred to 

as support vectors (SVs). The function K (xi, x*) represents 

the scalar product of the high-order space Rp, which is 

mapped to the sample space. The test sample, x*, is 

projected onto the support vector, xi, which is then 

transformed into a higher-dimensional space. The bias  

term b is subsequently calculated by applying any of the 

constraints that are relevant to an unbounded Lagrange 

multiplier. 

 

𝑏 =
1

𝑘
(∑ 𝑦𝑖 − (𝛷(𝑥𝑖), 𝑤))𝑘

𝑖=1 )                                 (13) 

 

where, k is the total number of unbounded Lagrange 

multipliers (i.e., 0<𝛼𝑖<C) and 

 

W = ∑ 𝑦𝑖𝛼𝑖𝛷(𝑥𝑖
𝑛
𝑖=1 ) (Schölkopf and Smola, 2002) 

 

3.3.2. Extreme Learning Machines 
 

The training of feed-forward perceptron structures 

can be expedited by utilizing neural networks with an 

extreme-learning machine, as presented in Fig. 6 (Huang 

et al., 2015). The hidden-layer output matrix is 

transformed into a pseudo-inverse by randomly assigning 

network weights to the first layer of the ELM. The optimal 

weights for the output layer are derived by utilizing the 

pseudo-inverse, which effectively fits the objective values. 

The advantage of this strategy is in its efficiency and 

ability to yield outcomes that are on par with other 

established methodologies, such as conventional multi-

layer perceptron training and SVM algorithms. The ELM's 

ability to universally approximate has been proven (Ding 

et al., 2014; Huang et al., 2006). 

 

The ELM technique can be defined as follows, 

considering a training set. { (xi, yi) | xi∈RN, yi∈{-

1,+1},1≤i≤n}, an activation function g(x), and a present 

number of hidden nodes �̂�. 
 

(i) Randomly assign the ELM weight value (wi) and the 

bias (bi) using a uniform probability distribution in the 

range [-1, 1], where i = 1,..., N. 
 

(ii)  Calculate the hidden-layer output matrix H using the 

following formula: 
 

H = [
𝑔(𝑤1𝑥1 + 𝑏1) ⋯ 𝑔(𝑤�̂�𝑥1 + 𝑏�̂�

⋮ ⋱ ⋮
𝑔(𝑤1𝑥𝑛 + 𝑏1) ⋯ 𝑔(𝑤�̂�𝑥𝑛 + 𝑏�̂�

]            (14) 

 

(iii)  Next, calculate the output weight vector β by 

applying the formula: 
 

Β = HϮT                                                                 (15) 

The matrix H is the Moore-Penrose inverse of H and 

the training output vector T is represented as, 

T=[y1,…yn]T. 

 

It is important to mention that the ELM algorithm 

requires the specification of the free parameter �̂� before 

training. To achieve good results, an approximation of �̂� 

must be obtained by scanning a range of �̂�. 
 

 

Fig. 6. The details of the Extreme Learning Machine (ELM) algorithm 

architecture which incorporates a multi-layer perceptron structure. 

 

3.4.  Performance metrics 
 

The statistical metrics of accuracy (ACC), true 

positive rate (TPR), true negative rate (TNR) and F1 score 

were used to assess the proposed methods and their 

benchmarked prediction models. For this study, 

occurrences of fog and dense fog are each represented by 

a positive condition (state 1) that equates to surface 

visibility of <1000 m or <200 m respectively. On the other 

hand, the absence of fog or dense fog is represented by the 

binary variable connected to surface visibility ≥1000 m or 

≥ 200 m (state 0 or -1) for ML algorithms. The notation 

used in the calculations describes the statistical measures. 

P number of real positives; N number of real negatives; 

TP is true positive; TN is true negative; FP is false 

positive; FN is false negative. 
 

ACC shows how close to the actual time series are 

the predicted time series. It is calculated as: 
 

      𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
                                                          (16) 

 

TPR is a measurement that determines the 

percentage of actual positives that are accurately identified 

as positives(Fawcett, 2006): 
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                (17) 
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Fig. 7. Detrended Fluctuation Analysis (Plot between alpha and window size) carried out for the entire time series data of (a) fog and (b) dense Fog for 

the representative site of IGP regions, i.e., Patna Airport. The plots depict that the fog has a noticeable long-term anti-persistent nature. 
 

 

TNR is a measurement that determines the 

percentage of actual negatives that are accurately 

identified as negatives: 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                               (18) 

 

The F1 Score is a measurement of the accuracy of a 

test, and it reaches its optimal value at 1 (Sasaki, 2007). 

 

𝐹1𝑆 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                        (19) 

 

4.  Results 

 

In this section, the results of the analysis of the            

long and short-term persistence of low-visibility events 

(fog or dense fog) have been presented along with               

the proposed mixture of experts (MOE), which is a 

combination of the ML-based and persistence-based 

models for the nowcasting of low-visibility events (fog or 

dense fog) in the specific condition of the IGP regions 

(representative stations: Patna, India). Long-term and 

short-term persistence are differentiated based on the 

diverse sorts of analyses involved. To ensure long-term 

persistence, we present the findings of the DFA technique, 

which provides the correlation exponent (α) (discussed in 

sub-section 3.1). The MCM transition probabilities 

(discussed in Subsection 3.2) are utilized to examine            

the short-term persistence. In addition, to address the 

problem of predicting short-term low-visibility events (fog 

or dense fog), i.e., now casting, the proposed MOE 

models incorporate the best prediction information from 

ML-based and persistence-based models. Also, compare 

the accuracy of MCM and benchmarked ML models with 

the Naive persistence operator (x (t + 1) = x(t)). The Naive 

persistence operator is a powerful solution at the hourly 

scale. The implementation code was written in Python 

3.10. The proposed MOE models are developed on a 

laptop with a Windows 11 operating system and an Intel 

(R) Core (TM) i5-1035G1 processor running at 1.00 GHz 

and 8 GB of memory. 

 

4.1. Long-Term Persistence Analysis 

 

The DFA algorithm, as outlined in subsection 3.1, is 

utilized to analyze the complete time series spanning from 

2014 to 2023. Specifically, this analysis focuses on the 

climatologically foggy seasons (November, December, 

January and February) of the IGP Regions. The datasets 

under examination pertain to both fog (surface visibility < 

1000 m) and dense fog (surface visibility < 200 m). The 

objective of this analysis is to evaluate the long-term 

persistence of fog and dense fog conditions. Fig. 7 

illustrates the relationship between alpha and window size 

for both (a) fog and (b) dense fog of the IGO regions 

(representative sites: Patna Airport). The plot amply 

demonstrates that both fog and dense fog exhibit anti-

persistence, as the auto-correlation is close to 0. 

 

4.2. Short -Term Persistence Analysis 

 

In this study, two types of fog events are looked at: 

fog/no fog (1, 0) and dense fog/no dense fog (1, 0). These 

are looked at in terms of both short-term persistence 

analysis and following low-visibility event prediction as 

classification problems. Consequently, it is necessary to 

convert the fog and dense fog events into binary form. The 

results of the analysis discuss the findings of the problem 

related to predicting fog and dense fog in the specific 

conditions of the IGP regions. To maintain the integrity of 

the results despite the division of data into training and 

test sets, a K-fold cross-validation technique was 

employed (Kohavi, 1995). A value of K = 5 has been 

selected for the folding process, indicating that 80% of the 
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TABLE 2 

 

Probabilities of transitions in the first-order Markov Chain Models 

(MCM) for fog and dense fog events 

 

𝑃 =
1

2
(𝑝00 + 𝑝11) 0(No Fog) 1(Fog) 

0(No Dense 
Fog) 

1(Dense 
Fog) 

0 0.9774 0.0225 0.9945 0.0054 

1 0.1767 0.8232 0.2506 0.7494 

 
TABLE 3 

 

Probabilities of transitions in the 2nd-order Markov Chain Models 

(MCM) for fog and dense fog events 

 

𝑃 =
1

2
(𝑝00→0 + 𝑝11→1) 

0 

(No Fog) 

1 

(Fog) 

0 

(No Dense 
fog) 

1 

(Dense 
Fog) 

00 0.9777 0.0222 0.9949 0.0050 

01 0.1861 0.8138 0.2222 0.7777 

10 0.9652 0.0347 0.9259 0.0740 

11 0.1747 0.8252 0.2600 0.7399 

 
TABLE 4 

 

 Probabilities of transitions in the 3rd order Markov Chain Models 

(MCM) for fog and dense fog events 
 

𝑃 =
1

2
(𝑝000→0 + 𝑝111→1) 

0 

(No Fog) 

1 

(Fog) 

0 

(No Dense 
fog) 

1 

(Dense 
Fog) 

000 0.9775 0.0224 0.9948 0.0051 

001 0.1825 0.8174 0.21 0.79 

010 0.92 0.08 0.875 0.125 

011 0.1676 0.8323 0.2261 0.7738 

100 0.9871 0.0128 1 0 

101 0.2857 0.7142 0.375 0.625 

110 0.9756 0.0243 0.9404 0.0595 

111 0.1762 0.8237 0.2719 0.7280 

 

data will be allocated for training and the remaining 20% 

will be used for testing. In addition, the short-term 

prediction results presented in the following section were 

derived from the same data partition used for this 

persistence analysis. The matrix of transition probabilities 

obtained from the Markov Chain Model (MCM) discussed 

in subsection 3.2 will be utilized to assess the short-term 

persistence. The persistence can be approximated by using 

the components of the major diagonal as follows: 
 

𝑝 =
1

2
(𝑝00 + 𝑝11)                                                  (20) 

 

Estimate the short-term persistence of higher-order 

MCM as follows: 
 

𝑝 = (𝑝𝛼0→02
1 +𝑝𝛼1→0)                                            (21) 

where, 𝛼0 = (0,…. 0) indicates an N-element tuple 

with value 0, and 𝛼1 = (1,…. 1) denotes an N-element 

tuple with value 1. 
 

TABLE 5 
 

 Probabilities of transitions in the 4th order Markov Chain Models 

(MCM) for fog and dense fog events 

 

𝑃 =
1

2
(𝑝0000→0 + 𝑝1111→1) 

0  

(No Fog) 

1 

(Fog) 

0(No 
Dense fog) 

1 

(Dense 
Fog) 

0000 0.9774 0.0226 0.9950 0.0050 

0001 0.1849 0.8151 0.2100 0.7900 

0010 0.9296 0.0704 0.8571 0.1429 

0011 0.1635 0.8365 0.1899 0.8101 

0100 0.9710 0.0290 1.0000 0.0000 

0101 0.3333 0.6667 0.6667 0.3333 

0110 0.9818 0.0182 0.8947 0.1053 

0111 0.2308 0.7692 0.2462 0.7538 

1000 0.9844 0.0156 0.9800 0.0200 

1001 0.0000 1.0000 nan nan 

1010 0.7500 0.2500 1.0000 0.0000 

1011 0.3000 0.7000 0.8000 0.2000 

1100 0.9906 0.0094 1.0000 0.0000 

1101 0.2500 0.7500 0.2000 0.8000 

1110 0.9744 0.0256 0.9538 0.0462 

1111 0.1646 0.8354 0.2816 0.7184 

 
The transition probability and short-term persistence 

estimation for low visibility events (fog and dense fog) at 

the representative sites of IGP regions, i.e., Patna Airport, 

are presented as 1st Order MCM (Table 2), 2nd Order 

MCM (Table 3), 3rd Order MCM (Table 4) and 4th Order 

MCM (Table 5) on the training dataset. 

 

Low-visibility (fog and dense fog) events have a 

clear pattern of short-term persistence, which is slightly 

enhanced when higher-order MCM models are taken into 

account. Considering the prolonged period of low 

visibility in the past few hours (specifically, incident 

1111→ 1), Table 5 (4th order MCM) indicates that the fog 

event has lasted for more than 83.54% of the time. The 

value of the overall persistence P is approximately 91%. 

However, the persistence of dense fog (1111 → 1) only 

exhibits a rate of 71.84%, but the overall persistence of 

dense fog is around 86%. Therefore, it is clear that the 

duration of fog is increased to a greater extent and a 

higher degree compared to dense fog. However, in this 

situation, the likelihood of the low-visibility events 

persisting (meaning the chance of transitioning from one 

state to another) is lower for higher-order MCM. 

Specifically, it is only 82.32% and 74.94%, respectively, 

as shown in Table 2. 
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 4.3. Short-term prediction 

 

In this subsection, the potential of persistence has 

been tapped along with the ML models by using the 

Mixture of Experts (MOE) models for the improved 

performance of the prediction of low-visibility events (as 

a classification task) at the representative sites of the fog-

prone Indo-Gangetic Plains (IGP), i.e., Patna Airport. In 

particular, it is worth mentioning that the MCM's 

probability metric makes it possible to make predictions 

based only on past events (or the system's binary states). 

By using a first-order MCM and the transition metrics 

(Equation 7), the uncomplicated persistence operator 

performs as a reference prediction technique. As 

anticipated, it demonstrates excellent performance in 

predicting fog and dense fog events within an hourly time 

frame, achieving an accuracy value of 0.9349 and 0.9743, 

respectively. It is worth mentioning that even when 

external influences are taken into account, the Naive 

Persistence Operator still exhibits highly accurate 

prediction performance at this level of precision. The 

prediction of low-visibility events by using state-of-the-art 

ML algorithms by considering the atmospheric conditions 

and dynamics, proper feature selection and correlation are 

essential for accelerating prediction and avoiding over 

fitting by minimizing the number of attributes. To 

examine the correlation between the low-visibility events 

(fog and dense fog) and the predictors, the best optimal 

correlation is presented in Figs. 2 (a & b), respectively. 

Also, the results of the meteorological parameter after the 

feature selection are presented in Table 1. 

 

Additionally, the proposed models' performance 

evaluation metrics are discussed in subsection 3.4. Finally, 

the Mixture of Experts (MOE) methodology was applied 

to consider both the persistence and dynamics of 

atmospheric conditions. The objective of this experiment 

is to show that, despite the moderate persistence of low-

visibility events, hybrid models that integrate both 

atmospheric conditions and persistence yield the most 

accurate results for predicting instances of low-visibility 

events. To compare the results of the baseline approach, 

which uses the naive persistence operator, with alternative 

ML algorithms. The input data is analyzed for different 

periods (t-1, t-2, t-3, t-4 and t-5) or predicted for a lead 

time of 1 to 5 hours. Both the ELM and SVM techniques 

may effectively overcome the limitations of the Naive 

persistence operator, with few differences between them. 

Improving the effectiveness of machine learning methods 

is possible by building on the Naive operator and              

adding other algorithms like ELM, SVM and MCM, along 

with the proposed MOE system (Pérez-Ortiz et al., 2018), 

which is a majority voting system. The MOE system, 

which considers a temporal window of t-1, outperforms all 

other algorithms in predicting short-term low- visibility 

events in this challenge. The ELM method, when 

combined with external atmospheric variables and the 

MOE, demonstrated the highest level of accuracy among 

all examined algorithms. Specifically, it achieved 

accuracy rates of 0.95 and 0.98 for fog and dense fog, 

respectively, during the time frames of t-2 to t-4. 

However, throughout the t-5-time window, the accuracy 

significantly drops for fog detection, particularly in dense 

fog events. The statistical skill scores of different 

approaches (MCM, ELM, SVM, naive persistence and 

proposed MOE) for the prediction of fog (surface 

visibility <1000 m) and dense fog (surface visibility 

<1000 m) are presented in Tables 6 and 7, respectively. 
 

TABLE 6 

 

Statistical skill scores of different approaches (MCM, ELM, SVM, 

Naive persistence, and proposed MOE) for the prediction of fog 

(surface visibility<1000 m). 

 

Time Window Model ACC TPR TNR F1 Score 

t-1 

MCM 0.9349 0.8357 0.9485 0.9624 

ELM 0.9500 0.8197 0.9699 0.9699 

SVM 0.9537 0.8213 0.9719 0.9737 

MOE 0.9551 0.8199 0.9739 0.9744 

t-2 

MCM 0.9414 0.8500 0.9540 0.9663 

ELM 0.9537 0.8213 0.9719 0.9737 

SVM 0.9428 0.6420 0.9848 0.9680 

MOE 0.9535 0.8214 0.9721 0.9730 

t-3 

MCM 0.9487 0.8532 0.9618 0.9706 

ELM 0.9537 0.8213 0.9719 0.9737 

SVM 0.9287 0.4888 0.9890 0.9607 

MOE 0.9541 0.8217 0.9717 0.9733 

t-4 

MCM 0.9539 0.8516 0.9680 0.9737 

ELM 0.9537 0.8213 0.9719 0.9737 

SVM 0.9212 0.4435 0.9903 0.9565 

MOE 0.9531 0.8313 0.9700 0.9737 

t-5 

MCM 0.8476 0.6874 0.8696 0.9094 

ELM 0.9212 0.4435 0.9903 0.9565 

SVM 0.9196 0.3907 0.9923 0.9615 

MOE 0.9333 0.5034 0.9701 0.9191 

t-1 Naive 0.9551 0.9775 0.8420 0.9744 

 

 

5.  Discussion 

 

The long-term persistence of low-visibility (fog or 

dense fog) events in the specific conditions of the IGP 

regions (representative station Patna airport, India) was 

analyzed using a DFA technique. 

 

The plots between the alpha values for fog (Fig. 7(a)) 

and dense fog (Fig. 7 (b))  at various window sizes  depict 
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that the dense fog in the IGP regions is anti-persistent. 

Moreover, as the window size increases, the alpha value 

decreases in an essentially linear fashion. This indicates 

that a larger window size is unfavorable for the long-term 

persistence of low-visibility events. It demonstrates a 

significant decrease in the persistence of fog beyond 10 

hours.  There is a strong linkage between the two ranges 

of the DFA (the window size and pattern of a binary time 

series (events of fog and no-fog)) that has been studied 

before (Belo-Pereira and Santos, 2016; S. Cornejo-Bueno 

et al., 2020; Salcedo-Sanz et al., 2021b) for the mid- 

latitude countries. However, in the specific conditions of 

the IGP regions, the low-visibility events have weak 

linkages, so they are anti-persistent. Based on this 

analysis, low-visibility events (fog or dense fog) return 

periods of 12-13 hours or 22-24 hours in the specific 

conditions of the IGP regions during the study period 

(November to February).  

 

Conversely, the analysis of short-term persistence 

has primarily focused on analyzing the Markov Chain 

Model (MCM) transition probability metrics at different 

time intervals. Fog (surface visibility <1000 m) displays 

significant short-term persistence, with values ranging 

from 90.03% when considering a one-hour time lag to 

90.64% for higher-order MCM with up to four hours of 

time lag. However, in the short-term persistence of dense 

fog (surface visibility <200 m), the values ranged from 

87.2% for a one-hour lag to 85.67% for a five-hour lag 

(fourth-order MCM). 

 

Finally, examine several different approaches to ML 

algorithms (ELM, SVM) and tap the potential of 

persistence-based models (MCM) to nowcast the low-

visibility events (fog and dense fog) for the specific 

conditions in the IGP regions. After hyper tuning the 

parameters of the ML algorithms (SVM, ELM) in the 

specific conditions of the IGP regions with external 

factors and combining the persistence-based MCM 

models, the proposed Mixture of Experts (MOE) has 

superior performance compared to benchmarked models 

presented in Table 6 (for fog) and Table 7 (for dense fog). 

Also, the proposed MCM models consistently perform 

better than the naïve operator model (Presented in Tables 

6 and 7). The naïve operator models are based on 

probability metrics derived from actual low-visibility 

events. 

 

This indicates a lack of long-term persistence, but for 

shorter periods, it is highly established. When taking into 

account ML algorithms (ELM) that incorporate 

atmospheric variables, the increase in accuracy compared 

to the basic operator is negligible (0.95 vs. 0.9551)                   

and (0.98 versus 0.97) for fog and dense fog,                            

respectively.  This  indicates  there  are  no  enhancements                  

TABLE 7 

 

 Statistical skill scores of different approaches (MCM, ELM, SVM, 

Naive persistence and proposed MOE) for the prediction of dense 

fog (surface visibility <200 m). 

 

Time 

Window 
Model ACC TPR TNR F1 Score 

t-1 

MCM 0.9743 0.7052 0.9794 0.9869 

ELM 0.9815 0.7133 0.9921 0.9871 

SVM 0.9888 0.6842 0.9945 0.9943 

MOE 0.9880 0.7387 0.9935 0.9939 

t-2 

MCM 0.9786 0.7052 0.9837 0.9891 

ELM 0.9888 0.6823 0.9900 0.9913 

SVM 0.9821 0.6842 0.9945 0.9943 

MOE 0.9824 0.4957 0.9938 0.9911 

t-3 

MCM 0.9790 0.8421 0.9815 0.9892 

ELM 0.9888 0.6842 0.9945 0.9943 

SVM 0.9813 0.3203 0.9946 0.9905 

MOE 0.9891 0.6844 0.9934 0.9965 

t-4 

MCM 0.9743 0.9157 0.9754 0.9868 

ELM 0.9803 0.0 1.0 0.9901 

SVM 0.9755 0.9200 0.9931 0.9838 

MOE 0.9888 0.6842 0.9945 0.9943 

t-5 

MCM 0.9605 0.8736 0.9621 0.9795 

ELM 0.9817 0.0 1.0 0.9908 

SVM 0.9817 0.0 1.0 0.9908 

MOE 0.9817 0.0 1.0 0.9908 

t-1 Naive 0.9754 0.9982 0.9189 0.9873 

 

 

in the case of fog for the previous period (t-1). The MOE 

and ELM attain optimal accuracy outcomes by 

incorporating supplementary variables during an extended 

time frame ranging from t-2 to t-5. Both of these                 

options surpass the accuracy of the naive operator. The 

Naive operator's strong performance can be                     

attributed to the imbalanced distribution of classes (fog / 

no fog or dense fog/no dense fog), as well as the limited 

number of low-visibility transitions (fog/no fog or                   

dense fog/no dense fog). These findings suggest that the 

occurrence of low-visibility events at Patna airport is 

unusually long-lasting, but it is persistent for short 

periods. Therefore, the proposed MOE models outperform 

the benchmarked persistence-based and ML-based models 

and provide alternative and reliable ways of              

nowcasting low-visibility events for aviation                    

services. Along with the earlier studies (Dutta and 

Chaudhuri, 2015; Shankar and Sahana, 2023a, 2023b), 

these studies can help choke out the mechanism that can 

directly sort out the crucial prediction of visibility for the 

aviation services in the local conditions of the               

IGP regions.  
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6. Conclusion 

 
This study presents a noble analysis of the persistent 

nature of low-visibility events (fog (surface visibility 

<1000 m) and dense fog (surface visibility < 200 m) in a 

representative site (Patna Airport) of the fog-prone IGP 

regions of India by using the visibility time series as the 

objective variable. The study examined long-term and 

short-term persistence using the DFA and MCM 

methodologies, respectively. It indicates that dense fog 

occurrences are not persisting in nature for long periods 

but rather for short periods. The Markov chain probability 

transitions between fog and no-fog states, including dense 

fog and no-dense fog, have been utilized to examine short-

term persistence analysis. These transitions have 

consistently demonstrated significant levels of persistence 

across all evaluated scenarios. Furthermore, conducting a 

detailed study to tap the potential of the persistence with 

the benchmark ML models to improve the prediction 

robustness of the low-visibility events (fog/no fog, or 

dense fog/no dense fog) in the specific conditions of the 

IGP regions for the practical application of the tailor-made 

now casting (lead time of 1 to 5 hours) of this extreme 

weather for the aviation services. Also conduct a detailed 

comparison of several ML models with the proposed 

Mixture of Experts (MOE), which taps the potential of 

persistence as well as hyper parameter-tuned machine 

learning models in the specific conditions of the IGP 

regions. ML-based models use external variables to 

consider conducive atmospheric conditions. The 

predictive skills of simplistic persistence models and their 

integration with machine learning approaches create a 

Mixture of Experts (MOE) to achieve precise prediction 

accuracy in the specific conditions of the IGP regions. The 

primary benefit of this tailor-made Nowcast for low-

visibility events is that it generates output that applies to 

end users, such as air traffic managers, airlines, etc. 

 
Data Availability 

 
The hourly observed METAR data (or Synoptic 

hourly data) of weather parameters of JPNI Airport Patna 

was taken from the National Data Center, Climate 

Research Station of India Meteorological Department 

where weather data of India Meteorological Department is 

available through the portal https://dsp.imdpune.gov.in/. It 

is noted that this portal can be accessed publically. Also, 

data can be shared after the request. 
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SVM Support Vector Machine N Number of Real Negative 

TPR True Positive Rate JPNI Airport Jay Prakash Narayan International Airport 

TNR True Negative Rate IGP Indo Gangetic Plain 

TP True Positive NWP Numerical Weather Prediction 

ELM Extreme Learning Machine ATM Air Traffic Management 

 


