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सार — चूं�क कृ�ष भारतीय अथर् य्यथा क� र�ढ़ है, इसिलए सरकार को नई योजनाओ ंक� योजना बनाने के 
िलए फसल उपज के एक �्�सनीय पू् ारननु ान क� आ्शयकता है। फसल उपज के पू् ारननु ान के िलए सबसे ्यापक 
रप से इयतेुाल क� जाने ्ाली तकनीक �ितगुन �्�ेषण है। ुापदंड� का ुहत् �ितगुन �्�ेषण क� �ुनख 
सुययाओ ं �ु से एक है। गैर-ुहत्पणूर परैाुीटर बेतनके पू् ारननु ान ुलूय� क� ओर ले जाते ह� और ये पू् ारननु ान 
ुान �्�सनीय नह�ं होते ह�। ऐसे ुाुल� �ु, ुॉडल� �ु सनधार क� जररत है। ुॉडल� को बेहतर बनाने के िलए, 
हुने बायेिसयन तकनीक के ुाधयु से पू् र जान को शािुल �कया है और बायेिसयन ढांच ेके तहत इन ुॉडल� क� 
��ेता क� जांच क� है। बायेिसयन तकनीक सां�खयक� के आधनिनक यनग �ु सबसे श��शाली �्िधय� �ु से एक है। 
हुने �्िभनन �कार के पू् र (सूचनातुक, गैर-सूचनातुक और सयंनगु पू् रज) पर चचार क� है। बायेिसयन ढांच ेके 
तहत ुापदंड� के आकलन के िलए ुाक�् �ृखंला ु�टे काल� (एुसीएुसी) प�ित पर सकेंप �ु चचार क� गई है। 
इन ुॉडल� को यपप करने के िलए केला, आु और गेहंू क� उपज के आकंड़� को धयान �ु रखा जाता है। हुने 
पारंप�रक �ितगुन ुॉडल क� तनलना बायेिसयन �ितगुन ुॉडल से क� और िनषकषर िनकाला �क बायेिसयन ढांच ेके 
तहत अननु ािनत ुॉडल ने शा�ीय द�पकोण के तहत अननु ािनत ुॉडल क� तनलना �ु बेहतर प�रणाु �दान �कए। 

 

ABSTRACT. As agriculture is the backbone of the Indian economy, Government needs a reliable forecast of crop 
yield for planning new schemes. The most extensively used technique for forecasting crop yield is regression analysis. 
The significance of parameters is one of the major problems of regression analysis. Non-significant parameters lead to 
absurd forecast values and these forecast values are not reliable. In such cases, models need to be improved. To improve 
the models, we have incorporated prior knowledge through the Bayesian technique and investigate the superiority of 
these models under the Bayesian framework. The Bayesian technique is one of the most powerful methodologies in the 
modern era of statistics. We have discussed different types of prior (informative, non-informative and conjugate priors). 
The Markov chain Monte Carlo (MCMC) methodology has been briefly discussed for the estimation of parameters under 
Bayesian framework. To illustrate these models, production data of banana, mango and wheat yield data are taken under 
consideration. We compared the traditional regression model with the Bayesian regression model and conclusively infer 
that the models estimated under Bayesian framework provided superior results as compared to the models estimated 
under the classical approach. 
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1.  Introduction 
 

The agriculture sector is one of the most significant 
contributors to the Indian economy. Agriculture enables 
the development of more densely populated and stratified 
societies by creating food security. India is called an 
agricultural country, as the agriculture sector of India has 
occupied almost 43 percent of India's geographical area 
and almost seventy percent of people of India are engaged 
in the agriculture sector directly or indirectly. In 
agricultural countries like India, planning formulation and 
implementation of several policies dealing with food 
procurement are very much dependent on the forecast of 
crop yield before the harvest. To forecast crop yield 
before harvest, we have to know about the factors which 
affect the crop yield. Weather variables are one of the 

crucial factors for the growth and production of crops. 
Modeling and forecasting crop yield before harvesting is a 
matter of concern to the researcher. Multiple Regression 
analysis is one of the powerful tools for agro-metrological 
crop yield forecasting (Gommes, 1998). Regression 
Analysis is a multivariate technique used to analyze the 
environmental factors as explanatory variables and their 
infliction on crop yield to obtain a decision (Sellamand 
Poovammal, 2016). In most cases, the traditional 
regression model gives a very efficient estimate value of 
the parameters, but sometimes parameters of the model 
may not be statistically significant (Chatterjeeand          
Hadi, 2015). So, there lies a scope for further 
improvement of regression parameter estimates. Thus, in 
this manuscript, we have employed the Bayesian 
technique in this context. 
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Bayesian analysis is based on the basic assumption 
that all parameters of the model are random in nature. We 
can incorporate prior knowledge into the estimated value 
of parameters to get improved forecast values. Bayesian 
statistics is contrary to classical frequentist statistics where 
all the parameters are treated as fixed and unknown 
quantities. Bayesian analysis is based on the theories of 
probability. Bayesian regression is not only an algorithm 
but also a different mode of approach for various 
statistical inferences. By using the Bayesian framework, 
we obtain a range of inferential solutions instead of the 
point estimate (Marin et al., 2014). Usually, a non-
Bayesian regression model or simply a linear regression 
model tends to over fit the data. Bayesian Linear 
Regression helps to overcome the problem by 
incorporating “Predictive Distribution” (Gregory, 2005). 
The Bayesian technique is a subjective procedure to 
estimate the unknown parameters of the linear model and 
this model results more efficient estimate of parameters 
(Bunn, 1975). The advantage of Bayesian regression 
estimation can be attributed to the fact that one can 
incorporate a prior distribution, or use assumed 
knowledge about the present state of “beliefs” and make 
the estimated value more precise and efficient. There are 
various analytical and numerical techniques available for 
implementing the Bayesian method with appropriate prior 
to solve a wide class of problems (Bernardo and Smith, 
2001). The Bayesian technique can be successfully 
applied to Generalized Linear Model (GLM) for 
improvement of the model and this improvement depends 
on the choice of the prior distribution (Das, 2008). 

 
In this paper, we attempt to improve the crop yield 

forecast using the Bayesian technique. We could not find 
similar work in the literature and hope our approach will 
enrich the existing literature of weather indices based crop 
yield forecasting models. In subsequent sections, we 
discuss material methods, illustration, results and followed 
by conclusions. 

 
2. Materials and method 

 
2.1. Data sources 
  
The daily data on weather parameters such as 

maximum and minimum temperature, morning and 
evening relative humidity, amount of rainfall for 23 years 
(from 1984 to 2007) has been collected from a weather 
station located at IARI, New Delhi. Three production data, 
viz., wheat, banana and mango data series have been 
collected to illustrate the models. Wheat yield data were 
collected from IARI, New Delhi. The wheat data sets 
contain one dependent variable with 11 independent 
weather variables. Production data of banana and mango 
has been collected from the National Horticulture Board. 

Production data of banana and mango contains 12 and 10 
independent weather variables respectively. 

 
2.2. Transformation of datasets  
 
We assume that w denotes weeks (w = 1,2,…, n) at 

which the pre-harvest forecast of the crop yield needs to 
be released. If we use the weekly data on m weeks in p 
variables, now new weather variables and interaction 
components can be generated with respect to each of the 
weather variables using the below-mentioned procedure. 
A forecast model has been developed by considering all 
the generated variables simultaneously, including the time 
trend (T) (Agrawal et al., 2001). 

 
In order to study the individual effect of each 

weather variables, two new variables from each weather 
variable can be generated as follows: 

 
Let Xiw be the value of the ith [i = 1(1) p] weather 

variable at wth week (w = 1,2,…,n), riw be the simple 
correlation coefficient between weather variable Xi at the 
wth week and yield over a period of k years. The generated 
variables are given by: 
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2.3. Traditional regression model  
  
Regression analysis is a very important statistical 

tool for modeling, investigating and determining the 
relationship between the variables. The regression model 
involves three components. Those are dependent variable, 
independent variables and unknown coefficient. 
Dependent variables are also known as response or 
outcome or regressed variables. Independent variables are 
also known as predictors or regressors. In the regression 
model, there is one dependent variable, one or more than 
one independent variable and one or more than one 
unknown regression coefficient. A simple regression 
model can be expressed as 𝑦𝑦 is a function of x and β. 

 
x and β : y ≈ f (x, β) 
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where y is denoted as a dependent variable, x is a 
dependent variable and β is unknown coefficients. 

 
In a multiple regression model dependent variable is 

related to more than one independent variables. 
 
y = β0 + β1x1 + β2x2 + … + βkxk + ɛ 
 
where y denotes a dependent variable, xi’s denotes 

independent variables and ɛ is the error component. β0 is 
the intercept parameter and βi’s are the slope parameters. 

 
Our main interest lies in unknown parameters. The 

unknown parameters of the model should be estimated 
unbiasedly and efficiently. We estimate the unknown 
parameters of the model in such a manner that the sum of 
square of the residuals is the least. Where residuals are the 
difference between the observed values and the 
corresponding expected value of a dependent variable. 
This method is called Ordinary Least Square, invented by 
Carl Friedrich Gauss, but it was first published by Adrien-
Marie Legendre (Plackett, 1972). 

 
In our cases, the traditional models are : 

 
(i) For banana data, k = 11 
 

y = β0 + β1x1 + β2x2 + … + β11x11 + ɛ 
 
where xi’s are the weather indices, β0 is intercept and 

the total number of parameters is 12. 
 

(ii) For mango data 
 

y = β0 + β1x1 + β2x2 + … + β12x12 + ɛ 
 

where xi’s are the weather indices, β0 is intercept and 
the total number of parameters is 13. 
 
(iii) For wheat data  
 

y = β0 + β1x1 + β2x2 + … + β12x12 + ɛ 
 

where xi’s are the weather indices, β0 is intercept and 
the total number of parameters is 11. 

 
All the parameters of these models are estimated by 

the OLS estimations technique. 
 
2.4. Bayesian approach  
 
Bayesian inference is one of the most powerful 

techniques of estimation. This technique of estimation has 
various advantages over point estimation. The main 
advantage of this technique of estimation is that it uses the 

prior information. By incorporating prior information, we 
get a posterior distribution. The posterior distribution 
contains more information due to the incorporation of 
extra information in the form of prior distribution.  

 
The prior distribution is a probability distribution 

that expresses the possible uncertainty before examination 
of current data. The main problem of Bayesian estimation 
is to find a suitable prior with its parameters. Irrelevant 
prior misleads the researcher as it gives spurious results. 
So, one should be careful at the time of selection of priors. 
There are various types of priors proposed in the 
literature. These are informative or non-informative, 
conjugate or non-conjugate priors. Our interest lies in the 
conjugate priors because the form of posterior distribution 
remains the same as its prior distribution, only hyper-
parameters are updated (Chen and Ibrahim, 2003). The 
exponential family of distribution is commonly used 
conjugate priors (Morris, 1983). In this study, the most 
common distribution of exponential family, i.e., normal 
distribution is taken as a prior distribution. Steps 
undertaken for the Bayesian approach of regression 
estimation are as follows: 

 
(i) Model specification 
 
(ii) Selection of prior distribution 
 
(iii) Find the likelihood function 
 
(iv) Apply Bayes theorem and generate posterior 

distribution with the help of Markov Chain Monte 
Carlo (MCMC) Method 

 
(v) Find the expectation of the posterior distribution  

 
Brief description of the following steps: 
 
(a) Model specification 
 
Under the Bayesian approach, our study models   

will be :  
 
y = β0 + β1x1 + β2x2 + … + βkxk + ɛ 
 
here βi’s are not constant, they follow some specific 

distribution (prior distribution) with specific parameters. 
  
[N.B : For banana data k = 12, for mango data k = 13 

and wheat data k = 11] 
 
(b) Selection of prior distribution 
 
We have already discussed selection of prior.  In our 

case, we select normal distribution as prior because it 
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gives more accurate results in the case of Bayesian 
regression analysis (Bunn 1975; Evans 2012). 

 
Let β is the vector of parameters. For banana, mango 

and wheat data sets it consists of 12, 13 and 11 parameters 
respectively. 

 
For banana data, β ~ N (Mean = M, Variance = V) 
 
Where M is a vector of order 12 × 1 with elements 

{M1, M2,…,M12} and V is a diagonal matrix of size            
12 × 12 with diagonal element {V1,V2,…, V12}.  

 
The values of M1, M2,…,M12 are computed by 

iterative procedure with a vague idea from the parameter 
estimates of the traditional regression model. Mi’s values 
are generally very near to the estimated values of the 
corresponding βi’s. In the same procedure, we also 
compute the value of Vi’s which takes a value close to the 
variance of estimated βi’s. 

 
On similar lines, we specified prior distributions to 

the model parameters of mango and wheat datasets. 
 
(c) Find the likelihood function 
 
For the given datasets, we computed the likelihood 

function which is the joint probability density function of 
normal distribution. 

 
(d) Apply Bayes’ theorem and generate posterior 

distribution with the help of Markov Chain Monte Carlo 
(MCMC) Method. 

 
Let θ is the parameter of interest and π(θ) is                

the prior distribution which gives the prior                
knowledge about the population and Y is the sample 
collected under study. Then the posterior distribution can 
be calculated with the help of Bayes’ theorem and it is 
given by : 

 
π(θ|y) ∝ L (Y| θ) π (θ) 
 
where L (Y| θ) is the likelihood function. 
 
In the case of Bayesian inference, the MCMC 

(Markov Chain Monte Carlo) method is mainly used as a 
parameter estimation technique. MCMC is a restricted 
type of stochastic process. The Markov chain Monte Carlo 
(MCMC) method is used to generate values from a 
transition kernel in such a way that the collected sample 
from that kernel converges to a specified distribution 
which is targeted previously. This method simulates the 
Markov chain with a predefined distribution as the 
distribution of equilibrium or convergence of the chain. A 

Markov chain can be defined as any sequence of states or 
values generated from the domain of pre-specified 
distribution; in such a way that the distribution at any 
stage depends on only its current state of the chain and 
each state only depends only on its immediate 
predecessor. The probability of convergence of the chain 
is directly proportional to the chain length of the MCMC 
method. The oldest version of the MCMC method was the 
Metropolis algorithm which was proposed by Metropolis 
and Ulam (1949) and Metropolis et al. (1953). In this 
algorithm, a lot of sequences of states are generated and 
each of the states can be obtained from only the previous 
state. Hastings (1970) presented a simpler and more 
general version of the MCMC algorithm, which is now 
known as the Metropolis-Hastings (MH) algorithm. To 
understand the process let us assume that we want to have 
information regarding a distribution π*, of which we have 
information upto the point C, where an assumption that 
the state space E is either finite or countable.                       
Then the distribution of π* will be π (θ) | C, as its 
probability mass function. The main purpose of using             
the MCMC method is to obtain the posterior distribution 
as : 

 

π* ( ) ( ) ( )
( ) ( )∑

=
θθ|yEθ

θθ||θ
pf

pyfy
ε

 

 
For obtaining the posterior distribution, the 

following steps are followed : 
 

(i) An ergodic Markov Chain θ0, θ1, θ2,… is set up 
which results in a stationary posterior distribution.  
 
(ii) Using Markov Chain simulate θ0, θ1, θ2,… θl+k  for 
large l and k. 
 
(iii) Discard the first l-1 samples with l+k sufficiently 
large to obtain. 
 
(iv) Obtain the expectation and other statistics using the 
l+k samples, this is done to obtain stationary values. 

 
The two very widely used MCMC algorithms are the 

Metropolis-Hastings (MH) algorithm and Gibbs sampling. 
Gibbs sampling is considered to be a special sampler of 
the MH algorithm. Metropolis-Hastings (MH) algorithm 
and Gibbs sampling involve complex computation but as 
in the modern era, computers are very advanced, Bayesian 
technique can be used over the traditional method (Evans, 
2012). We use the Gibbs sampling algorithm because this 
algorithm is simple, easily implemented and can handle 
the problem of high dimensionality (Smith and Roberts, 
1993). 
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TABLE 1 
 

Parameter estimates of simple regression model for banana 
 

Coefficients Estimate Std. Error t-value p-value Significance 

B1 334.13 227.48 1.47 0.16 No 

B2 68.28 14.98 4.56 0.00 Yes 

B3 120.92 352.97 0.34 0.74 No 

B4 -85.72 120.31 -0.71 0.49 No 

B5 -236.56 417.00 -0.57 0.58 No 

B6 -209.81 375.03 -0.56 0.58 No 

B7 -7389.48 6851.06 -1.08 0.30 No 

B8 3702.16 1487.62 2.49 0.02 Yes 

B9 315.71 166.71 1.89 0.08 No 

B10 3.55 12.42 0.29 0.78 No 

B11 1799.32 936.62 1.92 0.07 No 

B12 -630.70 364.02 -1.73 0.10 No 

 
 

TABLE 2 
 

Parameter estimates of simple regression model for mango 
 

Coefficients Estimate Std. Error t-value p-value Significance 

B1 37.84 5.70 6.64 0.00 Yes 

B2 39.87 87.59 0.46 0.65 No 

B3 0.97 42.08 0.02 0.98 No 

B4 -112.78 76.65 -1.47 0.16 No 

B5 53.94 23.37 2.31 0.03 Yes 

B6 4006.64 1682.53 2.38 0.03 Yes 

B7 -2269.65 980.86 -2.31 0.03 Yes 

B8 12.95 16.74 0.77 0.45 No 

B9 -20.53 9.30 -2.21 0.04 Yes 

B10 -663.12 341.90 -1.94 0.07 No 

B11 141.50 269.66 0.53 0.60 No 

B12 53.04 92.43 0.57 0.58 No 

B13 -10.28 51.51 -0.20 0.84 No 

 
 
(e) Find the expectation of the posterior 

distribution  
 
The estimate of θ can be computed easily from the 

posterior distribution. The estimate of θ is the expectation 
of the posterior distribution and given by 

 

( )∫= θθθπθ dy|ˆ

 

( ) ( )
( ) ( )∑

∑
=

E

E

pyf

pyf

θε

θε

θθ

θθθ

|

|
 

 
3. Results and discussion 

 
We illustrate the above discussed models with help 

of mentioned data sets of banana, mango and wheat. We 
first use traditional regression methods to examine the 
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TABLE 3 
 

Parameter estimates of simple regression model for wheat 
 

Coefficients Estimate Std. Error t-value p-value Significance 

B1 62.32 13.83 4.51 0.00 Yes 

B2 3.21 4.50 0.71 0.49 No 

B3 10.20 36.03 0.28 0.78 No 

B4 1.48 7.12 0.21 0.84 No 

B5 223.21 94.70 2.36 0.03 Yes 

B6 -0.20 3.21 -0.06 0.95 No 

B7 10.25 18.34 0.56 0.58 No 

B8 -1.04 1.32 -0.79 0.44 No 

B9 13.13 17.42 0.75 0.46 No 

B10 -1.17 2.45 -0.48 0.64 No 

B11 7.52 12.32 0.61 0.55 No 
 

 
TABLE 4 

 
Parameter estimates of Bayesian regression model for banana 

 
Coefficients Estimate Std. Error t-value p-value Significance 

B1 317.04 214.32 1.48 0.16 No 

B2 65.75 14.00 4.70 0.00 Yes 

B3 400.94 335.20 1.20 0.25 No 

B4 -91.16 112.83 -0.81 0.43 No 

B5 -481.95 390.82 -1.23 0.24 No 

B6 -117.01 351.92 -0.33 0.75 No 

B7 -1431.38 6528.48 -0.22 0.83 No 

B8 3492.54 1384.81 2.52 0.02 Yes 

B9 323.66 157.84 2.05 0.05 Yes 

B10 2.31 11.82 0.20 0.84 No 

B11 2033.01 891.70 2.28 0.04 Yes 

B12 -628.52 344.26 -1.83 0.09 No 
 

 
 
performance of these models. We calculate the               
estimated value of the parameters by using                    
Ordinary Least Square (OLS) methods.  We checked the 
significance status of the estimated value at 5% level of 
significance. The estimated value along with                       
its standard errors, t-value are enlisted in the following 
table. 

 
From Table 1, we found that only 16.67% of the total 

parameters are significant and 83.33%, a large percentage 
of parameters are non-significant at 5% significance level. 

It can also be observed that the standard error of 
parameters is very high.   

 
In Table 1, 38.46% of total parameters are significant 

whereas the rest of the parameters (61.54 %) are not only 
non-significant but also its standard error is very high.  

 
In Table 3, it can be observed that the non-

significance rate of the parameters is very high (81.82 %) 
and the standard error of the parameters is high. Only 
18.18 % of the parameters are significant. 
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TABLE 5 
 

Parameter estimates of Bayesian regression model for mango 
 

Coefficients Estimate Std. Error t-value p-value Significance 

B1 37.58 5.73 6.56 0.00 Yes 

B2 8.14 92.02 0.09 0.93 No 

B3 -0.41 42.14 -0.01 0.99 No 

B4 -91.99 78.13 -1.18 0.26 No 

B5 54.41 23.20 2.35 0.03 Yes 

B6 3366.10 1819.72 2.25 0.04 Yes 

B7 -2256.69 987.31 -2.29 0.04 Yes 

B8 11.04 16.71 0.66 0.52 No 

B9 -19.76 9.39 -2.10 0.05 Yes 

B10 -680.15 337.38 -2.02 0.05 Yes 

B11 87.23 271.66 0.32 0.75 No 

B12 45.83 91.77 0.50 0.62 No 

B13 -4.10 51.44 -0.08 0.94 No 
 
 

TABLE 6 
 

Parameter estimates of Bayesian regression model for wheat 
 

Coefficients Estimate Std. Error t-value p-value Significance 

B1 62.89 13.74 4.58 0.00 Yes 

B2 3.01 4.56 0.66 0.52 No 

B3 10.09 35.53 0.28 0.78 No 

B4 1.71 7.18 0.24 0.81 No 

B5 224.23 94.41 2.38 0.03 Yes 

B6 -0.09 3.34 -0.03 0.98 No 

B7 9.75 18.71 0.52 0.61 No 

B8 -1.13 1.48 -0.76 0.46 No 

B9 12.17 17.88 0.68 0.51 No 

B10 -1.42 2.85 -0.50 0.62 No 

B11 8.41 12.88 0.65 0.52 No 
 

 
From the following result, we found that most of the 

estimate of the parameters is not significant at 5% level of 
significance. Thus, there is a scope to improve the 
parameter estimates by increasing the level of significance 
rate and reducing the standard error of the parameter 
estimates. Hence, we apply linear regression under the 
Bayesian framework for the given datasets to examine the 
improvement of the model. The Bayesian technique uses 
some prior knowledge about the parameters. To 
incorporate the prior knowledge to parameter, we select 
normal distribution, (a conjugate and informative prior) as 

a prior distribution. To analyze the Bayesian linear 
regression model, we have used R software (version             
R-3.3.3) (http://www.R-project.org/) (R Core Team, 
2013). The results of the posterior are enlisted in the 
following tables. 

 
In Table 4, the non-significance rate of the 

parameters are reduced to 66.67 % from 83.33 % and the 
increase in significance rate to 33.33 % from                 
16.67 %.  Standard errors of the parameters have been 
also reduced. 

http://www.r-project.org/�
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TABLE 7 
 

RMSE comparison for banana 
 

Data sets RMSE for simple regression RMSE for Bayesian regression 

Banana 223.14 216.87 

Mango 75.33 72.99 

Wheat 266.35 265.85 

 
 
In the case of mango data sets, in Table 5, we found 

that the non-significance rate of the parameter slightly 
decreases from the traditional regression model. The non-
significance rate of the parameters of the Bayesian 
regression model is 53.84 %, earlier it was 61.54 % for the 
regression model.  The standard error of the parameters 
has been also reduced. 

 
In Table 6, we see that there is no reduction in the 

non-significance rate of the parameter but the standard 
errors of the parameters have reduced as compared to the 
traditional regression model. 

 
From Table 7, comparison of RMSE, we find that 

there is a little decrease in the Root Mean Square Error 
(RMSE) of Bayesian regression models. Percentage in a 
reduction in RMSE for datasets banana, mango, and wheat 
are 0.03, 0.03 and 0.002 respectively. 
 
4. Conclusion 

  
Our main objective in this study was to compare the 

traditional regression models with the modified regression 
model under the Bayesian framework. The efficiency and 
preciseness of regression analysis are non-questionable as 
it gives BLUE (Best Linear Unbiased Estimator) estimates 
under defined assumptions. But under certain 
circumstances, it fails to give an efficient estimate of 
parameters, or sometimes the parameter estimate of the 
model is not significant. In such situation, the Bayesian 
technique can be applied to improve the regression model 
and to get an efficient estimate of parameters. From our 
study we can empirically infer that first, regression under 
Bayesian reduce the non-significance rate of the 
parameters of the regression model, second, the Bayesian 
technique also helps to reduce the standard error of the 
parameters, third, it is also reduced the RMSE of the 
model which indicates that Bayesian regression provides 
more accurate forecast than the traditional regression 
model. This study will give an alternate methodology for 
estimating weather-based regression models where the 
standard regression approach fails to do so. The present 
investigation can be applied to various other datasets and 
results can be compared which will further enrich the 
literature of the weather-based modelling domain.  

Disclaimer : The contents and views expressed in this 
study are the views of the authors and do not necessarily 
reflect the views of the organizations they belong to. 
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