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सार – इस शोध पत र  � भर म  े अं र श्न प् श्स   पंत र  िस  त एम अ स  ं पं झुम  अो न�तल ब सपर्    श ंो 

र श्न प् श्स   म  आध  �्ग र  एम अ स  ं स  भरलत  हुए िस  त है औं भल ोस   शं-एस   नोस   शं प््ला मो पअभशरत 
मंत् है, पं �वच्ं �मश् गश् है। ग्न म    फ शन औं स प ् र (Integral) आमृ�तश� म  पशोग स  स ब �धत तमन्म म् 
उपशोग मंत  हुए स  ्न प�ंवतरन, प�तबल� औं �वमृ�तश� र  बअल्व म  म्ं्� म् पत् लग्न  म  त्न स �्व् 
िस  �तश� – ंसै  वह िस  �त ंब मोई �्   श श सम नहा  ंह् है, ंब एम   श श सम ंह् हो औं अ सं् ंमज् हुआ 
है त ् ऐस् िस  �त ंब अोन�   श श सम ंह  ह�; पं �वच्ं �मश् गश् है।  
 
 इस शोध पत र  एम   श म  े अं श् ेय श   श म  �नमन ेच्नम हलचल स  ेपअप् प�तबल पं पजन  व्ल  
प�्व म  पजत्ल म  गई है। इसर  मुछ िस  �तश� म  पहच्न म  गई है ंह  ् एम   श म  े अं ेच्नम हलचल म  
प�ं््र नंअाम म  ेय श   श र  ेपअप् प�तबल छोजत  हड़, िंसम  वंह स  इसम  े अं � म प्श हलचल होन  म  
स �्वन् मर होत् है। ेय श िस  �तश� म  �् पहच्न म  गई है िंसर  एम   श र  ेच्नम हलचल होन  स  � म प्श 
  श र  हलचल म  स �्वन्ए  बढ़ ं्त् हड़। इन   श� म  र  श �बय अओु  म  नंअाम घ�नत अो लग्त्ं � म प्श 
प�ंघनन्ओ  म  �वस ततृ े  शशन स  उनम  ब्च म  सरश ेव�ध म् आमलन �मश् ं् समत् है। ऐस् आश् म  ं्त् 
है �म इस पम्ं म  े  शशन � म प प�रश्ओ  म  �रश्�व�ध (र म �नज र) मो सरझन  म  भलए उपशोग् होग् औं इस  
एम � म प प वरग्र् म  अप र  ं्न् ं् सम ग्।  
 
 ABSTRACT. Two inclined, interacting, strike-slip faults, both buried, situated in a viscoelastic layer, resting on 
and in welded contact with a viscoelastic half space, representing the lithosphere-asthenosphere system, is considered. 
Solutions are obtained for the displacements, stresses and strains, using a technique involving the use of Green’s 
functions and integral transforms, for three possible cases - the case when no fault is slipping, the case when one fault is 
slipping and the other is locked and the case when both the faults are slipping. 
 

The effect of sudden movement across one fault on the shear stress near the fault itself and near the other faults has 
been investigated. Some situations are identified where a sudden movement across one fault results in the release of shear 
stress near the other fault, reducing the possibility of seismic movements across it. Other situations are also identified 
where a sudden movement across one fault increases the possibility of seismic fault movements. A detail study may lead 
to an estimation of the time span between two consecutive seismic events near the mid points of the faults. It is expected 
that such studies may be useful in understanding the mechanism of earthquake processes and may be identified as an 
earthquake precursor. 

 
Key words – Viscoelastic, Aseismic, Strike-slip faults, Sudden movement, Mantle convection, Stress 

accumulation, Earthquake precursor. 
 
1.  Introduction 
 
 Earthquakes are generated due to various types of 
movements across seismic faults having different 
geometrical features. Two consecutive seismic events are 
usually separated by long quasi-static aseismic period 
which may extend up to several years. Stresses 
accumulate near the faults during this aseismic period due 
to various tectonic reasons including mantle convection. 
When the accumulated stress exceed some thresholds 
value, movement across the fault occurs leading to an 
earthquake. Kayal et al. (2002), Mishra and Zhao (2003), 

Mishra et al. (2008), Singh et al. (2013), Singh and 
Mishra (2015) have shown that pre-existing intersecting 
faults having different geometrical shapes associated with 
fluid filled fractured material may introduce 
heterogeneous environment leading to differential strains 
and thereby bring the brittle fracture. These observations 
justify our theoretical approach to understand the nature of 
seismogenic faults in sub-surface layers having                 
varying degree of brittle nature of the layered medium. 
The degree of cracks and porosity variation in the                   
sub-surface layered media may influence the extend of 
rock failure. 
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Fig.1. A schematic sketch showing two interacting strike-slip faults inclined to the vertical – both buried. Section by the plane y1 = 0 

 
 
 In most of the viscoelastic theoretical papers 
developed so far for aseismic ground deformations a 
single and/or double vertical and/or inclined strike-slip 
faults situated in a viscoelastic half space has been 
considered [Rundle et al. (1977), Sen et al. (1993) and 
Sen et al. (2012)]. Some theoretical models of the 
lithosphere-asthenosphere system in seismically active 
regions during aseismic periods have been developed, for 
a single locked fault or a single creeping fault, by 
Mukhopadhyay and Mukherji (1978a), Mukhopadhyay                
et al. (1979b, 1980a) and Cohen et al. (1984). In some 
cases layered model consisting of an elastic and/or 
viscoelastic layer overlying a viscoelastic half space has 
been considered by Mukhopadhyay et al. (1980b) and 
Ghosh et al. (1992a, 1992b, 2011) to represent the 
lithosphere-asthenosphere system. It may be noted in this 
connection that the lithosphere rheology is assumed to be 
approximately ‘brittle elastic’, which includes the earth’s 
crust and a part of the upper mantle. The region below it, 
called the asthenosphere, is assumed to be composed of 
relatively softer material which exhibit more viscoelastic 
behaviour. This enables us to suggest a layered model of 
lithosphere-asthenosphere system consisting of an elastic 
and/or viscoelastic layer overlying a viscoelastic half 
space as more realistic rather than a viscoelastic half space 
model. 

 It has been observed that major fault systems in 
different parts of the world consists of a number of 
neighbouring faults instead of a single fault which may 
interact when creep or sudden seismic fault movement 
occurs across one or more of them. A movement across 
any one of these neighbouring faults will affect the rate of 
stress accumulation near the other and thereby causes 
significant changes in the possible movement across the 
other. Creeping or sudden movement across a fault is 
generally found to reduce the rate of accumulation of 
shear stress near the fault. The effect of aseismic creep or 
slip across one fault on the shear stress near the other fault 
is found to depend on the distance, dimensions, relative 
position and other characteristics of the two faults. Some 
theoretical models of the lithosphere-asthenosphere 
system in seismically active regions during aseismic 
periods, with two interacting creeping/slipping faults, 
have been developed by Mukhopadhyay et al. (1978b, 
1979c,), Mukhopadhyay and Mukherji (1984, 1986) and 
Ghosh et al. (1992a, 1992b, 2011). 
 
 In most of the theoretical models developed so far 
the faults were taken to be vertical surface breaking and/or 
buried. But fault system may often consist of inclined 
faults. The inclination of the fault may affect the nature of 
stress/strain accumulation near the fault. With these points 
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in view, in the present case we consider two inclined 
buried strike-slip faults in a viscoelastic layer overlying a 
viscoelastic half space and study the nature of aseismic 
accumulation of shear stress in the system. The medium is 
under the influence of tectonic forces due to mantle 
convection or some related phenomena. The faults 
undergo a sudden movement when the stresses in the 
region exceed certain threshold values.   
 
2. Formulation    
 
 We consider two long, inclined and interacting 
strike-slip faults F1 and F2 situated in a viscoelastic layer 
of thickness H. The layer rests on and is in welded contact 
with a viscoelastic half space. Let θ1 and θ2 be the 
inclinations of the faults F1 and F2 respectively with the 
horizontal. Let D1 and D2 be the widths of the faults F1 
and F2 respectively and d1 and d2 be the depths of their 
upper edges below the free surface. Let D be the distance 
between the lines on the free surface vertically above the 
upper edges of the faults.  
 
 We introduce rectangular Cartesian coordinate 
system (y1, y2, y3) for the fault F1 and (z1, z2, z3) for the 
fault F2 with the free surface as  y3 = 0 and z3 = 0, y3 and 
z3 axes pointing into the half-space and y1 and z1 axes 
being chosen along the straight lines on the planes y3 = 0 
and z3 = 0 which are vertically above the upper edges of 
the faults for the buried faults. For convenience of 
analysis we introduce another set of rectangular Cartesian 
co-ordinate system (y1

' ,y2
' ,y3

' ) for the fault F1 with            
y1

' -axis along the upper edge of the fault and the plane of 
the fault as the plane y2

'  = 0, y1
' -axis being parallel to y1-

axis. Similarly for the fault F2, we introduce another set of 
rectangular, Cartesian co-ordinate system (z1

' ,z2
' ,z3

' ) as 
shown in [Fig. 1]. The relations between different 
coordinate systems systems are given by : 
 

𝑦1′ = 𝑦1  
 
 𝑦2′ = 𝑦2sin θ1 − (𝑦3 − 𝑑1)cos θ1    

        
 𝑦3′ = 𝑦2cos θ1 + (𝑦3 − 𝑑1)sin θ1   
 
 𝑧1′ = 𝑧1  
 
 𝑧2′ = 𝑧2sin θ2 − 𝑧3cos θ2       

    
 𝑧3′ = 𝑧2𝑐𝑜𝑠θ2 + 𝑧3𝑠𝑖𝑛θ2      

 
 where, 
 

 𝑧2 = 𝑦2 − 𝐷, 𝑧3 = 𝑦3 − 𝑑2  

  Thus, the faults F1 and F2 are given by : 
 
 F1 : (𝑦2′ = 0, 0 ≤ 𝑦3′ ≤ 𝐷1) 
 
 F2 : (𝑧2′ = 0, 0 ≤ 𝑧3′ ≤ 𝐷2) 
 
 The section of this model in the plane y1 = 0 is shown 
in [Fig. 1]. 
 
 Here, we assume that the lengths of the faults are 
large compared with their depths, and we take the 
displacements, stresses and strains to be independent of y1 
and depended on y2, y3 and the time t. With this 
assumption, the components of displacement, stress and 
strain u1, (τ12,τ13) and (e12,e13) in the viscoelastic layer 
and u1

' , (τ12
' ,τ13

' ) and (e12
' ,e13

' ) in the viscoelastic half-space 
associated with the strike-slip movement only and are 
independent of the other components of displacement, 
stress and strain. We shall consider here the strike-slip 
movements only. 
 
 For the viscoelastic layer the constitutive equations 
are taken to be  
 

         �
1
𝜂1

+
1
𝜇1

 
𝜕
𝜕𝑡
�  𝜏12 =

𝜕2𝑢1
𝜕𝑡𝜕𝑦2

                      

                                                                                         (1) 

        �
1
𝜂1

+
1
𝜇1

 
𝜕
𝜕𝑡
�  𝜏13 =

𝜕2𝑢1
𝜕𝑡𝜕𝑦3

    

                  
         (0 ≤ 𝑦3 ≤ 𝐻,−∞ ≤ 𝑦2 ≤ ∞, 𝑡 ≥ 0 
   
 where, μ1 and  η1 are the effective rigidity and 
viscosity of the viscoelastic layer respectively. 
 
 For the viscoelastic half space the constitutive 
equations are taken to be  
 

         �
1
𝜂2

+
1
𝜇2

 
𝜕
𝜕𝑡
�   𝜏12′ =

𝜕2𝑢1′

𝜕𝑡𝜕𝑦2
                         

                                                                                         (2) 

         �
1
𝜂2

+
1
𝜇2

 
𝜕
𝜕𝑡
�  𝜏13′ =

𝜕2𝑢1′

𝜕𝑡𝜕𝑦3
    

  
         ( 𝑦3 ≥ 𝐻,−∞ ≤ 𝑦2 ≤ ∞, 𝑡 ≥ 0), 
  
 where, μ2 and  η2 are the effective rigidity and 
viscosity of the viscoelastic half space respectively. The 
time t is being measured from a suitable instant when 
there is no seismic movement. 
 
 We consider slow quasi-static aseismic deformation 
of the system when the inertial terms in the stress 
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equations of motion are small and can be neglected, as 
explained by Mukhopadhyay et al. (1980a). For such 
aseismic deformation, the stresses satisfy the relations: 
 

         
𝜕
𝜕𝑦2

(𝜏12) +
𝜕
𝜕𝑦3

(𝜏13) = 0   ( 0 ≤ 𝑦3 ≤ 𝐻) 

     

          
𝜕
𝜕𝑦2

(𝜏12′ ) +
𝜕
𝜕𝑦3

(𝜏13′ ) = 0  (𝑦3 ≥ 𝐻)                      (3) 

 
         (−∞ ≤ 𝑦2 ≤ ∞, 𝑡 ≥ 0)  
       
 From (1), (2) and (3) we find that: 
 

         
𝜕
𝜕𝑡

(∇2𝑢1) = 0  and 
 

         
𝜕
𝜕𝑡

(∇2𝑢1′ ) = 0   which are satis�ied if, 
           

         ∇2𝑢1 = 0       ( 0 ≤ 𝑦3 ≤ 𝐻) 
      

         ∇2𝑢1′ = 0      (𝑦3 ≥ 𝐻)                                             (4) 
                                                                                      

        (−∞ ≤ 𝑦2 ≤ ∞, 𝑡 ≥ 0) 
 
 Boundary conditions are 
 
         𝜏13 = 0   𝑎𝑡 𝑦3 = 0    

         
         𝜏13 = 𝜏13′    𝑎𝑡  𝑦3 = 𝐻     

      
𝑢1 = 𝑢1′    𝑎𝑡  𝑦3 = 𝐻    

         
𝜏13′ → 0   𝑎𝑠  𝑦3 → ∞                                               (5)       

                                                                                    
         (−∞ ≤ 𝑦2 ≤ ∞, 𝑡 ≥ 0) 
 
 We also assume that at a large distance from the fault 
plane there is a shear strain, maintained by the tectonic 
forces, i.e., we have conditions 
 

𝑒12 → (𝑒12)0∞ + 𝑓(𝑡) 
 

 𝑒12′ → (𝑒12′ )0∞ + 𝑓(𝑡)𝑎𝑠 |𝑦2| → ∞ , for 𝑡 ≥ 0       (6) 
 

 where, 
 

(e12)0∞ = lim
|𝑦2|→∞  

(e12)0  and 

       
(e12′ )0∞ = lim

|𝑦2|→∞  
(e12′ )0 

 
(𝑒12)0 and  (𝑒12′ )0 are the values of 𝑒12  and  𝑒12′   

respectively at t = 0, where 𝑓(𝑡) is a continuous and 

increasing function of t, such that 𝑓(0) = 0. The same 
function 𝑓(𝑡) is taken for both 𝑒12   and  𝑒12′   to ensure that 
the boundary condition 𝑢1 = 𝑢1′    𝑎𝑡  𝑦3 = 𝐻  is satisfied 
as |𝑦2| → ∞  and there is a uniform rate of change of shear 
strains  𝑒12  and  𝑒12′   as |𝑦2| → ∞ . 

 
3. Displacements and stresses in the absence of fault 

movement 
 
     We take the displacements and stresses to be 
continuous throughout the system. We measure the time 
from a suitable instant after which the conditions (1) - (6) 
become applicable, so that they are valid for 𝑡 ≥ 0. We 
assume that (𝑢1)0 , (𝑢1′ )0 , (𝜏12)0 , … , (𝑒13′ )0  are the 
values of 𝑢1 ,𝑢1′  , 𝜏12 , … . , 𝑒13′   at time 𝑡 = 0. We take 
Laplace transforms of (1) - (6) with respect to t. This gives 
a boundary value problem. Inversion of the Laplace 
transform then gives the solution for the displacements 
and stresses. As (𝜏13)0 and (𝜏13′ )0 satisfy (1) - (6), they 
have the same value at 𝑦3 = 𝐻. Let 𝑇𝐻(𝑦2) be the 
common value of (𝜏13)0 and (𝜏13′ )0 at 𝑦3 = 𝐻, i.e.,  
 
 𝑇𝐻(𝑦2) = {(𝜏13)0}𝑦3=𝐻 = {(𝜏13′ )0}𝑦3=𝐻  
 
 In case when 𝑇𝐻(𝑦2) = 𝑇𝐻(a constant) ≠ 0, we 
obtain : 
 

𝑢1 = (𝑢1)0 + 𝑓(𝑡).𝑦2 +
𝑇𝐻𝜂1
𝜇1𝜇2

�
𝜇2
𝜂2
−
𝜇1
𝜂1
� �1 − 𝑒−

𝜇1
𝜂1
𝑡�  .𝐻 

         

𝜏12 = (𝜏12)0𝑒
−𝜇1𝜂1

𝑡 + 𝜇1 � 𝑓 ′(𝜏) 𝑒−
𝜇1
𝜂1

(𝑡−𝜏)
𝑡

0
 𝑑𝜏      

                     

𝜏13 = (𝜏13)0𝑒
−𝜇1𝜂1

𝑡                             
 
𝑒12 = (𝑒12)0 + 𝑓(𝑡)                                                     (7) 
 

 for the viscoelastic layer, and     
 

𝑢1′ = (𝑢1′ )0 + 𝑓(𝑡).𝑦2 + 𝑇𝐻𝜂1
𝜇1𝜇2

�𝜇2
𝜂2
− 𝜇1

𝜂1
� �1 − 𝑒−

𝜇1
𝜂1
𝑡� .𝑦3     

   

𝜏12′ = (𝜏12′ )0𝑒
−𝜇2𝜂2

𝑡 + 𝜇2 � 𝑓 ′(𝜏) 𝑒−
𝜇2
𝜂2

(𝑡−𝜏)
𝑡

0
 𝑑𝜏 

𝜏13′ = (𝜏13′ )0𝑒
−𝜇2𝜂2

𝑡 + 𝑇𝐻 �𝑒
−𝜇1𝜂1

𝑡 − 𝑒−
𝜇2
𝜂2
𝑡�    

 

𝑒12′ = (𝑒12′ )0 + 𝑓(𝑡)                                                (8)         

                                                                                          
 for the viscoelastic half space. 
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 From the above solution we find that the stress 
component 𝜏12 increases with time. We assume that the 
rheological properties of the layer and the half space are 
such that when the relevant stress components reach a 
certain threshold value, 𝜏𝑐1(say) either of the fault F1 or F2 
slips after a time (say T1). The stress accumulation pattern 
changes significantly after the movement across the fault. 
 
4. Displacements and stresses after the 

commencement of fault movement 
 
 We assume that the sudden movement of one of the 
slipping fault, say F1, occurs at time 𝑡 = 𝑇1(> 0) while 
the other fault F2 remains locked. All the previous 
equations remains valid for 𝑡 ≥ 𝑇1 also, but in addition we 
have the following conditions which characterize the slip 
across F1 : 
 

[u1]F1 = U1 ∙ g1(y3′ ) ∙ H(𝑡1) across F1  
 
(𝑦2′ = 0, 0 ≤ 𝑦3′ ≤ D1), t1 ≥ 0 (𝑡1 = 𝑡 − 𝑇1)    (9)
                        

 where [𝑢1]𝐹1  is the relative displacement across F1, 
i.e.,  

[u1]F1 = lim
y2

′ →0+0
(u1) − lim

y2
′ →0−0

(u1) ,   

 
H(t1) = 0, for t1 ≤ 0  

        
                     = 1, for t1 > 0 
 

𝑔1(𝑦3′ ) give the spatial dependence of the slip 
movement along the fault F1. 
 
 We assume that 𝑢1 ,𝑢1′  , 𝜏12, 𝜏13,  𝜏12′  𝑎𝑛𝑑 𝜏13′  are 
continuous everywhere in the model. Let us consider the 
model after the commencement of fault slip across F1. 
 
 Let us first consider the slip across the fault F1 
after a time T1. Then sudden movement across F1 
generates disturbances in the near regions. Our constitu-
tive equations do not remain valid when the near region is 
disturbed. We leave out this short duration of time. 
However, the disturbances gradually die out and               
a seismic state re-established. We re-consider our model 
after the restoration of aseismic state in the region. We 
now try to find solutions for  𝑢1 ,𝑢1′  , 𝜏12, 𝜏13, 𝜏12′ , 𝜏13′  in 
the form : 
 

𝑢1 = (𝑢1)1 + (𝑢1)2  
            
𝑢1′ = (𝑢1′ )1 + (𝑢1′ )2 

                 
𝜏12 = (𝜏12)1 + (𝜏12)2 

𝜏13 = (𝜏13)1 + (𝜏13)2 
 

𝜏12′ = (𝜏12′ )1 + (𝜏12′ )2 
              

𝜏13′ = (𝜏13′ )1 + (𝜏13′ )2                                           (10) 
 
 where, (𝑢1)1 , (𝑢1′ )1 , (𝜏12)1 , … , (𝜏13′ )1 are 
continuous everywhere in the model and satisfy (1) - (6) ; 
they are therefore given by (7) – (8).  
 
 We now have to find the values of  
(𝑢1)2 , (𝑢1′ )2 , (𝜏12)2 , … , (𝜏13′ )2 which depend on the 
fault slip across F1. The values of 
(𝑢1)2 , (𝑢1′ )2 , (𝜏12)2 , … , (𝜏13′ )2 are assumed to be                 
zero for 𝑡 ≤ 𝑇1, satisfying (1) – (6). So for 
(𝑢1)2 , (𝑢1′ )2 , (𝜏12)2 , … , (𝜏13′ )2 for 𝑡 = 𝑡1 we have 
constitutive equations, equations of motion, boundary 
conditions (1) – (5), equation (8) and equation given by 
(10) which replace by (6)   
     

(𝑒12)2 → 0 
      
(𝑒12′ )2 → 0         as �𝑦2′ � → ∞   (𝑡1 ≥ 0)       (11) 
                                                  

 We apply modified form of Green’s function 
technique developed by Maruyama (1966) and Rybicki 
(1971, 1973) and we obtain : 
 

(𝑢1)2 =
𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

2𝜋
 ∙ 𝜓1(𝑦2,𝑦3 , 𝑡) 

 

(𝜏12)2 =
𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇1)  ∙ 𝜓2(𝑦2 ,𝑦3, 𝑡) 
 

(𝜏13)2 =
𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇1)  ∙ 𝜓3(𝑦2 ,𝑦3, 𝑡) 
 

(𝑢1′ )2 =
𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

𝜋(𝜇1 + 𝜇2)
 � 
𝜂1(𝜇1 + 𝜇2)
𝜇1(𝜂1 + 𝜂2)

+
𝜇1𝜂2 − 𝜇2𝜂1
𝜇1(𝜂1 + 𝜂2)

 𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1)�

∙ 𝜙1(𝑦2 ,𝑦3, 𝑡) 
 

 

(𝜏12′ )2 =
𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

𝜋
∙

𝜇1𝜇2
(𝜇1+𝜇2)

𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1)

∙ 𝜙2(𝑦2,𝑦3, 𝑡) 
 

(𝜏13′ )2 =
𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

𝜋
∙

𝜇1𝜇2
(𝜇1+𝜇2)

𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1)

∙ 𝜙3(𝑦2,𝑦3, 𝑡) 
                                                                                 (12)     

       where, 
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𝜓1(𝑦2,𝑦3, 𝑡) = � 𝑔1(𝜉3′ ) [ 
𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1

𝐴1

𝐷1

0
+ 

𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1
𝐴2

]𝑑𝜉3′ + �𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
 

�
𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1 − 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴3
+
𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1 − 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴4
+
𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1 + 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴5
+
𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1 + 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴6
� 𝑑𝜉3′              (13) 

 

𝜓2(𝑦2,𝑦3 , 𝑡) = � 𝑔1(𝜉3′ )
𝐷1

0
 

[
𝜉3′ 2𝑠𝑖𝑛𝜃1 + (𝑦32 − 𝑦22)𝑠𝑖𝑛𝜃1 + 2𝑦2𝑦3𝑐𝑜𝑠𝜃1 − 2𝑦3𝜉3′

𝐴12
+ 

𝜉3′ 2𝑠𝑖𝑛𝜃1 − (𝑦22 − 𝑦32)𝑠𝑖𝑛𝜃1 − 2𝑦2𝑦3𝑐𝑜𝑠𝜃1 + 2𝑦3𝜉3′

𝐴22
]𝑑𝜉3′  

+ � 𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
�
𝜓21
𝐴32

+
𝜓22
𝐴42

+
𝜓23
𝐴52

+
𝜓24
𝐴62

� 𝑑𝜉3′  

                                                                                                 (14) 
 where, 
 

 𝜓21 = 𝜉3′ 2𝑠𝑖𝑛𝜃1 − 2𝜉3′ (𝑦3 + 2𝑚𝐻) − {𝑦22 −
(𝑦3 + 2𝑚𝐻)2}sin𝜃1 + 2𝑦2(𝑦3 + 2𝑚𝐻)cos𝜃1 

                
𝜓22 =  𝜉3′ 2𝑠𝑖𝑛𝜃1 + 2𝜉3′ (𝑦3 + 2𝑚𝐻) 
−{𝑦22 − (𝑦3 + 2𝑚𝐻)2}𝑠𝑖𝑛𝜃1 − 2𝑦2(𝑦3 + 2𝑚𝐻)𝑐𝑜𝑠𝜃1 

                
𝜓23 =  𝜉3′ 2𝑠𝑖𝑛𝜃1 − 2𝜉3′ (𝑦3 − 2𝑚𝐻) − 
{𝑦22 − (𝑦3 − 2𝑚𝐻)2}𝑠𝑖𝑛𝜃1 + 2𝑦2(𝑦3 − 2𝑚𝐻)𝑐𝑜𝑠𝜃1 
                
𝜓24 =  𝜉3′ 2𝑠𝑖𝑛𝜃1 + 2𝜉3′ (𝑦3 − 2𝑚𝐻) − 
{𝑦22 − (𝑦3 − 2𝑚𝐻)2}𝑠𝑖𝑛𝜃1 − 2𝑦2(𝑦3 − 2𝑚𝐻)𝑐𝑜𝑠𝜃1 
 

𝜓3(𝑦2,𝑦3, 𝑡) = � 𝑔1(𝜉3′ )
𝐷1

0
 

[
−𝜉3′ 2𝑐𝑜𝑠𝜃1 + 2𝜉3′ 𝑦2 − (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 2𝑦2𝑦3𝑠𝑖𝑛𝜃1

𝐴12
+  

𝜉3′ 2𝑐𝑜𝑠𝜃1 − 2𝜉3′ 𝑦2 + (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 2𝑦2𝑦3𝑠𝑖𝑛𝜃1
𝐴22

]𝑑𝜉3′   

+ � 𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
 �
𝜓31
𝐴32

+
𝜓32
𝐴42

+
𝜓33
𝐴52

+
𝜓34
𝐴62

� 𝑑𝜉3′  

                                                                              (15)                                                             
 where, 
 

𝜓31 = −𝜉3′ 2𝑐𝑜𝑠𝜃1 + 2𝜉3′ 𝑦2 − (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 
−2𝑦2𝑦3𝑠𝑖𝑛𝜃1 − 4𝑚𝐻(𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1)

+ 4𝑚2𝐻2𝑐𝑜𝑠𝜃1 

𝜓32 = 𝜉3′ 2𝑐𝑜𝑠𝜃1 − 2𝜉3′ 𝑦2 + (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 
         2𝑦2𝑦3𝑠𝑖𝑛𝜃1 + 4𝑚𝐻 (𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1) − 
        (4𝑚2𝐻2𝑐𝑜𝑠𝜃1 

 
𝜓33=−𝜉3′ 2𝑐𝑜𝑠𝜃1 + 2𝜉3′ 𝑦2 − (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 −
           2𝑦2𝑦3𝑠𝑖𝑛𝜃1 + 4𝑚𝐻𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1) + 
          (4𝑚2𝐻2𝑐𝑜𝑠𝜃1 

                
𝜓34 = 𝜉3′ 2𝑐𝑜𝑠𝜃1 − 2𝜉3′ 𝑦2 + (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 

                     2𝑦2𝑦3𝑠𝑖𝑛𝜃1 − 4𝑚𝐻(𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1) −  
4𝑚2𝐻2𝑐𝑜𝑠𝜃1 

 
 

𝜙1(𝑦2 ,𝑦3, 𝑡) = � 𝑔1(𝜉3′ )
𝐷1

0
 

�
𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1

𝐴1
 +

𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1
𝐴2

 � 𝑑𝜉3′ + 

� 𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
�
𝑦2𝑠𝑖𝑛𝜃1 − 𝑦3𝑐𝑜𝑠𝜃1 + 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴5
    

+
𝑦2𝑠𝑖𝑛𝜃1 + 𝑦3𝑐𝑜𝑠𝜃1 + 2𝑚𝐻𝑐𝑜𝑠𝜃1

𝐴6
� 𝑑𝜉3′                       (16) 

 
                  

𝜙2(𝑦2 ,𝑦3, 𝑡) = � 𝑔1(𝜉3′ )
𝐷1

0
 

[
𝜉3′ 2𝑠𝑖𝑛𝜃1 + (𝑦32 − 𝑦22)𝑠𝑖𝑛𝜃1 + 2𝑦2𝑦3𝑐𝑜𝑠𝜃1 − 2𝑦3𝜉3′

𝐴12
+ 

𝜉3′ 2𝑠𝑖𝑛𝜃1 − (𝑦22 − 𝑦32)𝑠𝑖𝑛𝜃1 − 2𝑦2𝑦3𝑐𝑜𝑠𝜃1 + 2𝑦3𝜉3′

𝐴22
]𝑑𝜉3′  

+ � 𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
�
𝜓23
𝐴52

+
𝜓24
𝐴62

� 𝑑𝜉3′                (17) 

     
𝜙3(𝑦2 ,𝑦3, 𝑡) = � 𝑔1(𝜉3′ )

𝐷1

0
 

[
−𝜉3′ 2𝑐𝑜𝑠𝜃1 + 2𝜉3′ 𝑦2 − (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 2𝑦2𝑦3𝑠𝑖𝑛𝜃1

𝐴12
  

𝜉3′ 2𝑐𝑜𝑠𝜃1 − 2𝜉3′ 𝑦2 + (𝑦22 − 𝑦32)𝑐𝑜𝑠𝜃1 − 2𝑦2𝑦3𝑠𝑖𝑛𝜃1
𝐴22

]𝑑𝜉3′    

+ �𝐴𝑚(𝑡)
∞

𝑚=1

� 𝑔1(𝜉3′ )
𝐷1

0
 �
𝜓33
𝐴52

+
𝜓34
𝐴62

� 𝑑𝜉3′            (18) 

         
 where,   
             

  𝐴1 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 + 𝑦3𝑠𝑖𝑛𝜃1) + 𝑦22 + 𝑦32 
 

  𝐴2 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 − 𝑦3𝑠𝑖𝑛𝜃1) + 𝑦22 + 𝑦32 
        
𝐴3 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 + 𝑦3𝑠𝑖𝑛𝜃1 + 2𝑚𝐻𝑠𝑖𝑛𝜃1) 
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+𝑦22 + 𝑦32 + 4𝑦3𝑚𝐻 + 4𝑚2𝐻2 
𝐴4 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 − 𝑦3𝑠𝑖𝑛𝜃1 + 2𝑚𝐻𝑠𝑖𝑛𝜃1) 

+𝑦22 + 𝑦32 − 4𝑦3𝑚𝐻 + 4𝑚2𝐻2 
        

𝐴5 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 + 𝑦3𝑠𝑖𝑛𝜃1 − 2𝑚𝐻𝑠𝑖𝑛𝜃1) 
                  +𝑦22 + 𝑦32 − 4𝑦3𝑚𝐻 + 4𝑚2𝐻2 
        

𝐴6 = 𝜉3′ 2 − 2𝜉3′ (𝑦2𝑐𝑜𝑠𝜃1 − 𝑦3𝑠𝑖𝑛𝜃1 − 2𝑚𝐻𝑠𝑖𝑛𝜃1) 
+𝑦22 + 𝑦32 + 4𝑦3𝑚𝐻 + 4𝑚2𝐻2 
        

𝐴𝑚(𝑡) = 𝐿−1 � �
𝜇1��� − 𝜇2���
𝜇1��� + 𝜇2���

�
𝑚

�                                    (19) 

                      
where, 
 
μ1�=

p
1
η1

+ p
μ1

  and  μ2� =
p

1
η2

+ p
μ2

            

 
where, p is the Laplace transform variable.  
   

 From the solution we find that the stress further 
accumulates due to the tectonic activities and stresses 
either accumulates or releases due to the movement across 
the fault F1. We assume that the second fault F2 slips after 
a time T2 when the accumulated relevant stress near it 
exceeds the critical value 𝜏𝑐2(say). 
 
 The slip condition is characterize by : 
      

[u1]F2 = U2 ∙ g2(z3′ ) ∙ H(t2)  across F2 

 
 (z2′ = 0, 0 ≤ z3′ ≤ D2), t2 ≥ 0 (t2 = t − T2)    (20) 

  
 where, [𝑢1]𝐹2  is the relative displacement across F2,  
 

[u1]F2 = lim
z2

′ →0+0
(u1) − lim

z2
′ →0−0

(u1) ,   

 
 H(t2) = 0, for t2 ≤ 0 

 
= 1, for t2 > 0 

 
𝑔2(𝑧3′ ) give the spatial dependence of the slip 

movement along the fault F2. 
 
 Proceeding in a similar way, we obtain the final 
solution as : 

 
𝑢1 = (𝑢1)1 + (𝑢1)2 + (𝑢1)3 
 
𝑢1′ = (𝑢1′ )1 + (𝑢1′ )2 + (𝑢1′ )3 
 
𝜏12 = (𝜏12)1 + (𝜏12)2 + (𝜏12)3 

𝜏13 = (𝜏13)1 + (𝜏13)2 + (𝜏13)3 
 

𝜏12′ = (𝜏12′ )1 + (𝜏12′ )2 + (𝜏12′ )3  
 

𝜏13′ = (𝜏13′ )1 + (𝜏13′ )2 + (𝜏13′ )3                            (21)           
                                             
 We now have to find the values of  
(𝑢1)3 , (𝑢1′ )3 , (𝜏12)3 , … , (𝜏13′ )3 which depend on the 
fault slip across F2. The values of 
(𝑢1)3 , (𝑢1′ )3 , (𝜏12)3 , … , (𝜏13′ )3 are assumed to be zero 
for 𝑡 ≤ 𝑇2, satisfying (1) - (6). So for 
(𝑢1)3 , (𝑢1′ )3, (𝜏12)3 , … , (𝜏13′ )3 for 𝑡 = 𝑡2 we have 
constitutive equations, equations of motion, boundary 
conditions (1) - (5), equation (19) and equation given by 
(21) which replace by (6) : 
     

(𝑒12)3 → 0 
 

(𝑒12′ )3 → 0         as �𝑧2′ � → ∞   (𝑡2 ≥ 0)                (22)                                                         
 
 Proceeding as earlier we obtain: 
 

(𝑢1)3 =
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 ∙ 𝜓1′ (𝑧2, 𝑧3, 𝑡) 

 

    (𝜏12)3 =
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇2)  ∙ 𝜓2′ (𝑧2, 𝑧3, 𝑡) 
 

 (𝜏13)3 =
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇2)  ∙ 𝜓3′ (𝑧2, 𝑧3, 𝑡) 
 

(𝑢1′ )3 =
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋(𝜇1 + 𝜇2)
 [ 
𝜂1(𝜇1 + 𝜇2)
𝜇1(𝜂1 + 𝜂2)

+ 

𝜇1𝜂2 − 𝜇2𝜂1
𝜇1(𝜂1 + 𝜂2)

 𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2)] ∙ 𝜙1′ (𝑧2, 𝑧3, 𝑡) 

   

(𝜏12′ )3 =
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋
  . 

𝜇1𝜇2
(𝜇1+𝜇2)

𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2) ∙ 𝜙2′ (𝑧2, 𝑧3, 𝑡) 

 
 

(𝜏13′ )3 =
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋
∙

𝜇1𝜇2
(𝜇1+𝜇2)

𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2)

∙ 𝜙3′ (𝑧2, 𝑧3, 𝑡)                                        (23) 
                                                     
 where, 𝜓1′ , 𝜓2′ , 𝜓3′ ,  𝜙1′ , 𝜙2′ , 𝜙3′  have similar 
expressions as those of 𝜓1,𝜓2,𝜓3,𝜙1,𝜙2,𝜙3 respectively 
as given in (12) – (17) and can be obtained from them on 
replacing 𝜉3′ ,𝑔1(𝜉3′ ),𝐷1,𝜃1,𝑦2,𝑦3, 𝑡1 by 𝜂3′ ,𝑔2(𝜂3′ ),𝐷2, 
𝜃2, 𝑧2, 𝑧3 and 𝑡2 respectively. 
 
 Thus, the final solution for displacements and 
stresses for 𝑡 > 𝑇2 are given by :   
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𝑢1 = (𝑢1)0 + 𝑓(𝑡).𝑦2 +
𝑇𝐻𝜂1
𝜇1𝜇2

�
𝜇2
𝜂2
−
𝜇1
𝜂1
� 

� 1 − 𝑒−
𝜇1
𝜂1
𝑡�  .𝐻 +

𝑈1 ∙ 𝐻(𝑡 − 𝑇1)
2𝜋

 ∙ 𝜓1(𝑦2 ,𝑦3, 𝑡)

+
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 ∙ 𝜓1′ (𝑧2, 𝑧3, 𝑡) 

 

𝜏12 = (𝜏12)0𝑒
−𝜇1𝜂1

𝑡 + 𝜇1 � 𝑓 ′(𝜏) 𝑒−
𝜇1
𝜂1

(𝑡−𝜏)
𝑡

0
 𝑑𝜏 + 

𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)
2𝜋

 𝑒−
𝜇1
𝜂1

 (𝑡−𝑇1)  ∙ 𝜓2(𝑦2,𝑦3, 𝑡) 

+
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇2)  ∙ 𝜓2′ (𝑧2, 𝑧3, 𝑡) 
 

 𝜏13 = (𝜏13)0𝑒
−𝜇1𝜂1

𝑡 +
𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇1) .  

 𝜓3(𝑦2 ,𝑦3, 𝑡) +
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

2𝜋
 𝑒−

𝜇1
𝜂1

 (𝑡−𝑇2).  

𝜓3′ (𝑧2, 𝑧3, 𝑡) 
 

𝑢1′ = (𝑢1′ )0 + 𝑓(𝑡).𝑦2 +
𝑇𝐻𝜂1
𝜇1𝜇2

�
𝜇2
𝜂2
−
𝜇1
𝜂1
� 

          � 1 − 𝑒−
𝜇1
𝜂1
𝑡�  .𝑦3  +

𝜇1 ∙ 𝑈1 ∙ 𝐻(𝑡 − 𝑇1)
𝜋(𝜇1 + 𝜇2)

  

 � 
𝜂1(𝜇1 + 𝜇2)
𝜇1(𝜂1 + 𝜂2)

+
𝜇1𝜂2 − 𝜇2𝜂1
𝜇1(𝜂1 + 𝜂2)

 𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1)�. 

𝜙1(𝑦2,𝑦3, 𝑡) +
𝜇1 ∙ 𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋(𝜇1 + 𝜇2)
  

� 
𝜂1(𝜇1 + 𝜇2)
𝜇1(𝜂1 + 𝜂2) +

𝜇1𝜂2 − 𝜇2𝜂1
𝜇1(𝜂1 + 𝜂2)  𝑒−

𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2)�. 

∙ 𝜙1′ (𝑧2, 𝑧3, 𝑡) 
 

 𝜏12′ = (𝜏12′ )0𝑒
−𝜇2𝜂2

𝑡 + 𝜇2 � 𝑓 ′(𝜏) 𝑒−
𝜇2
𝜂2

(𝑡−𝜏)
𝑡

0
 𝑑𝜏 + 

𝑈1 ∙ 𝐻(𝑡 − 𝑇1)
𝜋

∙
𝜇1𝜇2

(𝜇1+𝜇2)
∙ 𝑒−

𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1). 

∙ 𝜙2(𝑦2 ,𝑦3, 𝑡) +
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋
. 

𝜇1𝜇2
(𝜇1+𝜇2)

∙ 𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2) ∙ 𝜙2′ (𝑧2, 𝑧3, 𝑡) 

 

 𝜏13′ = (𝜏13′ )0𝑒
−𝜇2𝜂2

𝑡 + 𝑇𝐻 �𝑒
−𝜇1𝜂1

𝑡 − 𝑒−
𝜇2
𝜂2
𝑡� + 

𝑈1 ∙ 𝐻(𝑡 − 𝑇1)
𝜋

∙
𝜇1𝜇2

(𝜇1+𝜇2)
∙ 𝑒−

𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇1). 

𝜙3(𝑦2 ,𝑦3, 𝑡) +
𝑈2 ∙ 𝐻(𝑡 − 𝑇2)

𝜋
∙

𝜇1𝜇2
(𝜇1+𝜇2)

 

∙ 𝑒−
𝜇1𝜇2(𝜂1+𝜂2)
𝜂1𝜂2(𝜇1+𝜇2) (𝑡−𝑇2) ∙ 𝜙3′ (𝑧2, 𝑧3, 𝑡)                  (24) 

     
 where, 𝜓1,𝜓2,𝜓3,𝜙1,𝜙2,𝜙3 are given in (12) - (17) 
and 𝜓1′ ,𝜓2′ ,𝜓3′ ,𝜙1′ ,𝜙2′ ,𝜙3′  have similar expressions as 
those of 𝜓1,𝜓2,𝜓3,𝜙1,𝜙2,𝜙3 and can be obtained from 

them on replacing 𝜉3′ ,𝑔1(𝜉3′ ),𝐷1,𝜃1,𝑦2,𝑦3, 𝑡1 by 
𝜂3′ ,𝑔2(𝜂3′ ),𝐷2,  𝜃2, 𝑧2, 𝑧3 and 𝑡2 respectively. 
 
5. Numerical computations 
 
 We consider the following values of the model 
parameters as suggested in different books (Cathles, 1975) 
and papers [Clift, P. et al. (2002) and Karato, (2010)] : 
 

𝜇1 = 3.5 × 1011𝑑𝑦𝑛 𝑐𝑚−2  
 
𝜇2 = 4.0 × 1011𝑑𝑦𝑛 𝑐𝑚−2    
 
𝜂1 = 6.0 × 1020𝑝𝑜𝑖𝑠𝑒 
 
𝜂2 = 2.0 × 1021𝑝𝑜𝑖𝑠𝑒 

 
           
𝑓(𝑡) = 𝑘 ∙ 𝑡,   with   𝑘  =   0.6 ×  10−12𝑦𝑒𝑎𝑟−1  (as  

compatible with the observational values) 
 

𝐻 = 60 𝑘𝑚 
 
𝐷1 = 10 𝑘𝑚 
 
𝐷2 = 15 𝑘𝑚 
 
𝑑1 = 10 𝑘𝑚 
 
𝑑2 = 15 𝑘𝑚 
             
𝐷 = 7 𝑘𝑚 
             
𝜃1 =

𝜋
3

 
 
𝜃2 =

𝜋
2

 
             
𝑈1 = 100 𝑐𝑚 
             
𝑈2 = 50 𝑐𝑚 
 

𝑔1(𝑦3′ ) = 1 −
3𝑦3′2

𝐷12
+

2𝑦3′3

𝐷13
 

 

𝑔2(𝑧3′ ) = 1 −
3𝑧3′2

𝐷22
+

2𝑧3′3

𝐷23
 

 
 We compute the following quantities numerically 
(taking 𝑚 = 1, for 𝑚 ≥ 2 the corresponding terms will be 
negligibly small) : 
 
(a) Displacement on the free surface due to movement 
across both the faults F1 and  F2 [Fig. 2]. 
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Fig.2.   A plot showing displacement on the free surface due to the 

movement across both the faults F1 and F2 
 
 

 
Fig.3. A plot showing strain on the free surface (y2=0, y3=0) against       
time due to the movement across the fault F1 only 
 
 
 
(b) Strain on the free surface due to : 
 
(i) Movement across the fault F1 only, 
 
(ii) Movement across the fault F2 only, 
 
(iii) After the movement across both the faults F1 and F2 
at a point y2=0, y3=0 against time [Figs. (3-5)]. 
 
(c) Region of stress accumulation and release in the 
layer due to the : 
 
(i) Movement across the fault F1 only, 
 
(ii) Movement across the fault F2 only, 

 
(iii) After the movement across both the faults F1 and F2 

[Figs. (6-8)]. 

 
Fig.4. A plot showing strain on the free surface (y2=0, y3=0) against 

time due to the movement across the fault F2 only 
 

 
Fig.5. A plot showing strain on the free surface (y2=0, y3=0) against 

time due to the movement across both the faults F1 and F2 

 
 
(d) Contour map showing the stress accumulation / 
release due to the movement across : 
 
(i) The fault F1 only, 
 
(ii) The fault F2 only, 
 
(iii) Both the faults F1 and F2 [Figs. (9-12)]. 
 
 The above figure [Fig. 2] show the displacement           
(in cms.) on the free surface (y3 = 0) due to the movement 
across both the faults F1 and F2.  
 
 It is found that in each case, the magnitude of         
the strain at the free surface is of the order of 10−6 per 
year which is in good conformity with the observed 
ground deformation during the aseismic periods in 
seismically active regions [Figs. (3-5)]. 
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Fig.6.  A diagram showing region indication for stress accumulation 

and  release  due to the movement across the fault F1 only 
 

 

 
Fig.7. A diagram showing region indication for stress accumulation 

and  release due  to the movement across the fault F2 only 
 

 

 
Fig.8. A diagram showing region indication for stress accumulation 

and  release due to the movement across both  the faults F1 
and F2  

 
Fig.9. A map showing  stress accumulation  / release due  to the 

movement across the fault F1 only   
 

 

 

 

 
Fig.10. A map showing stress accumulation /release due to the 

movement across the fault F2 only 
 
 
 
 

 
Fig.11. A map showing  stress accumulation  / release due                   

to the movement across both  the faults F1 and F2 
(θ1= π

3
, θ2= π

2
) 
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Fig.12. A map showing  stress accumulation  / release due to the 

movement across both  the faults F1 and F2 (θ1= π
3

, θ2= π
4

) 
 

 
 The regions of stress accumulation and release have 
been clearly shown in the above figures[Fig. (6-8)] . 
 
 The contour maps in the above figures [Fig. (9-12)] 
show the nature of stress accumulation / release in the 
layer due to the fault movements across F1 and / or F2 or 
both. 
 
6. Conclusion and remarks 

 
(i) In the above results we find that the strain on the free 
surface due to the movements of the faults is of the order 
of 10-6 per year and gradually decreases with time. 
 
(ii) The region of stress accumulation and release in the 
layer depends on the orientation and the relative positions 
of the faults. 
 
(iii) The magnitude of stress accumulation / release                  
in the near region of the faults varies from -8 bars                     
to +8 bars, which is large compared to the values                    
± 0.2 bar in the half space model [Debnath and              
Sen (2014, 2015)]. 
 
(iv) Interaction effect between the two faults depends 
significantly in the relative positions of the faults. 
 
(v) This approach may help in understanding the 
earthquake generating process to identify possible 
earthquake precursor. 
 
(vi) The lithosphere-asthenosphere system may be 
represented in a more realistic way by introducing the 
concept of functionally graded materials with gradual and 
continuous changes in their rheological behavior. Such 
model will involved more complicated mathematical 
techniques. 
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