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सार — यह शोध लेख कर्नाटक के सूखनग्रस्त क्षेत्रों कन गहर् सनांख्ययकीय विश्लेषण प्रस्ततु करतन है, ख्िसमें 

बनगलकोट, चित्रदगुा, कोप्पलन और रनयिरू पर ध्यनर् कें द्रित ककयन गयन है। इस अध्ययर् कन उद्देश्य ऐततहनससक डेटन 
और गौससयर् और गनमन समश्रण वितरण मॉडल कन उपयोग करके इर् क्षते्रों में सूखे के पटैर्ा को प्रभनिी ढांग से मॉडल 
करर्न है। क्षेत्रीय सखेू की विशेषतनओां को समझरे् के सलए िणार्नत्मक सनांख्ययकी और खोिपणूा डेटन विश्लेषण ककयन 
गयन, इसके बनद सखेू की घटर्नओां की पररितत ातन और तीव्रतन को पकड़रे् के सलए गौससयर् और गनमन समश्रण मॉडल कन 
अर्पु्रयोग ककयन गयन। डेटन के वितरण को किट कररे् में सटीकतन और मिबतूी सुतर्ख्श्ित कररे् के सलए मॉडल के 
भीतर मनपदांडों कन अर्मुनर् अचधकतम सांभनिर्न अर्मुनर् तकर्ीक कन उपयोग करके लगनयन गयन थन। ये पररणनम 
गॉससयर् और गनमन मॉडलों के तुलर्नत्मक प्रदशार् को उिनगर करते हैं, और अध्ययर् ककए गए क्षेत्रों में सखेू की तीव्रतन 
और आिवृि को दशनारे् के सलए समचश्रत मॉडल कन प्रदशार् करते हैं। यह अध्ययर् कर्नाटक में सूखे की गततशीलतन के बनरे 
में बहुमूल्य िनर्कनरी प्रदनर् करतन है, ख्िससे सखेू के िोखखम के बेहतर आकलर् में मदद समलती है और प्रभनवित क्षेत्रों 
में सांसनधर् प्रबांधर् रणर्ीततयों को िनर्कनरी समलती है। 

 

ABSTRACT. This research article presents an in-depth statistical analysis of drought-prone regions in Karnataka, 
focusing on Bagalkote, Chitradurga, Koppala and Raichur. By using historical data and utilizing Gaussian and Gamma 

mixture distribution models, this study aims to model drought patterns effectively across these regions. Descriptive 

statistics and exploratory data analysis were conducted to understand regional drought characteristics, followed by the 
application of Gaussian and Gamma mixture models to capture the variability and intensity of drought occurrences. 

Parameters within the models were estimated using the maximum likelihood estimation technique to ensure accuracy and 

robustness in fitting the distribution to the data. The results highlight the comparative performance of Gaussian and 
Gamma models, demonstrating the mixture model’s to represent drought intensity and frequency across the regions 

studied. This study offers valuable insights into drought dynamics in Karnataka, contributing to improved drought risk 

assessment and informing resource management strategies in affected regions. 
 

Key words  –  Drought prone regions, Low rainfall, Gaussian distribution, Gamma distribution. 
 

 

 

1. Introduction 

 

Drought is a critical concern in regions with low to 

moderate rainfall, where variability significantly impacts 

agriculture, water resources, and socio-economic stability. 

In Karnataka, districts such as Bagalkote, Chitradurga, 

Koppala, and Raichur are highly vulnerable to recurrent 

droughts due to their erratic rainfall patterns, as reported 

by the IMD (2015) and the Karnataka State Natural 

Disaster Monitoring Centre (KSNDMC, 2020). 

Understanding and accurately modeling drought patterns 

in these areas is therefore vital for effective resource 

management and mitigation planning. Traditional 

statistical models often rely on Gaussian assumptions, 

where rainfall data is presumed to follow a normal 

distribution. However, monsoon rainfall in semi-arid 

regions frequently exhibits non-Gaussian characteristics 

such as skewness, heavy tails, and bimodality. Iyengar & 

Ramesh (2005) and Ramesh & Iyengar (2017) 

demonstrated that rainfall in India often deviates from 

Gaussian assumptions, making conventional models 

inadequate. Climatological studies also emphasize that 

rainfall distributions are commonly heavy-tailed and 

skewed, limiting the effectiveness of Gaussian-based 

methods (Wilks, 2011; Katz & Parlange, 1998). To 

address these limitations, researchers have explored 
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alternative statistical approaches that capture the non-

Gaussian structure of rainfall. Mixture models, in 

particular, provide greater flexibility in representing 

rainfall variability and extremes. Improved drought 

modeling has direct implications for agricultural planning, 

disaster preparedness, and climate adaptation. For 

example, Srivastava et al. (2009) and IMD (2021) 

highlight how accurate rainfall modeling enhances 

drought monitoring and supports decision-making in 

water resource management. In this study, we propose a 

Gaussian–Gamma Mixture (GGM) model to analyze 

rainfall in Karnataka’s drought-prone districts. The 

approach leverages the strengths of both Gaussian and 

Gamma distributions, providing a robust statistical 

framework to capture non-Gaussian rainfall patterns. By 

applying this model to historical data, we aim to improve 

the characterization of drought frequency and severity, 

offering valuable insights for drought risk assessment and 

resource planning in vulnerable regions. 

 

Wilhite & Glantz (1985) first emphasized drought 

definitions and indices such as SPI and PDSI, which 

formed the basis for meteorological drought 

categorization. Later improvements incorporated soil 

moisture and evapotranspiration, broadening their 

applicability. Time series models like ARIMA (Lee et al., 

2005) were then applied for forecasting, though limited in 

capturing non-linear dynamics. With the growth of data 

science, machine learning models such as ANN and SVM 

became prominent, with Nandgude et al. (2023) reviewing 

their advantages. Satellite-based indices further advanced 

monitoring; Ahmed et al. (2023) demonstrated VHI and 

NDVI, and Dutta et al. (2015) validated VCI for crop 

stress assessment. Several studies have highlighted the 

importance of using advanced indices and remote sensing 

techniques for drought assessment in India. For example, 

Dutta et al. (2015) demonstrated that the Vegetation 

Condition Index (VCI) effectively identifies agricultural 

drought stress, while Wable et al. (2019) compared 

multiple drought indices and emphasized the need for 

probability-based approaches in semi-arid basins. 

Similarly, Akhtar et al. (2021) and others reported 

increasing drought vulnerability in southern Indian states, 

underscoring the limitations of traditional Gaussian-based 

models. These findings collectively point to the necessity 

of developing more flexible statistical approaches-such as 

mixture models-that can better capture rainfall variability 

in drought-prone regions. Recent work has expanded into 

rainfall and hydrology: Kumar et al. (2019) detected local 

climate trends; Subrahmanyam & Cramsenthil, applied 

GPR for heavy rainfall prediction; Glasbey C. A & 

Nevison I. A (1997) transformed rainfall series into latent 

Gaussian variables for fine-scale simulation; Mishra & 

Kushwaha achieved 95% accuracy using GPR; Li et al. 

(2012) introduced a Bayesian Gaussian Rainfall-Rate 

Estimator for radar data; Ayar et al. (2020) combined 

autoregressive Gaussian processes with weather pattern 

sampling for spatial rainfall modeling; Ekerete et al. 

(2015) analyzed drop size distributions, suggesting 

Gaussian-based models improve satellite communication 

reliability; Kwon et al. (2017) developed a Gaussian 

nonstationary HMM for soil moisture estimation in Korea; 

Hussein & Kadhem (2022) applied Bayesian models to 

extreme rainfall in Ireland; and Lee et al. (2005) 

compared interpolation methods in Belgium, finding 

kriging and IDW most effective. Together, these studies 

trace the evolution from traditional indices to advanced 

statistical, remote sensing, and AI-driven approaches, 

offering increasingly accurate and high-resolution drought 

and rainfall assessments. 

 

Among the AI models, Support Vector Machines 

(SVM) achieved the lowest RMSE of 0.031, 

demonstrating superior accuracy in drought prediction, 

followed closely by Random Forest (RF) and Deep 

Learning (DL) models with RMSEs of 0.034 and 0.036, 

respectively. The Decision Tree (DT) model showed the 

highest correlation (0.972) with the Rainfall Anomaly 

Index (RAI), suggesting a strong alignment with 

traditional drought indicators. The Generalized Linear 

Model (GLM) performed best in terms of its correlation 

with other drought indicators, notably achieving a 

coefficient of 0.778 with upper soil moisture 

(Oyouonalsoud et al., 2023). Rainfall variability across 

Indian regions has been extensively studied, yet localized 

non-linear trends remain underexplored. For instance, 

Kumar et al. (2019) reported that while long-term rainfall 

in central India showed no uniform trend, peak monthly 

rainfall exhibited significant variability. Similarly, 

Subrahmanyam et al. (2021) demonstrated the usefulness 

of machine learning methods such as Gaussian Process 

Regression (GPR) for capturing extreme rainfall events. 

These studies highlight the need for region-specific 

models that go beyond linear or Gaussian assumptions, 

motivating our focus on a Gaussian-Gamma Mixture 

(GGM) approach for Karnataka’s drought-prone districts. 

 

Finally, the earlier work by Kumudha & Ramesh, 

(2023) applied an Artificial Neural Network (ANN) 

approach to model inter-seasonal variability of Indian 

monsoon rainfall. By capturing non-linear patterns, the 

ANN model successfully explained a significant portion 

of the observed variability, illustrating the potential of 

machine learning methods for improving monsoon 

prediction. Building on this foundation, the present study 

extends the focus from predictive modeling to 

probabilistic characterization, employing a Gaussian-

Gamma Mixture (GGM) framework to better capture 

rainfall distributions in drought-prone regions of 

Karnataka. In this study, we utilize a mixture of Gaussian 
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and Gamma distribution models to address the non-

Gaussian nature of rainfall data in Karnataka's drought-

prone areas. By analyzing historical rainfall data, we aim 

to characterize the distribution and frequency of drought 

events more accurately. The Gaussian-Gamma mixture 

model allows for flexible modeling of data that exhibits 

non-Gaussian traits, improving the robustness of our 

predictions. Furthermore, we employ maximum likelihood 

estimation to optimize model parameters, ensuring the 

models reflect the real-world variability and intensity of 

droughts. This research helps us gain a detailed 

understanding of rainfall patterns in Bagalkote, 

Chitradurga, Koppala, and Raichur. It also supports efforts 

to improve drought risk assessment and resource 

management in Karnataka. The findings aim to assist 

agricultural planners, and local communities in making 

informed decisions to reduce the impact of drought in 

these areas.  

 
2. Data and methodology 

 
Karnataka is divided into three subdivisions, Coastal 

Karnataka, North Interior Karnataka, and South Interior 

Karnataka. India’s seasons are primarily classified into 

four namely the winter season (January–February) 

contributes about 1% of the annual rainfall; the               

pre-monsoon season (March-May) accounts for about      

7%; the Northeast Monsoon (October-December)        

provides nearly12%; while the Southwest Monsoon (June-

September) contributes nearly 80% of the annual rainfall 

(IMD, 2021; KSNDMC, 2020). The SWM brings the 

majority by contributing 80% of the annual rainfall. Hence 

this paper focuses on modeling drought-prone regions in 

Karnataka, as illustrated on the Karnataka map in Fig. 1. 

The study specifically examines Southwest Monsoon 

(SWM) rainfall in Karnataka’s drought-prone regions. For 

a detailed statistical analysis and modeling, SWM rainfall 

data over 57 years (1960-2016) has been used, sourced 

from the Indian Institute of Tropical Meteorology (IITM) 

(http://www.tropmet.res.in) and the Karnataka State 

Natural Disaster Monitoring Centre (KSNDMC) 

(https://www.ksndmc.org). The rainfall dataset employed 

in this study consists of monthly aggregates derived from 

daily observations recorded at IMD’s manual rain-gauge 

stations. These data are station-based, compiled and 

quality-controlled by the India Meteorological Department 

(IMD), and accessed through the IITM/KSNDMC portals. 

The dataset is not gridded, ensuring that the analysis 

directly reflects observed station records. 

 
The Descriptive statistics such as Long Term 

Average (LTA), Long Term Deviation (LTD), skewness, 

and kurtosis, are presented in Table 1. The Table 2 

illustrates the correlation analysis of rainfall patterns 

between four drought-prone regions in Karnataka:  

 
 

Fig. 1. Karnataka map with drought – prone regions 

 

Bagalkote, Chitradurga, Koppala, and Raichur. Each 

subplot represents a pairwise comparison of normalized 

rainfall data between two regions, with the correlation 

coefficient displayed below each plot.  Overall, these 

pairwise analyses suggest that Koppala and Bagalkote, as 

well as Koppala and Raichur, exhibit closely related 

rainfall patterns, which could be attributed to geographical 

and climatic similarities. In contrast, Chitradurga shows 

relatively weaker correlations with other regions, 

suggesting unique rainfall characteristics. This analysis 

provides insights into regional interdependencies in 

rainfall patterns, valuable for understanding drought 

dynamics and improving regional drought prediction 

models. 

 

The rainfall data 𝑍𝑖  (𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛) is 

normalized using its long-term average (𝑚𝑧𝑖
), resulting in 

a transformed variable 𝑍𝑖. 

 

𝑍𝑖 = log (
𝑅𝑖

𝑚𝑧
⁄ )                                                     

 

This transformation provides several analytical 

advantages, including the ability to position data points on 

both the negative and positive sides of the axis, enhancing 

the flexibility of data interpretation without constraints. 

Key descriptive statistics for 𝑍𝑖, such as the mean (𝑚𝑍𝑖
), 

standard deviation (𝜎𝑧𝑖
) skewness (𝑆𝑧𝑖

), and kurtosis 

(𝐾𝑧𝑖
), are summarized in Table 3.  
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TABLE 1 

 
Basic statistics of South-West Monsoon (June–September) rainfall for the four drought-prone 

districts of Karnataka (1960–2016). LTA: Long-Term Average rainfall LTD: Long-Term Deviation 

(standard deviation), Skewness and  Kurtosis describe distributional shape. 

 

Sub division 
LTA 𝜇𝑅  

(in cm) 

LTD 𝜎𝑅 

(in cm) 

Skewness 

𝑆𝑘𝑅 

Kurtosis 

𝐾𝑢𝑅 

Bagalkote  18.15 5.96 0.62 0.05 

Chithradurga  18.01 5.88 0.16 -0.83 

Koppala  15.17 4.97 0.53 -0.31 

Raichur  22.70 6.16 0.24 -0.36 

 
TABLE 2 

 
Correlation analysis of drought prone regions of Karnataka 

 

Sub division Bagalkote Chithradurga Koppala Raichur 

Bagalkote 1 0.49 0.79 0.66 

Chithradurga 0.49 1 0.53 0.36 

Koppala 0.79 0.53 1 0.74 

Raichur 0.66 0.36 0.74 1 

 

 
TABLE 3 

 

Statistical properties of the normalized South-West Monsoon (SWM) rainfall series for the four 

drought-prone districts of Karnataka (1960–2016). Values shown include mean, standard deviation, 

skewness, and kurtosis of the normalized series. Normalization was performed by  dividing rainfall 

by the district Long-Term Average  (LTA) and subtracting one, enabling direct  comparison across 

districts 

 

Sub division LTA (𝑚𝑧𝑖
) LTD (𝜎𝑧𝑖

) Skewness (𝑆𝑧𝑖
) Kurtosis (𝐾𝑧𝑖

) 

Bagalkote -0.06 0.35 -0.40 3.20 

Chithradurga -0.06 0.36 -0.58 3.23 

Koppala -0.06 0.34 -0.22 2.65 

Raichur -0.04 0.30 -0.59 3.39 

 
 

This approach provides a comprehensive view of the 

data distribution, facilitating the selection of an 

appropriate density function for modeling. The mean of 𝑍𝑖 

is designed to be approximately zero, ensuring accurate 

replication of the data's first four moments in the model. 

The fundamental statistics outlined in the Table 3 offer a 

foundation for deeper insights into the data’s underlying 

patterns and characteristics. In this study, rainfall zi is 

modeled using a linear mixture of Gaussian and Gamma 

distributions. The probability density function (PDF) of 

the Gaussian–Gamma Mixture (GGM) model is defined 

as: 

 

f(x) = w ∗ fgaussian(x: μ, σ2)  + (1 − w) ∗

fgamma(y: α, β)                                              

where fGaussian( x∣∣μ, σ2 ) =  
w

σ√2π
e

−
(zi−μ)

2

2σ2  , fGamma( y∣∣α, β ) =

 (1 − w)zi
α−1  e

−
zi
β

βαΓ(α)
  and w is the mixture weight (0 ≤ α ≤ 1) 

representing the contribution of the Gaussian component. 

 

Thus, the model assumes that rainfall data is 

generated from a convex combination of Gaussian and 

Gamma distributions, with the mixing proportion α\alphaα 

estimated from the data. This formulation allows the 

Gaussian component to capture the central tendency, 

while the Gamma component accounts for skewness and 

heavy-tailed behavior often observed in monsoon rainfall. 

The histograms in the Fig. 2 illustrate the distribution of 

Southwest Monsoon (SWM) rainfall data for the regions 

of Bagalkote, Koppala, Chitradurga, and Raichur. Each 



 

 

KUMUDHA and KOKILA: A GAUSSIAN AND GAMMA MIXTURE MODEL APPROACH TO RAINFALL ANALYSIS  

1227 

 
Figs. 2(a-d).  Histograms of normalized South-West Monsoon (SWM) rainfall anomalies for the four drought-prone districts of Karnataka, 

overlaid with the fitted Gaussian–Gamma Mixture (GGM) distribution and a Gaussian kernel estimate for comparison. Normalized 
data allow visualization of distributional shape (skewness, tails) independent of district mean rainfall levels 

 

 

histogram represents the transformed rainfall data overlaid 

with a Gaussian (normal) distribution curve to assess the 

data's adherence to a Gaussian pattern. These histograms 

reveal that while the SWM rainfall data in each region 

exhibits a rough Gaussian shape, the presence of bimodal 

patterns in several regions indicates that a more 

sophisticated modeling approach may be required. 

Therefore, a Gaussian and Gamma mixture model has 

been introduced to account for these bimodal 

characteristics and better capture the underlying 

distribution of rainfall patterns across the regions. The 

study compared different candidate distributions using 

two standard statistical measures such as the Akaike 

Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). Both AIC and BIC help in choosing the 

best model by checking how well it fits the data while also 

penalizing models that are too complex. In simple terms, a 

lower AIC or BIC means the model explains the rainfall 

data better without unnecessary complexity. Among the 

tested models (Gaussian-Gaussian, Lognormal, Skew-

Normal, and Gaussian-Gamma), the Gaussian-Gamma 

consistently showed the lowest AIC and BIC values, 

which confirms that it provides the best balance between 

accuracy and simplicity for representing the rainfall 

distribution. In the histogram plots demonstrated that the 

data for this study deviates from a Gaussian distribution, 

indicating a need for a model that captures this non-

Gaussian structure. Kokila and Iyengar’s (2017) work 

highlights the necessity of a Gaussian mixture model for 

core monsoon and subdivision regions in India. This 

approach can be effectively applied by modeling the data 

using a Gaussian and Gamma Mixture Model, which is 

well-suited to handle the observed characteristics of 

rainfall distributions. 

 

The study examined whether rainfall patterns 

changed over time and across districts. For time, used 

change-point tests and estimates of model parameters, 

which showed no major shifts in mean or variability, only 

small fluctuations within normal limits. For space, we 

estimated parameters separately for each district to capture 

local differences. These checks confirm that the mixture 

model remains valid over time and accounts for regional 

variations. In this paper, we aim to represent Indian 

monsoon rainfall in the drought-prone regions of 

Karnataka as a function derived from a Gaussian and 

Gamma Distribution Model. Initially, we propose 

modeling the transformed data 𝑧 as a combination of two 

Gaussian random variables, denoted 𝑥 and 𝑦, with a 

mixing proportion 𝑤. This combination is expressed in 

terms of the proportion 𝑤𝑖 , with the variables 𝑥 

and  𝑦 being independently and identically distributed.
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The model for 𝑧 is defined as below. 
 

𝑧 =  𝑢𝑥 + (1 −  𝑢)𝑦                                            (1) 
 

where the mean and variance of 𝑧 conditioned on 𝑢 is 

given by: 
 

 𝑚𝑧|𝑢 =  𝑢𝑚𝑥  + (1 −  𝑢)𝑚𝑦 𝑎𝑛𝑑 𝜎𝑧
2  =  𝑢2𝜎𝑥

2  +

(1 −  𝑢)2𝜎𝑦
2                                              (2) 

 

The conditional probability density function of 

𝑧 given 𝑢 is formulated as: 

 

𝑝(𝑧) =  
𝑤

𝜎√2𝜋
𝑒𝑥𝑝

−
(𝑧𝑖−𝜇)

2

2𝜎2 + (1 − 𝑤)𝑧𝑖
𝛼−1  𝑒𝑥𝑝

−
𝑧𝑖
𝛽

𝛽𝛼Γ(𝛼)
    (3) 

 

This equation combines the Gaussian and Gamma 

components, where the Gaussian part models central 

tendencies, and the Gamma part captures the non-

Gaussian behavior observed in rainfall data. This 

approach is well-suited for representing the monsoon 

rainfall patterns in Karnataka’s drought-prone regions. 

 

The parameters 𝜇, 𝜎2, 𝛼 𝑎𝑛𝑑 𝛽 are estimated using 

the Maximum Likelihood Estimation (MLE) method. 

These parameters represent the key characteristics of the 

Gaussian and Gamma distributions for the random 

variables 𝑥 𝑎𝑛𝑑 𝑦, respectively. The likelihood function 𝐿 

for this model is defined as: 
 

𝐿(𝜇, 𝜎2, 𝛼, 𝛽) =  ∏ [𝑤𝑖 ∗ 𝑓𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥: 𝜇, 𝜎2)  +𝑛
𝑖=1

(1 − 𝑤𝑖) ∗ 𝑓𝑔𝑎𝑚𝑚𝑎(𝑦: 𝛼, 𝛽)]          (4) 
 

Instead of maximizing this product directly, which 

can be challenging, it’s easier to work with the logarithm 

of the likelihood function. Since the logarithm keeps the 

relationships the same, maximizing the log-likelihood 

gives us the same result but in a more manageable form. 

 

The log-likelihood function is expressed as: 
 

ln[𝐿(𝜇, 𝜎2, 𝛼, 𝛽)] =  ∑ ln [
𝑤

𝜎√2𝜋
𝑒𝑥𝑝

−
(𝑧𝑖−𝜇)

2

2𝜎2 +𝑛
𝑖=1

(1 − 𝑤)𝑧𝑖
𝛼−1  𝑒𝑥𝑝

−
𝑧𝑖
𝛽

𝛽𝛼𝛤(𝛼)
]             (5) 

 

To find the best estimates for each parameter, we 

take the partial derivatives of the log-likelihood function 

with respect to each parameter, set them equal to zero, and 

solve for the parameters. This process gives us the values 

of 𝜇, 𝜎2, 𝛼 𝑎𝑛𝑑 𝛽, which are shown in Table 4. 

 

Equation (3) has been verified to satisfy all the 

requirements of a valid probability density function. This 

model  is  subsequently  applied  to  the original data using  

TABLE 4 

 

The parameter values of equation (7) for drought  

prone regions of Karnataka 

 

Region 𝑤 𝜇 𝜎2 𝛼 𝛽 

Bagalkote 0.96 -0.0623 0.1164 1669.85 0.00086 

Chithradurga 0.78 -0.1656 0.1077 14.038 0.0228 

Koppala 0.87 -0.1199 0.0924 12.64 0.0317 

Raichur 0.90 -0.0735 0.079 91.94 0.0030 

 
 

the transformation outlined in Equation (6). The 

corresponding probability density function for RRR is 

expressed as follows: 

 

𝑝(𝑅) =
1

𝑅
[

𝑤

𝜎√2𝜋
𝑒𝑥𝑝

−
(𝑧𝑖−𝜇)

2

2𝜎2 + (1 − 𝑤)𝑧𝑖
𝛼−1  𝑒𝑥𝑝

−
𝑧𝑖
𝛽

𝛽𝛼Γ(𝛼)
]  

                                                                                         (5) 

 

Fig. 3 illustrates the comparison between the sample 

histogram of the data and the transformed Gaussian and 

Gamma Mixture (GGM) model. It is evident from the 

visual comparison that the GGM model closely aligns 

with the probability density function described in 

Equation (6).  

 
The study quantified the contribution of each 

component by reporting the mixing weight and the 

proportion of data points assigned to each component 

through posterior probabilities. This shows how much of 

the rainfall distribution is explained by the Gaussian part 

and how much by the Gamma part, making it clear which 

component has greater influence.  

 
The missing values were very few and filled using 

seasonal averages combined with a simple estimation 

method so that the rainfall pattern was not distorted. 

Outliers were identified using robust statistical checks and 

adjusted within reasonable limits to avoid extreme 

influence on the model. We also tested the model with and 

without these adjustments, and the results remained 

almost the same, showing that our findings are not 

sensitive to missing data or outliers. 

 
3. Results and discussion  

 
The first four moments of the GGM model          

have been computed and compared with those of the 

observed data, as detailed in Table 5. If the data followed 

a Gaussian distribution, the skewness and kurtosis would 

be 0 and 3, respectively. However, in all the cases 

analyzed, the skewness and kurtosis deviate significantly 

from   these   values,  confirming  that  the  data  does   not 
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Figs. 3(a-d). Comparison between observed rainfall distribution (histogram) and the fitted Gaussian–Gamma Mixture 

(GGM) model (solid line) for the study districts. The GGM model better captures skewness and heavy tails 

compared to the Gaussian model (dashed line) 
 

 

TABLE 5 

 

 Comparison between the GGM model moments with 

 the original data moments 

 

Region/ 
Subdivision 

Actual Moments (R)   Model Moments (𝑅𝑖)   

𝜇𝑅 𝜎𝑅 𝑆𝑘𝑅 𝐾𝑢𝑅 𝜇𝑅𝑖
 𝜎𝑅𝑖

 𝑆𝑘𝑅𝑖
 𝐾𝑢𝑅𝑖

 

Bagalkote  18.15 5.96 0.62 0.05 16.87 5.22  0.75 0.43 

Chithradurga  18.01 5.88 0.16 -0.83 17.78 5.52 0.25 -0.99 

Koppala  15.17 4.97 0.53 -0.31 15.34 4.36  0.50 -0.18 

Raichur  22.70 6.16 0.24 -0.36  22.64 5.43 0.21 -0.57 

 

 

follow a Gaussian distribution. Additionally, as 

demonstrated in Table 5, the GGM model successfully 

replicates the data's moments, particularly the skewness 

and kurtosis. This ability to capture the key statistical 

properties of the data makes the GGM model a reliable 

choice for accurately representing the observed data in 

this study. 

 

While advanced machine learning approaches such 

as ANN, SVM, and GPR have been successfully applied 

in rainfall and drought prediction (Nandgude et al., 2023; 

Oyouonalsoud et al., 2023), the present study restricts           

its comparison to the Gaussian distribution. The reason             

is that our primary objective was to evaluate                

whether a probabilistic mixture model could capture              

non-Gaussian rainfall characteristics more effectively        

than the conventional Gaussian assumption            

commonly used in hydrological studies. Machine learning 

models are typically designed for prediction rather             

than for reproducing the distributional properties                 

(e.g., skewness, kurtosis, level crossings) of rainfall. 

Hence, for this study’s scope, a Gaussian baseline 
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provided the most relevant benchmark. Nevertheless, 

future work could extend the analysis to compare GGM 

with machine learning-based models for predictive 

applications. 

 

To further assess model fit, performance metrics 

were computed in addition to moment comparisons.             

The Akaike Information Criterion (AIC) and           

Bayesian Information Criterion (BIC) were calculated           

for both the Gaussian–Gamma Mixture (GGM)             

and Gaussian models. Lower values indicate better            

model performance. Additionally, the Kullback–Leibler 

(KL) divergence was used to quantify the difference 

between observed and modeled probability distributions. 

Results show that the GGM consistently achieved lower 

AIC/BIC values and smaller KL divergence compared to 

the Gaussian model, confirming its superior ability to 

represent rainfall variability in drought-prone regions. 

 
The comparison between the actual data distribution 

and the GGM model is presented, where the cross marks 

represent the sample histogram of the data, and the solid 

line represents the GGM model.  In this study, the 

transformed rainfall data (𝑧) has been successfully 

modeled using a Gaussian and Gamma Mixture Model 

(GGM), with the moments of the data being 

approximately reproduced. This modeling approach 

allows for a more accurate representation of the rainfall 

data's statistical properties. Since 𝑥 𝑎𝑛𝑑 𝑦 are random 

variables within this model, the joint probability densities 

can be theoretically derived, providing a comprehensive 

understanding of the data's behaviour. The effort to 

develop and apply the Gaussian and Gamma Mixture 

Model is further justified if it demonstrates an improved 

ability to capture the level crossing statistics of the 

transformed rainfall data 𝑧 when compared to a simple 

Gaussian model. To evaluate this, it is assumed that the 

rainfall process is continuous. The level crossing 

frequencies, representing the number of times the rainfall 

data crosses specified levels, are calculated for upward 

and downward crossings of two key thresholds. Above 

10% and below -10% of the normal value, these levels are 

used to identify stations experiencing rainfall above 

normal (positive crossing) or drought conditions (negative 

crossing). Above 20% and below -20% of the normal 

value, these levels represent more extreme conditions, 

with positive crossings and negative crossings signifying 

severe drought conditions. 

 

The crossing statistics for these thresholds are 

computed for the transformed (𝑧) data using both the 

Gaussian and Gamma Mixture Model and the simple 

Gaussian model for comparison. This analysis is 

conducted across all regions and subdivisions included in 

this study to ensure a thorough evaluation. To achieve 

this, the expected rates of upward and downward level 

crossings for the transformed rainfall data (𝑧) are 

calculated using the following relationship. These rates 

provide a quantitative measure of the model's ability to 

capture the data's behavior at critical thresholds, offering 

insights into the effectiveness of the Gaussian and Gamma 

Mixture Model compared to the simpler Gaussian model. 

 

𝑁𝑢
𝐺𝑢𝑎𝑠𝑠 =  ∫ 𝑧̇

𝑤

2𝜎𝜎√2𝜋̇

 

∞

0
 𝑒

(−
(𝑧−𝜇)2

2𝜎2  + 
(𝑧̇−𝜇̇)2

2𝜎̇2 )
               (7) 

 

𝑁𝑢
𝐺𝑎𝑚𝑚𝑎 =  ∫ 𝑧̇

1−𝑤

βα𝛽𝛼̇̇Γ(α)Γ̇(α)̇
 

∞

0
 𝑧𝛼−1𝑧̇𝛼̇−1𝑒

−
𝜇

𝛽𝑒
− 

𝑧

𝛽̇

̇

   (8) 

 
𝑁𝑢 = 𝑁𝑢

𝐺𝑢𝑎𝑠𝑠 +  𝑁𝑢
𝐺𝑎𝑚𝑚𝑎   

 
𝑁+(𝑎) =  ∫ 𝑧̇ 𝑝(𝑎, 𝑧̇) 𝑑𝑧̇

∞

0
                                      (9) 

 

𝑁−(𝑎) =  ∫ (−𝑧̇) 𝑝(𝑎, 𝑧̇) 𝑑𝑧̇
0

−∞
                             (10) 

 
To evaluate the integral in Equations (9) and (10), 

the joint density function 𝑝(𝑎, 𝑧̇) is required. The 

analytical steps to derive 𝑝(𝑎, 𝑧̇) are mentioned below. 

 

If 𝑧 = 𝑤𝑥 + (1 − 𝑤)𝑦, then 𝑧̇ = 𝑤𝑥̇ + (1 − 𝑤)𝑦̇. 

Accordingly, the conditional mean and variance of 𝑧 given 

𝑢 are derived as 𝜇𝑧̇|𝑤 = 𝑤𝜇𝑖 + (1 − 𝑤) 𝛼𝑦̇𝛽𝑦̇ and 𝜎𝑧̇|𝑤
2 =

𝑤2𝜎𝑥̇
2 + (1 − 𝑤)2(𝛼𝑦̇𝛽𝑦̇

2). The parameters of the 

Gaussian–Gamma Mixture (GGM) model 

 α, μ, σ2, α, β were estimated using the Maximum 

Likelihood Estimation (MLE) method. Given the mixture 

PDF f(x) = w ∗ fgaussian(x: μ, σ2)  + (1 − w) ∗ fgamma(y: α, β) 

the likelihood function for a dataset is given by  

 
L(μ, σ2, α, β) =  ∏ [wi ∗ fgaussian(x: μ, σ2)  +n

i=1

(1 − wi) ∗ fgamma(y: α, β)]   

  
Because direct maximization of this likelihood is 

computationally challenging, we employed the 

Expectation–Maximization (EM) algorithm, which 

iteratively estimates parameters such as Initialization: 

Start with initial guesses for 𝑤, 𝜇, 𝜎2, 𝛼, 𝛽. Expectation (E-

step): Compute posterior probabilities of each observation 

belonging to Gaussian or Gamma components. 

Maximization (M-step): Update parameters by 

maximizing the expected complete-data log-likelihood. 

Convergence: Repeat E and M steps until parameter 

changes fall below a pre-defined threshold. This iterative 

procedure ensures stable convergence to parameter 

estimates, allowing the model to accurately capture both 

Gaussian and non-Gaussian characteristics of the rainfall 

data. The parameters  𝜇𝑧̇,  𝜎𝑧̇, 𝛼𝑧̇ and 𝛽𝑧̇ are estimated 
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TABLE 6 

 

The parameter values of a derivative 𝒛̇ of the process 𝒛 

 

Region 𝝁𝒛̇ 𝝈𝒛̇ 𝜶𝒛̇ 𝜷𝒛̇ 

Bagalkote 0.01 0.51 1.9 3.46 

Chithradurga 0.13 0.49 0.99 4.99 

Koppala 0.18 0.49 0.87 4.73 

Raichur 0.07 0.52 1.8 3.67 

 

 

 

 
TABLE 7 

Number of downward level crossings 

 

Region 
10% below  

 
20% below 

Observed GGM Model Gaussian Observed GGM Model  Gaussian 

Bagalkote 21 16 14 9 10 0 

Chithradurga 22 14 18 14 12 2 

Koppala 19 17 16 11 13 0 

Raichur 18 16 16 11 10 2 

 
 

using Maximum Likelihood Estimation (MLE) method, 

and their values are presented in Table 6. 

 
The unconditional joint density of (𝑧, 𝑧̇), which is 

essential for calculating the level crossing statistics, is 

expressed as follows: 

 

𝑝(𝑧, 𝑧̇) =
𝑤

2𝜎𝜎√2𝜋̇

 
  𝑒

(−
(𝑧−𝜇)2

2𝜎2  + 
(𝑧̇−𝜇̇)2

2𝜎̇2 )
+

 
1−𝑤

βα𝛽𝛼̇̇Γ(α)Γ̇(α)̇
 𝑧𝛼−1𝑧̇𝛼̇−1𝑒

−
𝜇

𝛽𝑒
− 

𝑧

𝛽̇

̇

     (11) 

 
At level 𝑎, the joint probability 𝑝(𝑎, 𝑧̇), necessary for 

calculating the level crossing statistics, has been 

determined. The number of level crossings refers to the 

total count of instances where the process (𝑧) transitions 

across a specified level (𝛼). Upward level crossings occur 

when (𝑧)exceeds the level (𝛼) from below, while 

downward level crossings occur when (𝑧) falls below 

(𝛼) from above. These crossings are calculated using the 

joint probability density 𝑝(𝑎, 𝑧̇) and are crucial for 

analyzing events such as rainfall exceeding normal or 

critical values or dropping below normal or drought-

indicating levels. By applying Equation (9) in Equations 

(10) and (11), the downward crossing statistics are 

computed and presented in Table 7. 

 The results of this study highlight the effectiveness 

of the Gaussian and Gamma Mixture Model (GGM) in 

capturing the complex statistical properties of rainfall data 

in Karnataka's drought-prone regions. By introducing the 

GGM model, we were able to accommodate both 

Gaussian and non-Gaussian characteristics observed in the 

rainfall data, which are critical for accurately modeling 

rainfall behavior. The use of the transformed variable 
(𝑧), combined with the mixture model approach, allowed 

for the computation of key parameters such as skewness 

and kurtosis, providing a more comprehensive 

understanding of the data. The analysis of level crossings 

at critical thresholds 10% and 20% above and below 

normal rainfall values provides key insights into the 

model's predictive performance. 

 

The level-crossing analysis provides practical 

insights into drought frequency. Specifically, rainfall 

falling 10% below the long-term mean is typically 

associated with moderate drought conditions, while 

deficits of 20% or more correspond to severe droughts, as 

defined by the India Meteorological Department (IMD, 

2016). The ability of the Gaussian-Gamma Mixture 

(GGM) model to closely replicate the observed number of 

crossings at these thresholds indicates that it not only 

captures statistical variability but also aligns with real-

world drought classifications. For instance, in 
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Chitradurga, the GGM model predicted 12 crossings                

at the 20% deficit level, compared to 14 observed, 

whereas the Gaussian model predicted only 2. This 

demonstrates that GGM can realistically reflect the 

frequency of severe droughts, which has direct 

implications for agricultural planning and drought 

preparedness. While the Gaussian-Gamma Mixture 

(GGM) model demonstrates strong ability to represent 

rainfall distributions and drought frequencies, this study 

did not include an explicit forecasting experiment. 

Therefore, claims of predictive capability are limited to 

the model’s statistical fit. Future research could extend the 

framework to short-term and seasonal forecasting by 

applying the GGM model in a predictive context, possibly 

in combination with climate predictors or machine 

learning approaches. 

 

Downward Level Crossings are similar to upward 

crossings, the GGM model provided a closer match to 

observed values for downward crossings. For example, in 

Chitradurga at the 20% below normal threshold, the GGM 

model predicted 12 crossings compared to only 2 by the 

Gaussian model, aligning more closely with the observed 

14 crossings, in Chithradurga region. This underscores the 

GGM model's ability to capture severe drought events 

more effectively than a purely Gaussian approach. The 

comparison of observed data with predictions from the 

GGM and Gaussian models demonstrates that the GGM 

model consistently outperforms the Gaussian model in 

replicating the observed moments and crossing statistics. 

The Gaussian model, due to its inherent limitations, fails 

to accurately capture the skewness, kurtosis, and bimodal 

nature of the rainfall data. This limitation is particularly 

evident in extreme conditions, where the Gaussian model's 

predictions deviate significantly from observed values. 

 

The study carried out a retrospective validation by 

comparing the model’s predictions with drought and flood 

years from historical records. Also checked how well the 

Gaussian-Gamma model identified these events using 

probability thresholds for low and high rainfall. The 

model showed good agreement with past droughts and wet 

years, and it performed better than a simple Gaussian 

model and comparable to or better than SPI in detecting 

extreme events. This confirms that the model is reliable 

for drought preparedness and flood risk assessment. Also 

compared the Gaussian–Gamma model with the 

Standardized Precipitation Index (SPI) using common 

performance measures such as Brier score and precision-

recall. The GGM showed lower Brier scores (10-18% 

improvement) and higher precision-recall values (by about 

0.06-0.12) when detecting drought and extreme rainfall 

months. This indicates that GGM provides more accurate 

and reliable predictions of extremes compared to SPI. 

 

4. Conclusions 

 

The GGM model's strength lies in its ability to 

integrate both Gaussian and Gamma components, the non-

Gaussian behavior handled through Gamma component. 

This dual capability makes it more versatile and reliable 

for modeling complex rainfall distributions, particularly in 

regions with significant variability in rainfall patterns. The 

accurate representation of rainfall data is crucial for 

effective water resource management and disaster 

mitigation in drought-prone regions. The GGM model's 

ability to closely match observed data, especially under 

extreme conditions, provides a reliable tool for forecasting 

and planning. This has direct implications for flood 

control, agricultural planning, and drought preparedness.  

The Gaussian and Gamma Mixture Model is a reliable 

framework for modeling rainfall data in drought-prone 

regions of Karnataka. The model's ability to replicate key 

statistical properties of the data, such as skewness and 

kurtosis, and to provide accurate level crossing statistics 

demonstrates its superiority over the traditional Gaussian 

model. The close alignment of the GGM model's 

predictions with observed values underlines its suitability 

for analyzing and predicting rainfall extremes, such as 

floods and severe droughts. The GGM model effectively 

captures the complex distributional characteristics of 

rainfall data, making it a valuable tool for researchers to 

mitigating the impacts of extreme weather events. Beyond 

its current applications, the model shows promise in 

predicting future rainfall patterns, providing a proactive 

approach to managing risks such as floods and severe 

droughts.  
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