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सार — यह अध्ययन ग्रिडपॉइंट सांख्ययकीय इंटरपोलेशन (जीएसआई) के साथ मौसम अनसुंधान और परू्ाानमुान 

(डब्ल्यआूरएफ) मॉडल का उपयोग करके मौसम के परू्ाानमुान में सरे् ऑफ इंडडया (एसओआई) - ननरंतर संचाललत संदर्ा 
स्टेशनों (सीओआरएस) से एकीकृत र्र्ाण योग्य जल (आईपीडब्ल्य)ू डेटा को आत्मसात करने के प्रर्ार् की पड़ताल करता 
है। उत्तर प्रदेश और पड़ोसी क्षेत्रों में ख्स्थत एसओआई-सीओआरएस स्टेशनों से आईपीडब्ल्य ू डेटा। अनसुंधान जनू और 
जलुाई 2024 में ककया गया था, ख्जसमें उच्च-ररजॉ्यशून डब्ल्यआूरएफ मॉडल डोमेन (3 ककमी ग्रिड स्पेलसगं) ने इस 
अर्ग्रध के दौरान र्र्ाा की घटनाओ ंपर ध्यान कें द्रित ककया था। डेटा आत्मसात द्रदन में चार बार 0000, 0600, 1200 
और 1800 UTC पर ककया गया था, ख्जसमें परू्ाानमुान 72 घटें तक बढाए गए थे। रेडडयोसॉन्ड के साथ तुलना करने पर 
600 hPa से ऊपर के पर्न घटकों के मूल माध्य र्गा त्रदु्रट (RMSE) में 2% की कमी और सतही आिाता (q) त्रदु्रट में 
7% की कमी देखी गई, जो बेहतर प्रारंलर्क ख्स्थनतयों का संकेत है। 200 hPa (पहले द्रदन 7.71%) और 850 hPa 
(पहले द्रदन 4.78%) पर पर्न परू्ाानमुानों के ललए RMSE में उ्लेखनीय कमी देखी गई। 200 hPa पर तापमान 
परू्ाानमुानों ने सर्ी परू्ाानमुाननत द्रदनों में लगातार सुधार प्रदलशात ककया, जो 3.05% से 4.70% तक था। र्ू-संर्ावर्त 
ऊँचाई परू्ाानमुानों में सबसे उ्लेखनीय सुधार देखा गया, ख्जसमें 200 hPa (पहले द्रदन) पर RMSE में 15.33% की 
कमी, और 850 hPa पर कई द्रदनों तक ननरंतर सुधार (3.28%–5.47%) रहा। ये पररणाम उच्च-ररजॉ्यशून IPW डेटा 
को मौसम मॉडलों में एकीकृत करने के सकारात्मक प्रर्ार्ों को उजागर करते हैं, वर्शेर् रूप से ऊपरी-स्तरीय र्ायमुंडलीय 
मापदंडों की सटीकता और समि मॉडल प्रदशान में सुधार के संदर्ा में। 

 
 

ABSTRACT. This study explores the impact of assimilating Integrated Precipitable Water (IPW) data from the 

Survey of India (SOI) – Continuously Operating Reference Stations (CORS) into weather forecasts using the Weather 

Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) as the assimilation scheme. IPW 
data from SOI-CORS stations located in Uttar Pradesh and neighboring regions. The research was conducted over June 

and July 2024, with a high-resolution WRF model domain (3 km grid spacing) focusing on the rainfall events during the 

period. Data assimilation was performed four times daily at 0000, 0600, 1200, and 1800 UTC, with forecasts extending 
up to 72 hours. The study found that assimilating IPW data significantly improved both the analysis and the forecasts of 

various meteorological parameters. Comparison with radiosonde showed a 2% reduction in Root Mean Square Error 

(RMSE) of wind components above 600 hPa and surface moisture (q) error reduction by 7%, indicating enhanced initial 
conditions. Significant RMSE reductions were observed for wind forecasts at 200 hPa (7.71% on Day 1) and 850 hPa 

(4.78% on Day 1). Temperature forecasts at 200 hPa exhibited consistent improvements across all forecast days, ranging 

from 3.05% to 4.70%. Geopotential height forecasts showed the most substantial improvements, with RMSE reductions 
of 15.33% at 200 hPa (Day 1), and sustained improvements at 850 hPa (3.28% - 5.47%) over multiple days. The results 

highlight the positive effects of integrating high-resolution IPW data into weather models, especially in terms of 

improving the accuracy of upper-level atmospheric parameters and overall model performance. 
 

Key words  –  IPW, GNSS, Data assimilation, SOI-CORS network, Skill scores. 
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1. Introduction 

 

The hydrological cycle describes the continuous 

movement and transformation of water between the 

Earth's surface and atmosphere. Water evaporates from 

oceans, lakes, and land surfaces, rises as water vapour, 

and condenses to form clouds, eventually returning as 

precipitation. This process not only regulates the 

distribution of water but also plays a crucial role in 

transferring heat and energy within the atmosphere. Water 

vapour, the gaseous phase of water, is a vital component 

of the atmosphere and one of the most significant 

greenhouse gases influencing weather and climate 

(Schmidt et al., 2010). Its presence affects cloud 

formation, precipitation, and radiative processes, making 

its accurate measurement essential for meteorological and 

climate studies. Precipitable water vapour (PWV) is the 

total column-integrated water vapour expressed as the 

equivalent depth of liquid water if condensed (Hu et al., 

2020). Integrated Precipitable Water Vapor (IPWV) 

quantifies the amount of water vapour in an atmospheric 

column per unit area, represented as liquid water depth 

(Viswanadham, 1981). 

 

Traditional methods for measuring PWV include 

radiosondes, microwave radiometers, and sun 

photometers, each with limitations. Radiosondes provide 

accurate vertical profiles but are costly and infrequent. 

Microwave radiometers are expensive and require 

frequent calibration. Sun photometers rely on solar 

radiation, limiting their usability in cloudy conditions. 

While satellite-based observations offer global coverage, 

they often suffer from low temporal resolution (Elgered et 

al., 1982; Liu et al., 2000; Hu et al., 2020). To overcome 

these limitations, GNSS (Global Navigation Satellite 

System) meteorology has emerged as an effective method 

for PWV estimation. GNSS-derived PWV utilizes signal 

delays caused by atmospheric water vapour to retrieve 

high-resolution temporal data. Bevis et al. (1992) 

pioneered the use of GPS for PWV estimation, later 

refining the approach with numerical weather models 

(Bevis et al., 1994). Hagemann et al. (2003) further 

improved this method by converting GNSS-based Zenith 

Total Delay (ZTD) into Integrated Water Vapor (IWV) 

using European Centre for Medium-Range Weather 

Forecasts (ECMWF) data. Studies in Ghana (Acheampong 

et al., 2015) and Egypt (Younes, 2016) confirmed the 

accuracy of GNSS-derived PWV, while Chen et al. (2018) 

validated this approach using data from 58 GNSS stations 

across China. These studies underscore the reliability of 

GNSS meteorology in atmospheric research. 

 

In India, Jade et al. (2005) estimated PWV using 

GPS data from continuously operating stations between 

2001 and 2003. Dutta et al. (2014) evaluated GPS-IPW 

data using global models run operationally at the National 

Centre for Medium-Range Weather Forecasting 

(NCMRWF) and found improvement in the model 

analysis and forecast after the assimilation of GPS-IPW. 

Yadav et al. (2020) validated GNSS-derived IPWV using 

GPS-sonde data for June 2017 to May 2018, 

demonstrating strong agreement with a correlation of 

0.85–0.98 and biases within ± 4.7 mm with in situ 

observations. Further, Yadav (2022) analyzed seasonal, 

monthly, and diurnal variations of GNSS-derived IPWV 

over India from 2017 to 2020, identifying spatial patterns 

and IPWV thresholds useful for rainfall prediction. Long-

term trends in PWV over India (1980-2020) were studied 

by Srivastava (2022) using satellite and reanalysis data, 

revealing significant spatial and temporal variability and 

emphasizing the need for multi-source validation. 

 

Conventional radiosonde observations often suffer 

from spatial and temporal inconsistencies, as well as 

errors arising from sensor differences. The Continuously 

Operating Reference Stations (CORS) network addresses 

these challenges by providing high-precision positioning 

data through real-time kinematic (RTK) technology. 

Established by NOAA’s National Geodetic Survey (NGS), 

CORS enhances the National Spatial Reference System 

(NSRS) by offering precise geodetic data essential for 

meteorological, economic, and scientific applications. 

Snay (1989) demonstrated a transition from traditional 

line-of-sight surveying with a relative accuracy of 

1:250,000 (1 mm error over 250 meters) to GPS-based 3D 

positioning, achieving accuracies exceeding 1:1,000,000 

(1 mm error over 1 km). Dutta et al. 2014 examined the 

impact of GPS-IPW data from Indian stations and showed 

a positive impact by assimilating them in the NCMRWF 

Global Data Assimilation System. The CORS network 

integrates GNSS receivers operated by various 

governmental, academic, and private organizations. 

Globally, CORS networks facilitate precise 

meteorological and geophysical research. The NOAA 

CORS Network (NCN) in the U.S., Japan’s national 

GNSS network, and European Space Agency (ESA)-

operated frameworks exemplify international 

collaboration. These networks support applications such 

as 3D positioning, space weather analysis, and 

atmospheric research. Since its inception in 1994, the 

CORS network has expanded to over 1,350 stations 

worldwide, driven by initiatives like Earth Scope’s Plate 

Boundary Observatory. 

 

In India, state-owned CORS networks are 

operational in Andhra Pradesh, Telangana, and Tamil 

Nadu. The Survey of India (SOI), in collaboration with the 

Panchayati Raj Ministry, has established multiple CORS 

stations across the country, with plans to expand the 

network &  integrate meteorological sensors for improved 
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Fig. 1. Study Domains (d02 represents domain 2) 

 

 

atmospheric monitoring. In the present study, the IPW 

from SOI-CORS stations are assimilated in a high-

resolution regional model to study its impact on the state 

of Uttar Pradesh.  

 

2. Data and methodology  

 

2.1. Experiment design 

 

This study employs the regional Weather Research 

and Forecasting (WRF) model (Skamarock et al., 2021) 

with the Gridpoint Statistical Interpolation (GSI; Kleist et 

al., 2009) for data assimilation. For the present study, the 

WRF model operates at a resolution of 9 km and 3 km 

nested domain. Assimilation is conducted in 3D Var, with 

assimilation occurring every 6 hours. The domain of the 

study is shown in Fig. 1. The focus is on the state of Uttar 

Pradesh. The initial and boundary conditions for the 

model are provided by the NCMRWF Global Forecast 

System (GFS) data. Two runs, namely control (CNTL) 

and experiment (IPW) are conducted for two rainfall 

events in June and July 2024.  

 

In the CNTL experiments, only conventional 

observations [surface, upper-air, satellite atmospheric 

motion vectors (AMVs), buoy], excluding integrated 

perceptible water (IPW), are assimilated. On the other 

hand, the IPW experiment incorporates precipitable water 

from SOI-CORS IPW in addition to the conventional 

observations used in the CNTL. The assimilation and 

forecast runs are made in two phases. Beginning on June 

22, 2024, at 00 UTC, assimilation was begun in cyclic 

mode, with a 72-hour forecast at every 00 UTC. The runs 

were continued until July 10, 2023. 

 
Validation of the analysis and forecast results from 

both CNTL and IPW is performed against the ECMWF 

Reanalysis V5 (ERA5) data. The rainfall forecasts from 

the model are verified against the Indian Meteorological 

Department (IMD) and NCMRWF merged satellite gauge 

(NMSG) data (Mitra et al., 2009). For rainfall verification 

Contiguous Rain Area (CRA) assessment is performed. 

The details of the CRA can be found in Ebert and 

McBride (2000) and Ebert and Gallus (2009).  

 
2.2. GPS-IPW methodology 

 
The GNSS sensors/receivers in the SOI-CORS 

network and other ground-based GNSS stations receive 

and record the signal emitted by the GNSS satellites. 

These GNSS signals emitted from the satellites get 

delayed due to various atmospheric interferences while 

reaching the ground-based receivers. In the troposphere, 

GPS signals experience delays due to atmospheric 

constituents. A significant portion of this delay is caused 

by atmospheric water vapour, commonly referred to as 

zenith wet delay (ZWD). Additionally, dry air, 

hydrometeors, and other particulates contribute to signal 

delay, which is known as zenith hydrostatic delay (ZHD) 

(Niell, 1996; Solheim et al., 1999). A mapping function is 

used to convert this measured delay into Zenith Total 

Delay (ZTD), which is an important scientific parameter 

having meteorological significance and is not satellite-

dependent quantity. ZTD is the sum of two components: 

Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay 

(ZWD). ZHD is sensitive to surface pressure and 

temperature and, can be computed using an empirical 

formula requiring meteorological data. The retrieval of 

PW from ZWD is detailed in Dutta et al., 2014. For 

measuring the required meteorological parameters, 

meteorological sensors are required at the ground-based 

GNSS locations. Once ZHD is computed, ZWD is 

obtained by subtracting ZHD from ZTD. ZWD depends 

exclusively on the overlying water vapour. Integrated 

Precipitable Water (IPW), also known as Total 

Precipitable Water (TPWT), defined as the amount of 

atmospheric water vapour (in kilogram) overlying per unit 

area of the earth's surface, is derived from the measured 

ZWD values. Its unit is kg/m2. GPS-derived IPW 

measurements have demonstrated high accuracy, with root 

mean square errors (RMSE) varying across different 

regions. In North America, studies have reported RMSE 

values of less than 2 mm (Rocken et al., 1993, 1997; Duan 

et al., 1996; Fang et al., 1998). Similarly, GPS-based IPW 

estimates in Australia have shown an accuracy of 

approximately 1.4 mm (Tregoning et al., 1998). In 
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Figs. 2(a-d). IPW Coverage received from SOI-CORS stations at NCMRWF on a typical day of 26th June 2024 

 

 

contrast, studies in Taiwan have reported RMSE values 

around 2.2 mm (Liou et al., 2001), while in Japan, the 

accuracy was found to be lower, with an RMSE of 

approximately 3.7 mm (Ohtani & Naito, 2000). These 

remotely sensed parameters (ZTD & IPW) are used 

worldwide in almost all meteorological operational 

centres for weather forecasting through numerical weather 

models. This parameter exhibits rapid spatial and temporal 

variations, making it a vital component in climate and 

weather modelling. For deriving the IPW from ZTD, 

meteorological sensors are essential to be installed at the 

GNSS stations and well-calibrated for proper accuracy. 

These meteorological sensors in addition to surface 

pressure and temperature provide other parameters useful 

for Nowcasting and medium-range forecasting through 

numerical models. GPS-derived Integrated Precipitable 

Water (IPW) measurements offer several advantages, 

including high temporal resolution (data available every 

few minutes), self-calibration, cost-effectiveness, & 

extensive spatial coverage. These benefits make GPS-

based IPW a valuable tool for atmospheric studies & 

weather forecasting (Ware et al., 2000). Since the same 

GNSS sensors can be used for a long time, the 

observations recorded are also a good use for climate 

studies.  

 

3. Results and analysis 

 

3.1. Distribution of SOI-CORS stations over the 

study domain 

 

NCMRWF receives Integrated Precipitable Water 

(IPW) data from ground-based GNSS networks, including 

the Survey of India’s Continuously Operating Reference 

Stations (SOI-CORS). Despite ongoing expansion, station 

density over India remains limited. As of the study period, 

IMD operates 26 GNSS-IPW stations nationwide, and 

SOI-CORS IPW data were made available through IMD. 

 

Fig. 2 shows the coverage of SOI-CORS stations 

over the study region for a typical day of 26 June 2024. 

There are 18 stations from which data is available for 

assimilation. Stations are labelled as assimilated 

(ANL_USE) or not assimilated (ANL_NOUSE). Out of 
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Fig. 3. Temporal variation in the number of SOI-CORS station data over the domain during the study period 
 

 

 
 

Figs. 4(a&b). Scatter diagram of Observed PW v/s Model PW for the study period. a) Model background and b) Model analysis 

bias of 0.43 and RMS error 

 

18 stations, two to four stations are not used in the data 

assimilation. Out of the 18 available SOI-CORS stations, 

data from two to four stations were not assimilated on 

certain days due to non-receipt or incomplete availability 

of IPW data. The exact reasons for these gaps are not 

determined here. This emphasizes the importance of 

consistent and reliable data availability for the effective 

integration of the CORS network into operational 

numerical weather prediction (NWP) systems. 

 

Fig. 3 shows that, from 22 June to 10 July 2024, an 

average of 12 SOI-CORS stations contributed to each 

assimilation cycle. However, from 29 June to 3 July, no 

IPW data were received from any station. Such gaps 

highlight the importance of ensuring uninterrupted data 

delivery for reliable GNSS-based assimilation in regional 

NWP. 
 

3.2. PW comparison: model vs observations 

 

The comparison of precipitable water (PW) 

computed from the model background and analysis, with 

the observed PW from SOI-CORS stations for the              

study period is shown in Fig. 4. The background              

shows a positive bias of 1.80 and root mean square            

(RMS) error of 4.97, indicating systematic over-

estimation and larger deviations from observations.         

In contrast, the analysis demonstrates significant 

improvement, with a reduced bias of 0.43 and an             

RMS error of 1.86. Reduction in the RMSE and bias                

for the model analysis is observed. 

 

During June, the bias reduced to 0.38 from 1.68         

and that for July reduced from 0.47 to 1.94. Similarly,            

the RMSE also dropped by ~63% for both months.              

This suggests that the observational data used                  

in assimilation was relevant and properly              

weighted through the background error covariance                 

(B) and observation error covariance matrix                         

(R). The reduction in RMSE from the model background 

to the analysis indicates that the data assimilation                

process effectively improved the representation                

of the atmospheric state by incorporating observational 

data.  
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Figs. 5(a-c). Fit to radiosonde observed a) Wind, b) Temperature and c) Moisture during the study period 
 

 

3.3. Fit to observations 

 

Fig. 5 shows mean RMSE profiles for wind (zonal 

and meridional), temperature, and moisture fits to 

radiosonde observations, comparing the CNTL and IPW 

experiments. The IPW experiment consistently 

demonstrates lower RMSE values compared to CNTL at 

most pressure levels. From 1000 to 300 hPa the RMSE 

from IPW experiments range from 2-3 m/s (Fig. 5a). 

Notably, the largest improvements are seen in the mid-

troposphere, indicating that the assimilation of SOI-CORS 

IPW data significantly enhances the model’s ability to 

predict wind profiles, particularly in the region where 

wind patterns are often most variable and challenging to 

model. For temperature (Fig. 5b) while the RMSE values 

for both experiments are similar across most pressure 

levels, IPW shows small improvements, especially at 

higher altitudes. The relatively modest impact on 

temperature RMSE, compared to the stronger 

improvements in wind and moisture, is consistent with the 

physical nature of IPW observations. Since IPW provides 

a column-integrated measure of water vapor, it does not 

directly constrain the temperature field in the assimilation 

process. Instead, any temperature improvement results 

indirectly from changes in latent heating, vertical motion, 

and stability associated with improved moisture 

initialization. These effects depend on the model’s internal 

dynamics and parameterizations, making temperature 

responses to IPW assimilation more diffuse and nonlinear. 

 

The RMSE for moisture (q) is notably lower in the 

lower and mid-troposphere, where moisture plays a 

crucial role in weather systems, particularly in 

precipitation forecasting. The RMSE has reduced by        

7% for moisture at the surface and 2% for wind            

above 600hPa. Across all variables, IPW generally 

outperforms CNTL, with significant RMSE reductions for 

wind and moisture, particularly in the mid and lower 

troposphere, demonstrating the positive impact of 

assimilating SOI-CORS IPW data. These results highlight 

the overall benefit of IPW assimilation in enhancing the 

accuracy of model fields, especially for wind and 

moisture. These findings emphasize the importance of 

incorporating accurate moisture data for better model 

performance, especially in regions where moisture is 

critical for weather processes. In summary, the 

assimilation of SOI-CORS IPW data significantly 

improved the model’s moisture analysis by reducing 

systematic bias and RMSE, confirming the high relevance 

and weight of this observational dataset in the analysis 

cycle. 

 

3.4. Impact on analysis 

 

Figs. 6 to 7 compares the specific humidity fields 

from CNTL and IPW with ERA5 (reference dataset) for 

28-29 June 0000 UTC and 8-9 July 0000 UTC. On June 

28-29 (Fig. 6), spatial analysis reveals that assimilating 

IPW data significantly improves the model's 

representation of moisture. The IPW experiment exhibits 

closer agreement with ERA5 reanalysis in central and 

eastern regions, effectively correcting model biases in 

moisture transport and vertical motion. Notably, the 

eastern region shows a strong match between IPW and 

ERA5 in both spatial patterns and magnitudes of specific 

humidity. 
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Figs. 6(a-c). Comparison of Spatial distribution of specific humidity on 28th (top panel) and 29th June 2024 (bottom panel) from a) ERA5, b) 
CNTL and c) IPW experiments 

 

 

 
 

Figs. 7(a-c). Comparison of Spatial distribution of specific humidity on 8th (top panel) and 9th July 2024 (bottom panel) from a) ERA5, b) CNTL  

and c) IPW experiments 
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Figs. 8(a-c). Comparison of Spatial distribution of 2m temperature on 28th (top panel) and 29th June 2024 (bottom panel) from a) ERA5, b) CNTL  
and c) IPW experiments. 

 
 

 However, in some western regions, both CNTL and 

IPW simulations align well with ERA5, suggesting that 

assimilation may have a limited impact in areas where the 

model already performs adequately. Conversely, in some 

southern regions, the IPW experiment deviates more from 

ERA5 than CNTL, indicating that assimilation may 

occasionally introduce errors. This suggests that IPW 

assimilation effectively corrected model biases in 

moisture representation, particularly in these inland areas. 

The improved representation of temperature, coupled with 

better specific humidity fields, suggests a positive 

feedback effect on atmospheric processes like vertical 

motion and moisture transport. 

 

As for the July event (Fig. 7), in the northern region, 

where ERA5 indicates high specific humidity, the IPW 

experiment aligns more closely with ERA5 than the 

CNTL experiment, which underestimates humidity in 

these areas. Similarly, areas of lower specific humidity in 

ERA5 are better captured in the IPW experiment 

compared to the CNTL run. However, in some western 

regions, both IPW and CNTL experiments show closer 

alignment with ERA5, indicating areas where the model 

performs relatively well even without IPW assimilation. 

Figs. 8 to 9 compares the temperature fields from 

ERA5, CNTL, and IPW assimilation experiments for June 

28-29, 2024, and July 8-9, 2024. On June 28, the IPW 

simulation exhibited warmer temperatures compared to 

the CNTL simulation in several regions. By June 29, both 

IPW and CNTL simulations showed higher temperatures 

than ERA5 in certain areas. Despite these variations, the 

IPW simulation consistently demonstrated a closer 

resemblance to ERA5 on both days, particularly in 

capturing temperature gradients and the spatial 

distribution of warmer and cooler regions. Notably, in the 

eastern regions, IPW assimilation led to a strong match 

with ERA5, whereas in some western regions, CNTL and 

IPW simulations were already closely aligned with ERA5 

observations. The CNTL experiment overestimates 

temperatures in the northern and central regions, 

particularly in areas where ERA5 indicates cooler 

conditions. These biases are reduced in the IPW 

experiment, particularly in regions critical for rainfall 

dynamics. However, discrepancies remain, as temperature 

fields from the IPW experiment still deviate from ERA5 

in  some  locations.  Notably,  in   western   regions,   both  
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Figs. 9(a-c). Comparison of Spatial distribution of 2m temperature on 8th (top panel) and 9th July 2024 (bottom panel) from a) ERA5, b) CNTL  

and c) IPW experiments 
 

 

 

 

CNTL and IPW experiments show reasonable alignment 

with ERA5 temperature distributions, highlighting areas 

where the model performs well without significant 

assimilation impact. 

 

A combined analysis with specific humidity fields 

reveals that regions with higher temperature overestimates 

in the CNTL experiment correspond to areas of lower 

specific humidity (Figs. 6-7). This aligns with atmospheric 

thermodynamics, where reduced moisture limits 

evaporative cooling, leading to higher temperatures. The 

assimilation of IPW data in the IPW experiment helps 

correct these biases by better constraining the initial 

moisture fields, thereby improving the temperature 

representation and its spatial patterns. Across both cases, 

the IPW assimilation’s impact on temperature 

representation is evident, though it does not fully 

eliminate biases. The results highlight the potential of 

IPW assimilation to improve temperature fields, albeit 

with some limitations. 

3.5. Forecast Verification  

   

The impact of the IPW and CNTL experiments on 

model forecasts is verified against ERA5 reanalysis. To 

assess forecast performance, RMSE for wind vectors, 

temperature, and geopotential height is computed at 200, 

500, and 850 hPa pressure levels. The comparison 

between forecasts and observations is restricted to 

forecasts valid up to Day 3. Figs. 10(a-i) presents the bar 

diagram plots for RMSE of wind vector [Figs.  10(a-c)], 

RMSE of temperature [Figs.  10(d-f)] and RMSE of 

geopotential height [Figs. 10(g-i)] respectively.  
 

The comparison between IPW and CNTL runs 

revealed consistent improvements across all variables and 

pressure levels. For the wind vector, the IPW runs show 

reduction in RMSE by 7.71% at 200 hPa (Day 1) and 

4.78% at 850 hPa (Day 1), with smaller improvements 

(0.44%-0.48%) at other levels. The RMSE for temperature 

also showed notable improvements at 200 hPa (3.05%-

4.70%) across all forecast days, while at 500 
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Figs. 10(a-i). RMSE of wind (a) 200, (b) 500 & (c) 850 hPa pressure levels; temperature at (d) 200, (e) 500 & (f) 850 hPa pressure 

levels and geopotential height (g) 200, (h) 500 & (i) 850 hPa pressure levels over Uttar Pradesh, forecasts from IPW and CNTL 
runs with respect to ERA5 

 

 

hPa there were moderate reductions (1.07%-1.97%). The 

most substantial impact was observed in geopotential 

height at 200hPa, where IPW outperformed CNTL by 

15.33% (Day 1), 8.34% (Day 2), and 4.89% (Day 3). 

Improvements for wind at 850 hPa is around 3.28-5.47%. 

These results demonstrate that IPW assimilation 

consistently enhanced forecast accuracy across wind, 

temperature, and geopotential height fields. The largest 

improvements are seen in upper-level geopotential height, 

especially at 200 hPa. This enhancement is physically 

linked to improved initialization of lower- and mid-

tropospheric moisture, which affects the vertical 

distribution of latent heat release. In regions of active 

convection, accurate moisture initialization strengthens or 

weakens latent heating, which in turn drives changes in 

vertical motion and modifies mass divergence in the upper 

troposphere. These dynamic adjustments alter the 

geopotential field aloft, leading to improved 

representation of synoptic-scale features such as troughs 

and ridges. Therefore, the improved moisture field from 

SOI-CORS IPW assimilation has a cascading effect, 

ultimately enhancing upper-level geopotential height 

forecasts. 

 

3.6. Rainfall analysis 

 

A Contiguous Rain Areas (CRA) method was used 

for the CNTL and IPW experiments evaluated against the 

IMERG rainfall data for spatial verification. The CRA is 

significant as it evaluates the model's ability to capture the 

spatial and temporal continuity of rainfall events, which is 

critical for accurate rainfall prediction and impact 

assessment. The analysis is conducted for the 28th June 

rainfall event Figs. 11(a&b). In the CNTL experiment, the 

RMSE improves from 72.52 to 65.18 mm/day after 

shifting, while in the IPW experiment, it improves from 

75.77 to 72.03 mm/day. The correlation coefficients also 

show improvement after shifting, increasing from 0.07 to 

0.3 in CNTL and from -0.02 to 0.35 in IPW, suggesting 

better alignment of rainfall patterns with observations in 

the IPW experiment. The displacement errors are lower in 

the IPW experiment (9.69%) compared to CNTL 
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Figs. 11(a&b). CRA for 28th June a) CNTL and b) IPW experiments with respect to IMERGE rainfall 

 

 

 
 

Fig. 12. Comparison of precipitable water from INSAT-3DR and SOI-CORS 
 

 

(19.21%), indicating that assimilating SOI-CORS IPW 

data helps reduce spatial or temporal misalignment. 

However, both experiments exhibit high volume errors 

(22.59% in CNTL and 30.87% in IPW) and pattern errors 

(58.2% in CNTL and 59.5% in IPW), highlighting 

persistent challenges in accurately capturing total rainfall 

amounts and the spatial/temporal structure of rainfall. 

High volume and pattern errors indicate that column 

integrated IPW data alone cannot fully capture the  

vertical and structural details of precipitation systems. 

Due to its lack of vertical resolution and cloud 

information, IPW's impact on rainfall intensity and 

organization is limited. Therefore, combining IPW with 

additional observations like satellite-derived humidity 

profiles or cloud-sensitive measurements could improve 

the model’s representation of rainfall structure and 

intensity in future assimilation efforts. Overall, the IPW 

experiment demonstrates improved performance, but 

further refinement is needed to address volume and 

pattern-related inaccuracies. 

(a) (b) 
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3.7. Comparison of INSAT-3DR sounder PW vs 

CORS PW stations 

 

Precipitable Water from SOI-CORS stations is 

compared with that measured by the INSAT-3DR sounder 

for the study period. Fig. 12 shows the comparison 

statistics of 18 SOI-CORS stations in terms of the 

correlation coefficient, bias and RMSE. 

 

The collocation analysis conducted between the 

GPS-IPW station data and satellite observations aimed to 

evaluate the quality and accuracy of the GPS-derived 

precipitable water estimates (Fig. 12). The analysis 

revealed a strong correlation coefficient of 0.82, indicating 

a good alignment between the GPS station data and 

satellite measurements, which suggests that the GPS data 

effectively captures the variability in precipitable water 

across different locations and time steps. However, the 

root mean square deviation (RMSD) of 18.04 highlights 

substantial discrepancies, indicating that while the GPS 

data generally follows the trends observed by the 

satellites, there are significant differences in specific 

instances. Additionally, the negative bias of -17.03 

suggests that the GPS stations tend to underestimate 

precipitable water, particularly at lower values, which may 

affect the accuracy of weather predictions derived from 

this data. Overall, this analysis provides critical insights 

into the performance of GPS-IPW stations, identifying 

strengths in capturing trends but also pointing out the need 

for calibration and improvement to enhance the precision 

of the observations.   

 

The poor colocation between SOI-CORS PW and 

INSAT-3DR PW data likely stems from fundamental 

differences in spatiotemporal sampling and measurement 

physics. CORS stations provide point measurements of 

IPW derived from GPS signal delays, which depend on 

precise ancillary meteorological data (e.g., surface 

pressure and temperature). In contrast, INSAT-3DR 

provides area-averaged precipitable water estimates using 

infrared/microwave sounders, which are sensitive to cloud 

cover, atmospheric layers, and surface emissivity. Spatial 

mismatches arise because satellite pixels often blend 

signals from heterogeneous terrain (e.g., mixed land-water 

grids or mountainous regions), while SOI-CORS stations 

sample discrete locations. Temporal sampling differences 

intensify this as GPS-derived IPW is continuous, whereas 

satellite retrievals are snapshots with potential gaps due to 

cloud contamination or orbital limitations. Additionally, 

vertical sensitivity disparities play a role-GPS captures the 

total column water vapour, while satellite retrievals may 

underrepresent moisture in cloudy or boundary-layer 

regions. Systematic biases in GPS processing (e.g., errors 

in estimating zenith tropospheric delay or converting it to 

IPW using flawed weighted mean temperature formulas) 

further degrade colocation. These mismatches in 

resolution, physics and retrieval algorithms create 

representativeness errors that complicate direct 

comparisons. 

 

4. Conclusions 

 

This study presents a preliminary evaluation of the 

impact of assimilating SOI-CORS-derived Integrated 

Precipitable Water (IPW) data over Uttar Pradesh on 

numerical weather model performance. A significant 

RMSE reduction of approximately 63% (from 4.97 to 

1.86) when comparing model-derived IPW with 

observations demonstrates a substantial improvement in 

accuracy. The assimilation of high-resolution IPW data 

has led to notable enhancements in both model analysis 

and forecast accuracy, as confirmed by comparisons with 

radiosonde observations. Specifically, RMSE reductions 

of 2% for wind components above 600 hPa and 7% for 

surface moisture (q) highlight the positive impact of IPW 

assimilation on initial conditions, leading to a more 

accurate representation of the atmospheric state and 

improved forecast skill. 

 

Further verification of forecast performance reveals 

consistent error reductions across multiple pressure levels, 

demonstrating that the benefits of IPW assimilation extend 

beyond initial conditions and influence forecast evolution 

over time. Wind forecasts exhibit the most notable 

improvements, with RMSE reductions of 7.71% at 200 

hPa and 4.78% at 850 hPa on Day 1, leading to a more 

accurate depiction of atmospheric circulation patterns. 

Similarly, temperature forecasts at 200 hPa show 

systematic RMSE reductions ranging from 3.05% to 

4.70% across multiple forecast days, ensuring a more 

precise representation of the upper atmospheric thermal 

structure. Geopotential height, a critical variable for 

understanding large-scale weather patterns, demonstrates 

the most substantial impact, with RMSE reductions of 

15.33% at 200 hPa on Day 1, and sustained improvements 

at 850 hPa (3.28%-5.47%) over multiple days. These 

consistent improvements across key atmospheric variables 

reinforce the importance of assimilating high-resolution 

water vapour data in numerical weather prediction. 

 

Beyond numerical model improvements, the SOI-

CORS network represents a valuable dataset for 

atmospheric monitoring, hydrological studies, and climate 

applications. The collocation analysis highlights a strong 

correlation between GPS-IPW and satellite-derived 

precipitable water estimates but also reveals significant 

discrepancies, emphasizing the need for calibration to 

address biases related to spatial resolution, measurement 

physics, and retrieval algorithms. Similarly, the 

Contiguous Rain Areas (CRA) assessment shows that 
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assimilating CORS IPW data improves the spatial 

alignment of rainfall predictions, reducing displacement 

errors and enhancing correlation with observations. 

However, persistent challenges remain in accurately 

capturing total rainfall amounts and spatial/temporal 

patterns, underscoring the need for further refinements in 

precipitation modelling. 

 

The lack of significant improvements after 

assimilating SOI-CORS IPW data, despite reduced spatial 

and displacement errors in CRA, points to unresolved data 

quality and assimilation challenges. First, ancillary data 

inaccuracies (e.g., faulty surface pressure or temperature 

inputs at CORS stations) can bias IPW estimates, 

propagating errors into the model. Secondly, sparse station 

density limits spatial representativeness, failing to resolve 

fine-scale moisture gradients critical for rainfall dynamics. 

Further, vertical representation mismatches, GPS IPW 

integrates the entire atmospheric column, while models 

and satellites may prioritize moisture in specific layers, 

create discordance in assimilation impacts.  

 

To address current limitations, this study highlights 

the importance of increasing the number of high-

resolution meteorological sensors co-located with SOI-

CORS stations and expanding station density, particularly 

in regions with high rainfall variability. Additionally, our 

findings suggest that future work should include 

calibration of SOI-CORS IPW data against independent 

observations such as radiosondes and regional GNSS 

networks to identify and correct potential biases. Refining 

assimilation parameters such as, observation error 

covariance and vertical localization, will also be critical to 

better align IPW data with model physics and enhance 

forecast performance. Collectively, these steps will help 

bridge the gap between point measurements and gridded 

model systems, improving the utility of SOI-CORS IPW 

in NWP. 

 

The findings of this study highlight the broader 

potential of SOI-CORS IPW data beyond real-time 

forecasting. Its high temporal resolution and dense 

coverage make it an important resource for monitoring 

extreme weather events, flood prediction, and drought 

assessments. Additionally, as advancements in GPS 

meteorology continue, integrating SOI-CORS data with 

other observation systems could further enhance 

atmospheric research and operational forecasting. Future 

work will focus on conducting additional case studies 

across different rainfall and thunderstorm events to better 

understand the impact of IPW assimilation and explore 

potential enhancements for improving short-term weather 

predictions. Additionally, further calibration and 

validation efforts will be necessary to refine the SOI-

CORS dataset, ensuring its optimal use in both operational 

forecasting and long-term climate applications. 
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