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सार — हिमालय की तलिटी भारत में जगंल की आग के प्रमुख कें द्रों में से एक िै। गमम-शुष्क ग्रीष्म ऋतु (मार्म-

जनू) के दौरान जगंल की आग अक्सर वन पाररस्थिततकी तंत्र को नकुसान पिंुर्ाती िै, ऐसी िी एक घटना 2022 में 
उत्तराखंड की आग िै, स्जसने प्राकृततक वनथपतत को गभंीर रूप से प्रभाववत ककया और आर्िमक नकुसान िुआ। िालााँकक, 
इसके र्ालकों और वनथपतत प्रभावों के ललए पाररस्थिततकी तंत्र के लर्ीलेपन को अच्छी तरि से समझा निीं गया िै। 
िाइड्रोक्लाइमैहटक, वनथपतत और आग के डेटासेट का उपयोग करते िुए, िमने थिातनक-काललक ववववधताओ ंऔर जली िुई 
वनथपतत की वसूली की परूी तरि से जांर् की। उच्र्-गंभीरता वाले जले िुए उत्तराखंड के दक्षिणी िेत्रों में कें हद्रत िे, स्जनकी 
व्याख्या dNBR सरू्कांक वगों के आधार पर की गई िी। र्यतनत उच्र् गभंीरता वाले िेत्र के ललए गणना ककए गए जले 
िुए बायोमास में र्गरावट (16.75%) हदखाई दी उपग्रि पे्रिण सूर्कांकों ने आग की घटना के तुरंत बाद गततशील बिाली 
देखी, SAVI (~0.23 - 0.43) और VCI (~40 - 80) हदखाया, जो द्ववतीयक अनकु्रमण का संकेत देता िै। कुल लमलाकर, 
आग लगने के बाद जले िुए िेत्रों में SH>40% और LH<−20% िा, लेककन GPP (~20%) और ET (8-21%) में 
र्गरावट देखी गई, जबकक PET में वदृ्र्ध िुई, स्जससे कमजोर सतिी आपतूत म (3-19%) के तित वायमुडंलीय मााँग में वदृ्र्ध 
िुई, स्जसने धीमी गतत से सुधार की व्याख्या की। यि अध्ययन वनथपतत गततशीलता के आकलन और समझ के मित्व 
पर प्रकाश डालता िै, साि िी वायमुडंलीय स्थिततयों और वनथपतत सुधार की आतंररक ववशेषताओ ंके बारे में मित्वपणूम 
जानकारी प्रदान करता िै, जो वन अस्नन प्रभावों के अनकूुल िोने के ललए मागमदशमन प्रदान करता िै। 

 
 

ABSTRACT. The foothills of the Himalaya are one of the major hotspots of forest fires in India. Forest fires during 
the hot-dry summer season (March-June) often cause damage to the Forest ecosystem, one of such events is the Uttarakhand 

fires in 2022, which seriously impacted the natural vegetation led to economic losses. However, its drivers and ecosystem 

resilience to vegetation impacts are not well understood. Using hydroclimatic, vegetation, and fire datasets, we thoroughly 
examined the spatio-temporal variations and recovery of burnt vegetation. High-severity burns were concentrated in the 

southern regions of Uttarakhand, interpreted based on the dNBR index classes. The burned biomass calculated for the 

selected high severity area, showed decline (16.75%), post-fire recovery (40.85%) indicated uneven ecosystem resilience. 
High VPD and low soil moisture, intensified the fire risks but during monsoon onset and fire-induced rainfall helped restore 

soil moisture and reduce VPD, supported early vegetation recovery. The satellite observation indices observed dynamic 

restoration immediate after the fire event, showed SAVI (from ~0.23 – 0.43) and VCI (from ~40 - 80), indicating secondary 
succession. Overall post-fire burned regions had SH>40% and LH<−20% but showed decline in GPP (~20%) and ET (8-

21%), while PET rose stronger atmospheric demand under weakened surface supply (3-19%), which the explained slow 

recovery. This study highlights the importance of assessing and understanding the vegetation dynamics with providing key 
insights into atmospheric conditions and internal characteristics of vegetation recovery offers guidance for adapting to 

forest fire impacts. 
 

Key words  –  Vegetation dynamics, Secondary succession, Biomass and microbial interaction, Post-fire recovery. 
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1. Introduction 

 

Forest fires, with their inherently disruptive nature, 

pose a significant threat to both ecological balance and 

socio-economic systems, demanding for urgent and 

comprehensive scientific investigation. Forest fires are 

natural processes associated with intense heat, dryness, and 

vegetation dynamics (Sahu et al., 2022). The frequency, 

intensity, and impacts of forest fire have been exacerbated 

by anthropogenic activities and climate change in the recent 

decades (Jones et al., 2022). As per the report of the Global 

Forest Resource Assessment, the global degradation of 

forest covers and the unusual conversion of land covers 

with poor management are the most supporting factors for 

forest fires, globally. For instance, in 2015 alone, forest 

fires have damaged over 98 million hectares of forests 

globally approximately 3% of the global forest area with 

tropical forests suffering the most severe damage, 

accounting for nearly 4% of the total burned area (FSI, 

2021). 

 

The persistence of hot and dry conditions, particularly 

over the wildlands and forest ecosystems, have caused 

extreme forest fire events (Duane et al., 2021). At a global 

scale, North America, Southeastern Australia, and the 

Mediterranean region are the major hotspots of forest fire, 

which significantly experience extreme fire weather 

seasons (Cunningham et al., 2024). In the recent decades, 

boreal and temperate conifer biomes were 

disproportionately affected due to increasing frequency and 

intensity of forest fires, affecting a significant human 

population (Cunningham et al., 2024). Climate change has 

emerged as a key driver, amplifying global wildfire trends 

through increased temperatures, prolonged droughts, and 

more frequent heatwaves (Kreider et al., 2024; Raymond et 

al., 2020). The increase in global temperature driven by 

global warming has significantly increased the frequency, 

severity, and risk of forest fires, droughts, and heatwaves 

worldwide with India being no exception (Sun et al., 2019; 

Chen et al., 2024).   

 

India’s forests, which accounts for approximately 2% 

of the global forest area (about 80.9 million hectares or 24% 

of India’s geographical area; FSI, 2021), predominantly 

consist of tropical evergreen, tropical deciduous, tropical 

montane and tropical thorn forests (FAO, 2012). Dry 

deciduous forests have been identified as highly fire-prone, 

especially during the pre-monsoon season (April–May) 

with approximately 65% of these forests classified as fire-

susceptible zones (Sagar et al., 2024). Notably, the 

northeastern and central regions of India are considered the 

most vulnerable to forest fires, with anthropogenic 

activities contributing to approximately 75% of the fire 

incidents in 2020 (WWF International, 2020). Over the 

local forest ecosystems, Uttarakhand fires have 

traditionally been perceived to be more devasting                    

and harmful (Rawat et al., 2017). Forest Fires are more 

trivial for developing countries with significant forest 

covers, as the damage to the ecosystems and the 

environment can be unprecedented. Indian forests have 

experienced significant forest fire event counts in past years 

(Kale et al., 2017).  

 

In India, certain species like Chir Pine (Pinus 

roxburghii) found in dry deciduous forests with broadleaf 

structures are particularly susceptible to fires in the 

Himalayan regions due to their high resin content in it (a 

highly flammable substance), which acts as a potent fuel 

source (Singh et al., 2024; Bargali et al., 2024). This 

susceptibility intensifies when soil moisture declines, 

vegetation senesces, and atmospheric dryness peaks (Sagar 

et al., 2024). Additionally, the interplay of droughts and 

heatwaves intensifies the risk of forest fire by increasing 

fuel loads, especially in central India and adjacent regions, 

creating optimal conditions for ignition and rapid fire 

spread (Prabhakaran et al., 2025). 

 

Plant mortality from forest fires severely disrupts 

biodiversity and carbon storage, particularly in the topsoil. 

High-intensity fires deplete soil organic matter, alter pH, 

reduce nutrient availability, and destroy microbial 

communities, slowing nutrient cycling and vegetation 

recovery (Chandra et al., 2015). Fire severity strongly 

influences biomass loss, with large, uncontrolled fires 

causing greater damage than low intensity burns (Keywood 

et al., 2013; Neary et al., 1999). Dense vegetation promotes 

surface-to-canopy fire spread, increasing destruction (Keith 

et al., 2014). Repeated fires further degrade soil health, 

delay soil organic carbon (SOC) recovery (Xu et al., 2022) 

and alter microbial communities affecting long-term 

vegetation succession and biomass structures (Stephens              

et al., 2023). 

 

In this context, the present study focuses on the 2022 

forest fires in Uttarakhand – a critical event that 

underscores the vulnerability of Himalayan Forest 

ecosystems. The investigation aims to address two key 

research questions: 1) Do spatial observation datasets 

enhance our understanding of fire-induced changes in 

carbon and vegetation dynamics? and 2) How rapid was the 

post-fire ecosystem recovery? Through a detailed spatial-

temporal analysis, this study explores how forest fire 

affects the biotic and abiotic components of the 

environment, particularly in the Uttarakhand region. Given 

that forest fires result from a complex interplay of 

environmental, atmospheric, and meteorological variables, 

the analysis integrates multiple datasets and approaches to 

unravel the sequential impacts of forest fires. Our work 

seeks to provide deeper insights into the formation                        

of fire fuel loads, the extent of ecosystem damage, and  the
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Fig. 1. Study area: parts of India, highlighting Uttarakhand for forest fire analysis. Multiple coloured boundary layers 

indicating the Zones for local scale analysis G1, G2, G3, G4, G5 & G6 made based on Dense and Sparse vegetation 

 
 potential pathways for ecosystem recovery and resilience 

following a forest fire. 

 

2. Data and methodology 

 

2.1. Study area 

 

This study focuses on the 2022 Uttarakhand Forest 

fire event, examining the ecological impacts and recovery 

processes within the affected regions. Uttarakhand has 

approximately 45.6% of its geographical area covered with 

forest and dense vegetation, comprising nine major forest 

types: tropical moist deciduous forests, tropical dry 

deciduous forests, sub-tropical pine forests, Himalayan 

moist temperate forests, Himalayan dry temperate forests, 

sub-alpine forests, moist alpine scrub, dry alpine scrub, and 

tree outside forests (Bargali et al., 2023). Fig. 1 illustrates 

the study area, where specific zones (G1, G2, G3, G4, G5 

and G6) were delineated based on vegetation density  

(dense and sparse), with each zone covering a sample size 

of 100 m2.  

 

Key study locations include Chamba (elevation 

~1,524 m), known for tree species like Albizia lebbeck, 

Ficus carica, Murraya koenigii, Quercus leucotrichophora, 

and Rhododendron arboreum (Himachal Pradesh State 

Biodiversity Board), and Dhanaulti, a temperate forested 

town where deodar, oak, rhododendron, and chir pine 

dominate across elevation gradients. Vegetation 

composition in these regions includes 13% trees, 19% 

shrubs, 7% climbers, and 61% herbs (Himachal Pradesh 

State Biodiversity Board, 2025). The study highlights how 

vegetation structure, soil moisture, and atmospheric 

conditions jointly influence the pace and magnitude of 

ecosystem recovery following fire disturbances. 

2.2. Data 

 

A combination of remote sensing datasets and 

meteorological observations was utilized to 

comprehensively assess the 2022 Uttarakhand Forest              

fire events. We used daily temperature and            

precipitation dataset from the India Meteorological 

Department (IMD) (Sharma et al., 2024; Hari et al., 2021) 

to deduce meteorological information including trends              

and spatial distribution, during the study period. The    

hourly (converted to 8-days temporal resolution for             

this study) data fifth generation of ECMWF atmospheric 

reanalysis (ERA5 Land) at ~9 km spatial resolution              

was used to monitor key soil and atmospheric                 

variables, specifically soil moisture and vapor             

pressure deficit, providing insights into fuel conditions         

and fire susceptibility (Muñoz-Sabater et al., 2021).         

Two fire products from the Moderate Resolution           

Imaging Spectroradiometer (MODIS) were used: the Fire 

Information for Resource Management System (FIRMS) 

with a 1 km spatial resolution for calculating fire counts and 

intensity, and the MCD64A1 Version 6.1 Burned Area data 

product with a 500 m spatial resolution for estimating the 

burned area (Campagnolo et al., 2021). Additionally, three 

other MODIS products, including MCD12Q1.061 (Yearly 

Land Cover Type, 500 m), MOD17A2H (8-day Gross 

Primary Productivity, 500 m), and MOD16A2.061 (8-Day 

Net Evapotranspiration, 500 m) were used to determine the 

Land Use/Land Cover [LC_Type2, Annual University of 

Maryland (UMD) classification], Gross Primary 

Productivity (GPP), and Evapotranspiration (ET), 

respectively (Tithi et al., 2024; Dong et al., 2025). 

Furthermore, high spatio-temporal resolution data from 

Sentinel-2A (10 m, 20 m and 60 m spatial resolution, 

available at 10 - day  interval)   were   used   to   derive   the
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TABLE 1 

 

Data sources 

 

Sl. No Data Type Variable /Products used 
Temporal 

Resolution 

Spatial 

Resolution 

Data 

Source 

1. 
ERA5-Land 

(Reanalysis) 
Soil Moisture, Vapour Pressure Deficit Hourly 

0.1° x 0.1° 

(9 km) 
ECMWF 

2. Sentinel 2A 

Soil Adjusted Vegetation Index (SAVI), 

Vegetation Condition Index (VCI), Leaf Area 
Index (LAI), kNDVI and reflectance bands 

10 days 10 m ESA 

3. 

MODIS: Fire Information for 

Resource Management System 
(FIRMS) and MCD64A1 Version 6.1 

Fire Counts/Intensity and Burned area Daily 
1 km and 

500 m 
USGS 

4.  

MODIS: MODIS/061/MCD12Q1, 

MODIS/061/MOD17A2H and 
MODIS/061/MOD16A2 

Land Use Land Cover, GPP and ET 
Yearly (Annual), 

8-day composite  
500 m USGS 

5. 
Indian Meteorological Department 

(IMD) 
Maximum Temperature and Rainfall Daily 

1° and 0.25° 

respectively 
IMD 

6. 
Global Ecosystem Dynamics 

Investigation (GEDI) 
LiDAR data: aboveground biomass density Monthly 25 m ISS 

 

 

indices to monitor vegetation dynamics caused by the forest 

fires. We estimated the above-ground biomass (AGB) 

density using the above-mentioned data variables, which 

was validated using LiDAR data acquired from the Global 

Ecosystem Dynamics Investigation (GEDI) (Francini et al., 

2022). A comprehensive list of the datasets used in this 

study are presented in Table 1.  

 

2.2.1. Vegetation Indices 

 

We used 10m resolution Sentinel-2A bands to derive 

various vegetation indices (Equations 1-5) to extract the 

vegetation-related parameters for the 2022 forest fire events 

in Uttarakhand. Specifically, we calculated the Soil-

adjusted Vegetation Index (SAVI), Kernell Normalized 

Difference Vegetation Index (kNDVI), Enhanced 

Vegetation Index (EVI) (Lin et al., 2019), Leaf Area Index 

(LAI), and Vegetation Condition Index (VCI) to assess the 

vegetation dynamics. Each index offers distinct advantages 

for capturing different aspects of vegetation conditions and 

characteristics. For example, SAVI effectively accounts for 

the influence of background soil information (i.e. 

reflectance) on vegetation areas, particularly in sparsely 

vegetated regions (Li et al., 2018). The kNDVI is an 

advanced vegetation index that improves the detection of 

fine-scale vegetation regrowth and degradation following 

fire events (Li et al., 2025). LAI provides information on 

the surface area of leaves per unit ground area, where 

higher values indicate greater moisture content and 

biomass, capturing the fuel load essential for evaluating 

pre- and post-fire vegetation conditions (Andalibi et al., 

2022; Djamai and Fernandes, 2018). Finally, VCI monitors 

heat and drought stress impacts on vegetation (Burka et al., 

2024), supporting the prediction of spatial and temporal 

variations in fire risk across the study area.  

 

The indices computed from Sentinel 2A dataset are:  

 
SAVI = (NIR+RED+L)/(NIR−RED)×(1+L) ---- - (1) 

 
kNDVI = tanh((NIR-Red)2/(2σ)2)…                       (2) 

 
EVI = G * ((NIR - RED) / (NIR + C1 *  

           RED – C2 * BLUE + L))                             (3) 

 
LAI  = 3.618 × EVI − 0.118-- …..                          (4) 

 
VCI = (NDVImax−NDVImin)/ (NDVI−NDVImin)  ×100                                                                                

                                                                                (5) 

 
where, NIR: Near-Infrared reflectance, RED: Red 

reflectance, BLUE: Blue reflectance, σ: A scaling 

parameter that controls sensitivity to spectral difference. 

tanh: Hyperbolic tangent function to squash output to range 

~ [0, 1). L: A soil brightness correction factor (typically 

around 0.5), which helps to adjust for soil effects, G= 2.5, 

C1= 6, C2= 7.5, L= 1.  

 

2.2.2. NBR, GPP, ET, PET, SH and LH 

 

Next, we used the Normalized Burnt Ratio             

(NBR) index to categorize and identify fires based on              

burn severity. NBR is the ratio of near-infrared and 

shortwave infrared bands (Equation 6) calculated using 

MODIS 8-day reflectance bands (MOD09A1.061). dNBR 
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from Equation 7, is calculated based on difference with Pre-

fire NBR and Post-fire NBR image pixels.  

 

NRB = ((NIR – SWIR) / (NIR + SWIR))  --(6) 

 

dNBR = NBRpre-fire −NBRpost-fire -------------   -----  -(7) 

 

We also estimated the total carbon fixed by vegetation 

through photosynthesis using the MODIS 8-day GPP 

product (Hari et al., 2024). Similarly, integrated water loss 

from soil and plant transpiration was estimated using 

MODIS 8-day ET product, which helps in interpreting the 

health, potential and prolonged condition of fire fuel loads. 

These indicators reflect impaired vegetation function or 

slow forest ecosystem recovery, which can vary depending 

on vegetation type. Further, Vapour Pressure Deficit (VPD) 

and Soil Moisture (SM) were also derived from ERA5-

Land product. 

 

Daily potential evapotranspiration (PET; mm day⁻¹) 

was derived using the FAO-56 Penman-Monteith method, 

integrating INSAT surface insolation with three-hourly 

WRF meteorology (air temperature, humidity, wind speed), 

available at 5 km resolution (Bhattacharya et al., 2009). We 

derived daily latent heat (LH, J/m²) and sensible heat (SH, 

J/m²) from ERA5-Land (Copernicus/ECMWF), accessed 

via GEE for the January 2022 to June 2025 period. We 

converted these daily totals to mean daily fluxes (W/m²) 

then harmonized sign to the micrometeorological 

convention (upward positive) and extracted for land-cover 

strata.  

 

2.3. Carbon density and biomass estimation 

 

Next, we derived the time-series of above-ground 

biomass (AGB), above-ground carbon (AGC), below-

ground biomass (BGB), below-ground carbon (BGC), CO2 

sequestered in AGB, and total carbon (TC) stock over the 

forest ecosystem near Chamba district, Uttarakhand. The 

boundary was selected based on the fire affected patches. 

We used the machine learning (ML) models to make spatial 

AGB image and GEDI point data was used to validate. 

Random forest (RF), extra gradient boosting (XGBoost), 

decision tree and light gradient boosting (GBM) models 

were used to estimate AGB using Sentinel 2A data. The 

accuracy of selected ML models was benchmarked with the 

LiDAR-based monthly biomass data from GEDI.  

 

The carbon (C) stock of the Himalayan Forests is a 

fraction of 47% of biomass (Dar and Parthasarathy, 2022). 

Therefore, AGC is calculated by multiplying the factor of 

conversion, as shown in Equation 8. The carbon-dioxide 

(CO2) sequestration is estimated from the AGC using 

Equation 9 (Meragiaw et al., 2021). Similarly, following 

the standard methods outlined by MacDicken (1997) and 

the IPCC (2006) report, and adopting a 5:1 shoot-to-root 

biomass ratio based on synthesized global data, 

belowground biomass (BGB) was estimated as 20% of 

aboveground biomass (AGB), as shown in Equation 10. For 

this study, total carbon (TC) stock was calculated by 

summing aboveground carbon (AGC) and BGB, following 

Pearson (2007). The TC stock (Mg ha⁻¹) for the study area 

is presented in Equation 11. 

 
AGC = AGB * 0.47-------------------    --------------(8) 

 
CO2 sequestered_AGB = AGC x 3.67 ----- -------------(9) 

 
BGB = AGB x 0.20-----------------------------------(10) 

 
TC Stock = AGC + BGC---------------- ------------(11) 

 
2.4. Accuracy assessment 

 

The accuracy of the utilized models is assessed using 

mean squared error (MAE), root mean squared error 

(RMSE) and the coefficient of determination (R2) metrics. 

RMSE and MAE metrics are used to evaluate the 

performance of ML models (Sunder et al., 2023). The 

performance metrics are calculated using the equations (12 

and 13) shown below: 

 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑ (ŷ𝑖 − 𝑦𝑖)2𝑛

𝑖=1  ---------  -------------(12) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |ŷ𝑖 − 𝑦𝑖| 𝑛

𝑖=1  ----------------------       -(13) 

 

3. Result and analysis 

 

3.1. Burn severity and intensity of the 2022 

Uttarakhand forest fire  

 

First of all, we examined the fire burn severity of the 

2022 forest fire in Uttarakhand using the Normalized Burnt 

Ratio (NBR). Since the fire was initiated in late February 

and persisted until the end of June, we estimated the NBR 

for two months in 2022 – January (pre-fire) and July (post-

fire) over the burnt area, identified using MODIS Burnt 

Area products (MCD64A1). The pre-fire and post-fire 

NBR values were used to assess vegetation conditions 

before and after the fire Figs. 2(a & b). The difference 

between the pre- and post-fire NBR values (dNBR) was 

then used to estimate fire burn severity (Fig. 2c). The 

spatial distribution of NBR showed higher values                 

(0.1 to 0.5), indicating relatively healthy vegetation 

condition before the fire (Fig. 2a). The NBR showed 

relatively low values (less than 0) in regions impacted by 

fire  as  compared  to  the pre-fire condition (Fig. 2b). As a
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Figs. 2(a-d). NBR variation for (a) Pre-fire for Uttarakhand (b) Pre-fire for zoomed location (c) Post-fire for Uttarakhand (d) Post-fire for  

zoomed location 
 

 

 

 

result, the dNBR also showed more negative values 

indicating greater vegetation loss due to the forest fire (Fig. 

2c). To better interpret the results, we classified the dNBR 

values into different burn severity classes, including high, 

moderate-high, moderate-low, and low severity, along with 

unburned areas and zones of enhanced regrowth. Results 

revealed that most high-severity burns were concentrated 

in the southern parts of Uttarakhand, while moderate and 

low-severity impacts were more widespread. Pockets of 

enhanced regrowth, particularly in less severely affected 

areas, indicated early stages of secondary succession. 

 

The NBR changes from per and post fires were also 

clear from the zoomed plots Figs. 2 (a & b) and had 

moderate to very high intensity of fire from Fig. 3. The 

intensity of the fires is classified from low to extreme based 

on the temperature of variations observed with the FIRMS 

fire data. The classifications have the lowest of  60 ºC and 

highest is 126.85 ºC.  Nearly 2% of the Uttarakhand was 

burnt due to forest fire. The burnt area was mostly affected 

over the vegetated area when compared with LULC 

(supplementary Fig. S1).  The burnt area covered 34.7% of 

woody savannas, 16% of savannas, 14% of mixed forest, 

9.3% of Evergreen Needleleaf Forest, 1.7% of grasslands, 

0.6% of Evergreen Broadleaf Forest and 0.13% of 

Deciduous Broadleaf Forest. The percentage difference of 

pre and post fire NBR values were observed to have 51.2% 

of evergreen need leaf forest, 48.5% of savannas, 40.4% of 

woody savannas, 36.9% of mixed forest, 32.7% of 

evergreen broadleaf forest, 12.3% of deciduous broadleaf 

forest and -17.7% grasslands (supplementary Fig. S2). The 

recovery of grasslands was observed to be very high could 

be possible due to the increase in monsoon rainfall. Since 

Uttarakhand’s Forest ecosystem is frequently disturbed by 

extreme fire events (supplementary Fig. S3) and the health 

of these ecosystems can be monitored through biomass and 

carbon stock dynamics quantifying forest biomass and 

carbon stock loss was crucial. 

 

3.2. Biomass and carbon stock loss due to forest  

fires 

 

Next, we evaluated the biomass and carbon stock loss 

due to the forest fires in Uttarakhand during February-June 

2022. The fire-affected area, along with its buffer region, 

covered approximately 219.97 km² (supplementary Figure 

S4a), which was then used to estimate the aboveground 

biomass (AGB), aboveground carbon (AGC), belowground 

biomass (BGB), belowground carbon (BGC), CO₂ in AGB, 

CO₂ in BGB, and total carbon (TC) stock. Our analysis 

revealed significant disruptions in biomass dynamics due 

to fire-induced changes in carbon pools (Figs. 4 & 5). The 

AGB was predicted using machine learning models 

(Random Forest, XGBoost, and LightGBM), where the 

Random Forest model performed best (R² = 0.74, RMSE = 

145.9 Mg ha⁻¹, MAE = 103.5 Mg ha⁻¹). This model was 

used to estimate AGB from 2019 to 2022 (supplementary 

Figure S4) along with analysing feature importance of best 

predicted model (Random Forest) (supplementary               

Fig. S5), and we observed a clear reduction in 2022 

compared to previous years, confirming the fire’s impact 

on forest structure.
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Fig. 3. Intensity levels of fire over the Uttarakhand study area 

 

 
 

Fig. 4. Spatial and temporal percentage variation of AGB before, during and after the fire episodes over the fire patch buffer area  

 

 
 

Fig. 5. Monthly AGB (Mg/ha) variation for year 2022 over the vicinity of fire patch 
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TABLE 2 

 

Derived carbon stock pools in Mg/ha for AGB, AGC, BGB, BGC, CO2 in AGB, CO2 in BGB and TC stock over the Forest Fire ecosystem 

 
Months AGB AGC BGB BGC CO2 in AGB CO2 in BGB TC_Stock 

Jan 404.60 202.30 80.92 40.46 742.44 148.49 242.76 

Feb 388.90 194.45 77.78 38.89 713.64 142.73 233.34 

Mar 325.03 162.51 65.01 32.50 596.42 119.28 195.02 

Apr 303.43 151.72 60.69 30.34 556.80 111.36 182.06 

May 268.70 134.35 53.74 26.87 493.07 98.61 161.22 

Jun 263.06 131.53 52.61 26.31 482.72 96.54 157.84 

Jul 406.54 203.27 81.31 40.65 746.00 149.20 243.93 

Aug 410.72 205.36 82.14 41.07 753.66 150.73 246.43 

Sep 415.66 207.83 83.13 41.57 762.73 152.55 249.39 

Oct 366.77 183.39 73.35 36.68 673.03 134.61 220.06 

Nov 393.48 196.74 78.70 39.35 722.03 144.41 236.09 

Dec 407.09 203.55 81.42 40.71 747.02 149.40 244.26 

 
 

Biomass loss was approximately 16%, aligning                

with the FIRMS observations of extreme fire intensities, 

where surface temperatures reached around 65 °C.    

Monthly variations in carbon pools (Table 2) and             

AGB (Figs. 4 & 5) showed a significant decline during               

the fire period (March–May), followed by a gradual 

recovery with the onset of the monsoon in June. A total 

AGB loss of 57.89 Mg ha⁻¹ (16.75%) was recorded during 

the fire period, with biomass reduction and increased 

atmospheric carbon content occurring immediately after 

the fire. However, by July, the total carbon stock (AGC + 

BGC) recovered to near pre-fire levels, likely due to 

favourable conditions provided by the Indian summer 

monsoon. 

 

We further observed a marked decline of 

approximately 230 Mg ha⁻¹ in AGB between March and 

June, especially around Chamba in the Tehri Garhwal 

district. Although predicting carbon sinks is challenging, 

our estimates indicated that CO₂ sequestration capacity 

dropped from 596 Mg ha⁻¹ to 482 Mg ha⁻¹, with 

corresponding total carbon stocks decreasing from 195 Mg 

ha⁻¹ to 157 Mg ha⁻¹. Bargaili et al., (2024) conducted an 

extensive study over biomass and carbon stock losses 

across Sal, Chir-Pine and mixed forests for 2022 fires and 

reported that high fire frequencies showed significant 

impact which make tree biomasses to decline and carbon 

stocks declined  with the mean difference values by 12 

Mg/ha-1 over Sal forest, mixed forests with 8 Mg/ha-1 and 

Chir-pine with 20 Mg/ha-1 stands being especially 

vulnerable due to species composition and fuel load. Sal 

forests showed greater resilience, particularly to low-

intensity fires. The fire’s impact was not limited to biomass, 

as soil carbon dynamics were also affected. Fires disrupted 

microbial communities in the soil, which are crucial for 

carbon sequestration and vegetation recovery. The 

disruption in microbial populations impacted nutrient 

cycling, making it harder for recovering vegetation to 

access essential nutrients like nitrogen and phosphorus. 

This highlighted the critical role microbial biomass plays in 

soil health and post-fire recovery. 

 

The disturbance also revealed the differences in 

biomass sensitivity to fire, with AGB being more dynamic 

and affected than BGB, which is consistent with earlier 

studies (Mina et al., 2023; Hari and Tyagi, 2022). AGB 

experienced a greater decline (32.35%) compared to BGB 

(32.48%). The total biomass loss during the fire period 

affected both aboveground and belowground carbon pools, 

with AGB and AGC seeing the largest reductions. 

Additionally, we found that repeated fires continued to 

disrupt the microbial biomass content (MBC) across soil 

depths, potentially delayed the recovery of soil organic 

carbon (SOC) for extended periods (Singh et al., 2021; Xu 

et al., 2022). The fire-induced disturbances also delayed 

soil recovery and microbial regeneration which further 

altered vegetation composition and community structure 

over the long term (Chanda, 2020). 

 

In the post-fire period, we observed the early stages of 

secondary succession during the monsoon months. The 

charred biomass provided essential nutrients that facilitated 

microbial metabolism and soil carbon mineralization 

(Dooley et al., 2012). As microbial communities recovered, 

they contributed to nutrient cycling, facilitating vegetation 

recovery. However, the long-term impacts of such 

disturbances on forest species’ community composition 

and biomass structure remain a concern, as fire severity, 

coupled with climatic changes, could further alter 

ecosystem resilience and slow recovery. This study 

underscores the complexity of fire-induced changes to 

biomass and carbon stock, highlighting the importance of 

continuous monitoring for effective forest management and 

climate adaptation. 
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3.3. Post-fire atmospheric recovery and its role in 

vegetation regrowth 

 
Next, we analysed the temperature and moisture 

dynamics during the 2022 forest fire period in Uttarakhand. 

Temperatures rose sharply during the initial phase, 

exceeding 40 °C and peaking above 45 °C, which 

contributed to increased atmospheric dryness and a higher 

frequency of fire events (Fig. S3). The VPD and SM, 

estimated from ERA5-Land data, exhibited an expected 

inverse relationship Figs. 6(a & b), highlighting intensified 

dryness from late February through June. 

 
During June, a gradual increase in soil moisture 

(~0.2–0.4 m³ m⁻³) was observed across both dense and 

sparse vegetation classes (G1–G4). In contrast, G5 and G6 

experienced a more rapid rise in SM beyond 0.4 m³ m⁻³, 

accompanied by a notable decrease in VPD below ~7 hPa, 

suggesting a strong coupling between atmospheric 

temperature and the upper soil layers. With the onset of 

rainfall in late May, as evident from IMD precipitation data 

(Fig. 6c), further increases in soil moisture and reductions 

in VPD were recorded, particularly over G5 and G6. VPD 

and SM are important factors that play a major role in the 

health of forest ecosystems, especially during the dry 

conditions (Mahto and Mishra, 2024; Rajeev et al., 2022). 

They strongly influence how much water trees can use and 

how much carbon they can store (Cen et al., 2025). During 

hot and dry periods, when VPD rises and SM falls, forests 

struggle to use water efficiently and to maintain their 

normal growth and carbon storage. These conditions also 

create an environment that allows fires to spread more 

easily. 

 
After the fire events, the release of burnt plant 

material may have triggered a process called new particle 

formation (NPF). This process leads to the creation of 

extremely small, lightweight particles (ultrafine particles) 

in the air (Chen et al., 2019). These particles are highly 

hygroscopic, meaning they attract water vapor easily, and 

they can serve as seeds for cloud formation (Wu et al., 

2017). This may have helped promote more rainfall over 

some forest areas in Uttarakhand after the fires. With the 

arrival of the monsoon season in June, rainfall became 

more frequent and intense. As a result, soil moisture levels 

increased steadily to about 0.4 to 0.5 m³ m⁻³, while VPD 

and air temperatures continued to decrease. This 

improvement in both land and atmospheric moisture is 

expected to play an important role in helping the forest 

vegetation recover after the fire damage. 

 

3.4. Post fire vegetation health recovery 

 

We further assessed the biophysical changes caused 

by the forest fire using high-resolution satellite data from 

Sentinel-2A. As shown in Fig. 7, a significant loss of 

vegetation greenness was observed across Uttarakhand 

during both the fuel accumulation period and the active fire 

season. This was detected using multiple vegetation 

indices, including SAVI, VCI, LAI, and kNDVI. During 

the initial fire phase, structural attributes of vegetation 

exhibited some inertia, delaying immediate response to 

environmental changes, while functional processes like 

energy and matter exchange showed quicker reactions. 

Functional vegetation traits, closely linked to nutrient 

cycling & carbon dynamics, can be effectively monitored 

to understand large-scale ecosystem responses to 

disturbance. 

 
Wildfires directly disrupt ecosystem energy and 

matter flows, and tracking these changes provides insight 

into ecosystem dynamics and resilience. After June, SAVI 

values declined from ~0.4–0.5, indicating vegetation loss. 

Similarly, kNDVI values dropped sharply to near zero by 

May, reflecting significant vegetation degradation due to 

fire (Fig. 7d). Signs of recovery were observed from July 

onward, with VCI values increasing, suggesting post-fire 

vegetation regeneration. Following recovery initiation, 

VCI and LAI remained relatively stable and high between 

October and January, indicating restoration. However, heat 

and drought conditions during the fire period likely stressed 

vegetation further, enhancing canopy loss. Between June 

and September, vegetation dynamics fluctuated, reflecting 

post-fire ecological disturbances (Fig. 7). 

 
Fire impacts on soil microbial communities depend on 

fire severity, changes in soil properties, and post-fire 

environmental conditions. By September, vegetation 

indices stabilized across the six sub-zones (G1-G6), with 

SAVI (~0.23-0.43), VCI (~40-80), LAI (~1-2), and kNDVI 

(~0.2-0.3), indicating recovery of vegetation health. Based 

on severity, fire disturbances are classified as: Degree 1: 

canopy, foliage, and branch destruction (Myers et al., 

2003), Degree 2: destruction of the canopy and understory, 

and Degree 3: damage extending to soil ecosystems and 

root structures (Nakagoshi & Touyama, 1995). Degree 3 

disturbances require considerably longer recovery times 

compared to Degree 1 and 2. Vegetation indices such as 

kNDVI and LAI, sensitive to canopy cover, showed 

prolonged recovery or did not fully return to pre-fire levels 

within the short post-fire period, depending on fire severity. 

Thus, long-term monitoring is essential for a better 

understanding of ecosystem recovery processes following 

major fire events. 

 
3.5. Recovery of vegetation functionality: changes in 

GPP and ET 

 

Finally, we examined how forest fire has impacted the 

vegetation's   evapotranspiration  (ET)  and  carbon  uptake  
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Figs. 6(a-d). Atmospheric condition of pre & post fire (a) SM (b)VPD for geometries (c) Rainfall (d) Maximum temperature for entire Uttarakhand 

 

 
 

Figs. 7(a-d). Temporal Vegetation dynamics heat map using (a) SAVI (b) VCI (c) LAI (d) kNDVI for G1, G2, G3, G4, G5 and, G6 locations  

 

(GPP) over the burned area’s land cover types. We 

estimated the monthly ET and GPP anomaly for 2022-2024 

over the burnt area for two vegetation types of Woody 

Savannas and Deciduous Forests and plotted against the 

significant (more than 10) fire counts (Fig. 8). Results show 

that GPP and ET significantly declined post-fire (June - 

July 2022) by approximately 20% and 13%, respectively. 

A similar pattern was observed in 2024, with reductions of 

around 20% in GPP and 12% in ET during the same post-

fire window. Notably, vegetation appeared to take 1 - 2 

months to exhibit the peak impact on both GPP and ET. A 

clear association was observed between the number of fire 

events and  the reduction in GPP and ET (Shi et al., 2025). 

The intense heat from the fires likely depleted vegetation 

water content, leading to physiological stress and, in many 

cases, vegetation mortality. Consequently, photosynthetic 

activity drastically declined, resulting in a substantial drop 

in GPP in the following months. 

 

The internal characteristics of vegetation are        

analysed using GPP and ET. The concurrent or subsequent  

GPP reduction and ET are directly or indirectly linked                

to fire episodes. The decline of GPP and ET indicated                 

the  direct  canopy  loss  and  the decline of photosynthetic 
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Figs. 8(a&b). Vegetation internal characteristics (a) GPP (b) ET for woody savannas and deciduous broadleaf forests along 

with fire counts for burnt area 
 

 
 

activity with fewer active leaves. It also highlights                      

the sensitivity of ecosystem productivity and water                

fluxes to fire disturbances. The lag in response                       

further suggests a cumulative or delayed effect of                        

fire damage, possibly driven by post-fire vegetation 

recovery dynamics and soil moisture depletion. This                  

also creates loss of transpiration structural damage,                     

and stomatal dysfunction suppresses ET (Shi et al., 

2025).  Due to thermal stress or desiccation and as GPP                   

is coupled with carbon and water fluxes, fire            

disturbances over the ecosystem have limited the                 

CO₂ uptake and caused GPP to decline. Spatial analysis 

also revealed that regions with higher fire density 

experienced more pronounced reductions, indicating a 

strong spatial heterogeneity in fire impacts (Hemes et al., 

2023).  

 

When the canopy is reduced, the interception and 

changes in energy balance potentially increase evaporation 

temporarily but significantly reduce transpiration 

dominance in ET. A decline in ET due to fire as a feedback 

loop could alter VPD or other microclimatic factors (Zhou 

et al., 2014), exacerbating stomatal closure and further 

reducing GPP. The effects of hydrophobic soil layers could 

be more severe, further limiting water uptake and affecting 

both plant water use (ET) and carbon assimilation (GPP). 

This can also lead to a lagged GPP response even after ET 

drops due to slow metabolic regrowth, consistent with the 

lagged correlation, resulting in the strongest GPP 

suppression one day after the fire episode. These findings 

underscore the importance of fire monitoring and post-fire 

recovery assessment in managing ecosystem resilience 

under changing climate conditions. 

3.6. Sub-seasonal recovery and intricate 

relationship with PET, ET, LH, and SH 

 

Wildfires intensely altered the land atmosphere 

energy exchange and water balance, modifying vegetation 

canopy structure, soil moisture availability, soil surface 

roughness and temperature gradients between surface and 

air. To assess short term biophysical impact due to peak 

fires with the atmospheric moisture demand and surface 

energy, we analysed anomalies of four key surface flux 

variables PET, ET, SH, and LH across two dominant 

vegetation classes in Uttarakhand (Woody Savannas and 

Deciduous Broadleaf Forests) during fire-impacted days 

(fire_pixel_count > 10), considering the time windows 

spanning pre-fire to post-fire conditions. The variations are 

shown in Figs. 9(a-c). Increase in fires suppressed the ET 

levels from vegetation, which was aligned with the 

anticipated physiological stress and loss of green biomass 

followed by intense fire activity. This inability of 

vegetation’s to transpire effectively during and shortly after 

fire events was linked with stomatal closure, leaf area loss, 

and post-fire canopy mortality.  

 

During the early dry season of fire, April to May 2022, 

the results showed significant gradual decline of ET, 

notably, 15.5% in Woody Savannas and 8.2% in Deciduous 

Forests, which reflected the immediate effect over 

vegetation suppression due to stomatal closure, canopy loss 

and foliar scorching. Despite of ET, the PET increased 

around 19% in Woody Savannas and 17.5% in Deciduous 

Forest, which clearly decoupled the relation between 

atmospheric evaporative demand and ecosystem water 

supply.  This  divergence  of  ET  and  PET  explained  the  
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Figs. 9(a-c). Vegetation internal characteristics (a) PET (b) SH and (c) LH for woody savannas and deciduous broadleaf forests along with fire 

counts for burnt area 

 

increased aridity, whereas, land surfaces energies became 

limited due to reduced moisture exchange. The surface 

energy balance showed impeccable evidence of post – fire  

partitioning shifts.  The LH (the energy flux associated with 

evapotranspiration) decreased after fire up to 26.1% and 

20.9% in Woody Savannas and Deciduous Forests, 

respectively, followed the patterns of ET. This suppression 

of LH indicated reduced capacity of the surface to dissipate 

heat via latent cooling, directly affecting surface energy 

dissipation and boundary layer stability. In tandem, SH 

increased by 50.2% and 45.4% in Woody Savannas and 

Deciduous Forests, respectively, signalling a reallocation 

of available net radiation towards atmospheric heating of 

the lower tropospheric atmosphere, which critically altered 

the land atmosphere energy coupling. 

 

The fire windows, when extended to 2024 dry pre-

monsoon seasons (February to May) considering multiple 

fire occurrences, the ET declined further than in 2022 fire 

event, with 18.0% in Woody Savannas and 14.4% in 

Deciduous Forests. This reflected a strong interpretation of 

compound stress impact over the vegetation due to long and 

intense exposure of fires. Interestingly, PET anomalies 

during this event were more modest (6.7%, 6.8%) with the 

5-day threshold of post fire, possibly due to seasonal 

moderation of atmospheric demand. Nonetheless, the 

consistent rise again highlighted the increasing atmospheric 

water demand amidst falling biological water fluxes which 

is a signature of fire-induced hydroclimatic imbalance. LH 

remained negatively impacted (22.4%, 20.2%), confirming 

persistent declines in evaporative surface cooling whereas 

SH rose substantially (43.3%, 40.9%), this echoed earlier 

findings of thermal amplification in post-burns and 

reinforced the positive feedback loop between fire, dryness, 

and surface heating. 

 

Moreover, the fires on post monsoon during October 

revealed distinct seasonal responses. The divergence of ET 

(9.5%, 20.8%) and PET (3.0%, 3.8%) suggested significant 

resilience, whereas dense forest types were found 

comparatively vulnerable. The decoupling between PET 

and ET anomalies exemplified a transition from energy-

limited to moisture-limited evapotranspiration regimes 

during fire-affected months. This shift has showed direct 

implications for drought intensification, vegetation 

recovery lags, and future fire susceptibility. As expected, 
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the energy partitions remained consistent with previous 

pattern with LH, showed decline of 19.1% and 22.5% and 

SH had increased variation of about 11.9% and 19.4%, 

highlighted the reinforced dominance of SH even under the 

milder meteorological conditions.  

 

This setback of LH and SH dominance on post-fire 

period is a benchmark of fire-disturbed systems, where 

vegetation loss and topsoil exposure increase the albedo 

and reduce the surface moisture buffer. The observed 

increase in SH more likely accelerated the land atmosphere 

coupling strength and daytime boundary layer growth, that 

potentially resulted altering the local convective dynamics 

and precipitation initiation (Mölders and Kramm, 2007; 

Dirmeyer et al., 2014). The fires impacts showed uneven 

response over the biomes', especially with the higher SH in 

Woody Savannas showed greater surface desiccation and 

radiative stress in these ecosystems, possibly due to less 

structural resistance to fire (Jhariya and Raj, 2014). The 

synergy between reduced LH and increased SH can 

generate localized surface warming (positive feedback), 

which, in turn, could exacerbate fuel drying and trigger 

recurrent fire cycles especially in already vulnerable forest 

types like pine-dominated savannas (Liu et al., 2019; 

Beringer et al., 2007). 

 

4. Conclusions 

 

The recovery analysis of the 2022 forest fire events 

provides insights into the restoration trajectory of degraded 

vegetation across Uttarakhand. The 2022 fire episodes 

made significant destruction of vegetation ecosystem. The 

fire counts over the Uttarakhand region were witnessed 

from late February to June. Moreover, the increase in the 

number of fire counts was observed from April to early 

June summer months. The increase in the number of fires 

counts along with the atmospheric dryness has decreased 

vapor pressure deficit and top-level soil moisture levels 

over the ecosystem. The results indicated that during 

periods of elevated temperature, all vegetation-related 

indices including SAVI, VCI, kNDVI, and LAI exhibited 

significant declines, reflecting acute vegetation stress, loss 

of canopy cover, and heightened fire susceptibility. This 

implied that the Uttarakhand Forest ecosystem was 

vulnerable to fires, with the most burnt across the forest 

covers by woody savannas, savannas and mixed forest. 

Among the five vegetation indicators, kNDVI responded 

earliest, capturing early signs of vegetation degradation 

before visible loss, thereby highlighting its potential for 

early warning applications. 

 

The post-fire monitoring through vegetation indices 

suggests that significant vegetation recovery marked by 

stabilization of VCI, SAVI, kNDVI, and LAI began 

approximately 3 to 4 months after the fire event, 

particularly noticeable from September onwards due to the 

Indian summer monsoon rainfall. However, full restoration 

of pre-fire vegetation structures, especially in severely 

burnt zones, is likely to require multiple years, depending 

on fire severity, soil conditions, and climatic factors. 

Satellite-based indices revealed evidence of secondary 

succession, characterized by the proliferation of fast-

growing shrubs and grasses in the post-fire period. This 

suggests an initial phase of ecosystem reorganization rather 

than immediate recovery of original forest types. Species 

like Chir Pine and Sal, which are more fire-adapted, 

appeared to expand into areas previously dominated by Oak 

forests, potentially driving long-term shifts in ecosystem 

composition and function. 

 

Internal vegetation dynamics from 2022 to 2024 

revealed a 20% decline in GPP and a 13% reduction in ET 

during the immediate post-fire period of 2022. A similar 

magnitude of decline (20% for GPP and 12% for ET) was 

recorded in 2024, reflecting the compounded impacts of 

repeated fire events. Recurrent fires were found to delay the 

recovery period and hinder ecosystem functional stability. 

Additionally, assessments of carbon pools including AGB, 

BGB, and their associated carbon stocks emphasized 

significant reductions before, during, and after the fire 

episodes, further affecting the carbon sequestration 

potential of the forest ecosystem. 

 

Post-fire burned regions showed coherent hydro-

biophysical shifts, with showed decline in GPP (~20%) and 

ET (8-21%), while PET increased up to 3-19%, which 

signalled stronger atmospheric moisture demand against 

weakened moisture supply. These shifts were interlinked 

with the surface energy partitioning, which was reallocated 

from latent (19-26%) to sensible heating (12–50%), which 

explained the reduced evaporative cooling and enhanced 

near-surface warming. Woody Savannas exhibited the 

strongest thermal amplification, with SH > +40% during 

fire windows. Deciduous Broadleaf Forests showed deeper 

ET deficits (−21%), the consistent with canopy scorch, 

suppressed transpiration rate. The PET-ET divergence 

revealed moisture demand and supply decoupling, that was 

significantly observed immediately after fires, which 

explained hallmark of moisture-limited conditions.  

 

Peak impacts emerged within days of ignition and 

persisted through the buffered post-fire period across both 

land cover types. Where SH > +40% co-occurred with LH 

< −20%, recovery was slowest, indicating strong energy 

reallocation and soil canopy dryness. Coupled water, 

energy, carbon signals (ET/LH down, SH/PET up, GPP 

down) diagnose constrained vegetation function and 

limited cooling capacity. These changes intensified the 

boundary-layer growth and local heat stress, reinforcing 

fire climate feedback. Management needs to reconsider the 
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prioritized hotspots crossing the SH/LH thresholds above, 

as they represent high-risk, slow-recovery patches. 

 

With rising global temperatures, climatic changes 

such as drought and heatwaves are expected to increase fire 

frequency with shorter return intervals (Mina et al., 2023; 

Tepley et al., 2018; Kumar et al., 2023). When forests are 

repeatedly disturbed before full recovery, ecosystem 

resilience diminishes, making them more vulnerable to 

future disturbances. Over time, this can shift ecosystems 

toward critical tipping points, leading to shorter recovery 

cycles and reduced resistance and resilience among tree 

species (Thom, 2023).  

 

Overall, the study highlights that satellite 

observations are effective for large-scale, rapid 

assessments of post-fire recovery. Our findings underscore 

the urgent need for proactive fire management and post-fire 

restoration strategies to enhance forest resilience under 

changing climate conditions. Moreover, continuous long-

term monitoring is essential to distinguish between genuine 

forest recovery and shifts toward alternate vegetation states 

triggered by fire disturbances. 
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Fig. S1. Land Use/Land cover for Uttarakhand using MODIS data 
 

 
 

Fig. S2. NBR pre and post fire percentage change over LULC classes 
 

 
 

Fig. S3. Fire counts from 2020 to 2023 using FIRMS dataset 
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Figs. S4(a-c). Spatial variation of Biomass estimation and error metrics (a) Shows the location of the fire patch highlighted in brown box 

and grey are fire locations (b) show the accuracy error with different ML models RMSE, MAE and R2 (c) Spatial 
representation of Predicted AGB (Mg/ha) 

 

 

 

 
 

Fig. S5. Feature importance of the Random forest model for predicted AGB (Mg/ha) 

 
 


